An Operational Open-Source Model
System and Software Framework
Supporting Agile Model Development
of Strategic Planning Models

VISION

exploring tomorrow today

Brian Gregor, P.E.

Session 1C — Sketching a Vision with VisionEval
Innovations in Travel Modeling 2018

Atlanta, Georgia

Definitions

Model System: Specifications for modules that can be run in sequence
to compose a model and a software framework for implementing
those specifications. Models built in the model system are related by:

 The domains that the model system addresses
 The 'agents’ that are modeled

 How physical space is represented

 How time is represented

e Other modeling goals

Module: A module implements a sub-model, a component in a larger
model (e.g. a trip generation sub-model in a 4-step travel demand
model). A module includes a definition of the sub-model and the
programming code to implement that definition.

VisionEval Modeling Domain:
Strategic Visioning and Planning

Modified from planning diagram by:
Edward Leman (www.chreod.ca)

o)

9
Q EVALUATION
J‘/ N
/ ~
J & = - c\- _> - .
| N
|' P A oty INSTITUTIONAL
PROBLEMS &
| OPERATIONS oY\ oppoRTUNTIES MECHANISMS
| A
zoll ---:J---(--,---\\ /7‘-l----(--\----
’uI\ ’[* :(
v\ " N
&\ v N
o ’
. IMPLEMEN - 2
Operations Models A TaTioN)7}
o’
]
]
I

Limited scope

Very detailed (e.g.
intersection level)
Few scenarios

e.g. traffic simulation,
transit operations

6
PROJECT
PLANS

Strategic Planning
Models
Broad scope
Limited detail (e.g.
system level)
Many scenarios
e.g. VisionEval

Tactical Models
Moderate scope
Moderate detail
(e.g. link level)
Few scenarios
e.g. urban travel
demand model

3

VisionEval Model Characteristics

VisionEval models address a broad As with activity-based models,

range of considerations individual households are modeled

e Household attributes but household behavior is modeled

* Neighborhood characteristics in aggregate

e Transportation system * Average DVMT

e Prices and budgets * Annual fuel

e Transportation e Annual travel budget
operations Activity e Annual walk trips

 Vehicles Based .

e Fuels Model

Budget models connect

Short run times economics and travel

enable 100s — 1000s
of scenarios to be
run

X

Integrated
Model

Sketch
Model

Choice models connect
housing, location, and
travel

Key VisionEval Model System Goals

Modularity: Structure model code so
that it can be modified or replaced
without requiring any modifications of
other model code. Make modules
interchangeable between models built
in VisionEval model system.

RSPM

| Region.al Strategic
,({ fliljnnlng M(_)jel* V(\
EERPAT ™ RPAT

Energy and Rapid Policy Assessment

Emissions _Tool (formerly SmartGAP)
Reduction Policy . _

Analysis Tool

GreenSTEP

Green S
T E
P

Transparency: All aspects of modules
and their implementation must be
viewable, documented, and replicable.

Oregon Models
Openness: The model system and R ok
software framework that supports it
must have open, well documented

standards and APl with open-source

licensing.

Benefits of Modular, Transparent, & Open
System

Trustworthiness: People can examine how the models are estimated,
how they are implemented in code and can run the code to test it.
Data is documented. Data flows are traceable.

Reliability: Consistent standards and APl make it easier to implement
automated testing. Modules can be tested for consistency with
standards. Module outputs can be tested for consistency with
described behavior. Model inputs can be checked prior to running
model.

Economical: Modules can be shared between models, reducing code
duplication. Code maintenance is simplified.

Agile Development: Modularity enables model development to be
agile. A developer can start by implementing a minimal model and
then incrementally improve the model to increase complexity,
accuracy, and behavioral fidelity.

Connecting Research and Practice

The researcher
focuses on an aspect
of travel behavior or
performance

To bring research into
practice, it needs to
be incorporated into a
larger travel model

How can this be done?

Add preprocessor or post-processor to existing Only works for research that can be accommodated at the
model front end or tail end of the model.

Build a model to plug the new component into A lot of extra work for researcher. A lot of redundant work
for many researchers.

Alter an existing model Only works if the model includes complementary
components and if the model and code are open, well
documented and modular.

An open modular model system lowers the barriers to incorporating
research into practice

VisionEval Model System in a Nutshell

Module
Layer

Software

Framework =

Layer

Model _
Layer

Create- Predict-
Households Workers

I

Software Framework

Datastore

#runModel.R
library(visioneval)

Predict-
INncome

Assign-
LifeCvycle

visioneval package supplies the
framework software services

initializeModel()

runModule(*“CreateHouseholds™)
runModule(“PredictWorkers™)
runModule(*“AssignLifeCycle”)

initializing the model sets up the
datastore, means of tracking status of
run and datastore, and checks validity
of model and inputs.

runModule(*“Predictincome”)
runModule(“PredictHousing™)
runModule(*“LocateEmployment”)

running calls the module with specified
data, writes specified outputs from the
module to the datastore.

Functional Design for Modularity

Modules act like pure functions. They only consume and produce

data.
Data) Modu|e Data)

Modules have
NO side effects.
Change Program State Functional approach makes
Change Memory modules and models:
Change Files e Easier to reason about
e More reliable
e Easier to test
e Easier to debug

Detailed Module Interface Describes All
Resources Needed and Produced

Module interface components include:

* RunBy: Level of geography module is to be run for

* NewlnpTable: /dentify tables that need to be created in the datastore
to save module input data

 NewSetTable: /dentify tables that need to be created in the datastore
to save module output data

 Inp: Describe all data fields in user input files

e Get: Describe all datasets to be retrieved from the datastore to pass
to the module

e Set: Describe all datasets that the module produces that are to be
saved to the datastore

 Call: Identify other modules that will be called (more on this later)

[—

Detailed Data Specifications

Example of ‘Set’ specifications for
two datasets produced by a
module:

item(
NAME =
items("ComSvcDvmtPopulationFactor”,
"HvyTrkDvmtPopulationFactor"),
TABLE = "Marea",<
GROUP = "Global", <

TYPE = "compound",

UNITS = "MI/PRSN",

NAVALUE = -1, <
PROHIBIT = c("NA", "< @"),

ISELEMENTOF = "", <
SIZE = O, <
DESCRIPTION =
items(
"Ratio of base year commercial service
vehicle DVMT to population”,
"Ratio of base year heavy truck DVMT
to population”

Dataset names. Can list more than one dataset as long
as other specifications are the same.

Table the datasets are to be placed in. There are
tables for each level of geography as well as other
categories of data such as Households.

Tables are organized in groups. The “Global” group
contains data that is applicable to all model run years.
If the GROUP value is “Year” the data is placed in the
group for the model run year.

The data type and measurement units for the
datasets. In addition to 4 primitive types, there are
several complex types that define units and
conversion factors between units. Compound types
are made up of several complex types.

How NA values are stored.

Prohibited values if data is continuous. For categorical
data, allowed values specified in ISELEMENTOF
attribute.

Maximum number of characters for string data.

Dataset descriptions.

11

Services Supported by Detailed Specifications

Check Model Consistency Prior to Runtime
Models are prechecked to determine whether each module that is called will be able to get
the data it needs consistent with its specifications.

Check and Load User Inputs Prior to Runtime
All input data files are checked to determine whether the data are correct and complete.
Modules may include scripts to do more complex input data checks and preprocessing.

Module Documentation and Cataloging

All input files and other data required by and produced by each module is documented in
the module interface. This enables a module registry to be produced to assist model and
module developers.

Automatic Unit Conversion

Standardized unit specifications for 13 complex data types (e.g. time, distance, mass,
volume, energy) and the compound data type enable the framework to handle unit
conversion. It also enables the framework to handle currency conversions to different
years.

12

Interaction Between Modules is Controlled

e Controlling how modules can interact is important for module
interchangeability and model reliability

e Primary interaction is through data exchange (to and from
datastore) mediated by framework and governed by module
interfaces

 Modules may call other modules to provide calculation services
subject to the following limitations:

e ‘Call’ specification must identify whether a module may be called

A module that may be called can not call any other module (avoids nested
calls that reduce model comprehension and increase bugs)

A module that may be called can not have any user file inputs (avoids
confusion for user)

Modules are Contained in R Packages

e R has useful characteristics Example Source Package
e Excellent package management DESCRIPTION
e Strong data science language LICENSE
* Facilitates open model development géX[E)DSIIEAEE
e Has interfaces to multiple languages
——data
* Related VE modules are usually combined .
in a package R
e There is an R script for each VE module ‘ extdata
* These are run when the package is installed pums_households.csv
. pums_households.txt
 Model objects are created and saved bUMS_persons. csv
* Functions are parsed pums_persons.txt
e Packages include model estimation ——man
datasets unless they are large or .
confidential AssignlLifeCycle.R
 Regional data may be substituted for g:ggigﬁgﬁ;gﬁgigz');tasets'R
default to customize estimated parameters PredictIncome.R
e Documentation for data is provided PredictWorkers.R

e Packages include module tests —tests

Example Module Script

OO~ & WK

#CreateHouseholds.R

T

##CreateHouseholds Module

#The CreateHouseholds module creates a *Household* table in the datastore

#and populates the table with datasets characterizing simulated households. Each
#entry represents a simulated household. Household datasets are created for the
#numbers of persons in each of 6 age categories (0-14, 15-19, 20-29, 30-54,
#55-64, and 65+) and the total number of persons in the household. Two types of
#households are created: *regular* households (i.e. not persons in group
#quarters) and *group quarters* households (i.e. persons in group quarters such
#as college dormatories). Households are created from Azone level demographic
#forecasts of the number of persons in each of the 6 age groups for *regular*
#households and for the group quarters population. In addition, users may
#optionally specify an average household size and/or the proportion of
#households that are single person households. The module creates households
#that matches the age forecast and the optional household size and single person
#inputs (close but not exact). The module tabulates the number of households
#created in each Azone.

#

###Model Parameter Estimation

#This model has just one parameter object, a matrix of the probability that a
#person in each age group is in one of several hundred *regular* household
#types. The matrix is created by selecting from the PUMS data the records for
#the most frequently observed household types. The default is to select the
#household types which account for 99% of all households. Each household type is
#denoted by the number of persons in each age group in the household. For
#example, a household that has 2 persons of age 0-14 and 2 persons of age 20-29

15

Example Module Script

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

#those households are just composed of single persons.
#
###How the Module Works
#For *regular* households, the module uses the matrix of probabilities that a
#person in each age group is present in the most frequently observed household
#types along with a forecast of number of persons in each age group to
#synthesize a likely set of *regular* households. The module starts by assigning
#the forecast population by age group to household types using the probability
#matrix that has been estimated. It then carries out the following interative
#process to create a set of households that is internally consistent and that
#matches (approximately) the optional inputs for household size and proportion
#of single-person households:
#
#1) For each household type, the number of households of the type is calculated
#from the number of persons of each age group assigned to the type. For example
#if 420 persons age 0-14 and 480 persons age 20-29 are assigned to household
#type *2-0-2-0-0-0*, that implies either 210 or 240 households of that type.
#where the number of households of the type implied by the persons assigned is
#not consistent as in this example, the mean of the implied number of households
#is used. In the example, this would be 225 households. This is the *resolved*
#number of households. For all household types, the resolved number of
#households is compared to the maximum number of implied households (in this
#case 225 is compared to 240) if ratio of these values differs from 1 in
#absolute terms by less than 0.001 for all household types, the iterative
#process ends.
#
#2) If a household size target has been specified, the average household size for
#the resolved households is computed. The ratio of the target household size and
16

Example Module Script

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

-

#SECTION 1: ESTIMATE AND SAVE MODEL PARAMETERS

#
#This model has
#person in each
#Each household
#the household.
#The columns of
#matrix sums to
#The default is

#all households.

just one parameter object, a matrix of the probability that a
age group is in one of several hundred household types.

type 1s denoted by the number of persons in each age group 1in
The rows of the matrix correspond to the household types.

the matrix correspond to the 6 age groups. Each column of the
1. The process selects the most frequently observed households.
to select the most frequent households which account for 99% of

#Define a function to estimate household size proportion parameters

Ag <-

HhType_ <-

icalcHhAgeTypes <- function(HhData df, Threshold = 0.99) {
Hh_df <- HhData_df[HhData_df$HhType == "Reg”,]

c("AgeBtold”,
"Agel5tol9”,
"Age20to29",
"Age30to54",
"Age55to64",
"Age65PLlus")
#Create vector of household type names

apply(Hh_df[, Ag]l, 1, function(x)

Example Module Script

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

#Create and save household size proportions parameters

load("data/Hh_df.rda")

HtProb_HtAp <- calcHhAgeTypes(Hh_df)

#' Household size proportions

#I

#' A dataset containing the proportions of households by household size.
#I

#' @format A matrix having 950 rows (for Oregon data) and 6 colums:
#' @source CreateHouseholds.R script.

"HtProb_HtAp"

devtools::use_data(HtProb_HtAp, overwrite = TRUE)
rm(calcHhAgeTypes, Hh_df)

#
#SECTION 2: DEFINE THE MODULE DATA SPECIFICATIONS
#

#Define the data specifications

CreateHouseholdsSpecifications <- list(
#Level of geography module is applied at
RunBy = "Region”,
#Specify new tables to be created by Inp if any
#Specify new tables to be created by Set if any
NewSetTable = items(
18

Example Module Script

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

#
#SECTION 2: DEFINE THE MODULE DATA SPECIFICATIONS
#

#Define the data specifications

CreateHouseholdsSpecifications <- list(
#Level of geography module is applied at
RunBy = "Region”,
#Specify new tables to be created by Inp if any
#Specify new tables to be created by Set if any
NewSetTable = items(

item(
TABLE = "Household",
GROUP = "Year"

)
).
#Specify input data
Inp = items(

i1tem(
NAME =
items("AgeOtold”,
"Agel5tol9”,
"Age20to29",
"Age30to54",
"Age55to64",

"Age65Plus"),
FILE = "azone_hh_pop_by_age.csv",

19

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226

#Specify input data
Inp = items(

item(

NAME =
items("AgeOtold”,
"Agel5tol9",
"Age20to29",
"Age30to54",
"Ageb5to64",
"Ageb65Plus"),

FILE = "azone_hh_pop by age.csv",
TABLE = "Azone"”,

GROUP = "Year",

TYPE = "people”,

UNITS = "PRSN",

NAVALUE = -1,

SIZE = 0O,

PROHIBIT = c("NA", "< 0"),
ISELEMENTOF = "",

UNLIKELY = "",

TOTAL = "",

DESCRIPTION =

items(

. "Household (non-group quarters) population in 0 to 14 year old age group",
"Household (non-group quarters) population in 15 to 19 year old age
group",

"Household (non-group quarters) population in 20 to 29 year old age
group",

20

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

#Specify data to be loaded from data
Get = items(
item(
NAME = "Azone",
TABLE = "Azone",
GROUP = "Year",
TYPE = "character",
UNITS = “ID",
PROHIBIT = "",
ISELEMENTOF = "

).

item(
NAME = "Marea",
TABLE = "Azone",
GROUP = "Year",
TYPE = "character",
UNITS = "ID",
PROHIBIT = "",
ISELEMENTOF = "

).

item(

NAME =
items("AgeOtold”,
"Agel5tol9",
"Age20to029”,
"Age30to54",
"Ageb5to064",
"Ageb5Plus"),

store

21

Example Module Script

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

#Specify data to saved in the data store

Set = items(
item(
NAME = "NumHh",
TABLE = "Azone",
GROUP = "Year",
TYPE = "households"”,
UNITS = "HH",
NAVALUE = -1,
PROHIBIT = c("NA", "< 0"),
ISELEMENTOF = "",
SIZE = O,
DESCRIPTION = “Number of households (non-group quarters)”
).
item(
NAME =
items("HhId",
"Azone",
"Marea"),
TABLE = "Household",
GROUP = "Year",
TYPE = "character"”,
UNITS = "ID",
NAVALUE = "NA",
PROHIBIT = "",
ISELEMENTOF = "",
DESCRIPTION =

items("Unique household ID",

22

Example Module Script

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

-

#SECTION 3: DEFINE FUNCTIONS THAT IMPLEMENT THE SUBMODEL

#

#This function creates households for the entire model region. A household table
#is created and this is populated with the household size and persons by age
#characteristics of all the households.

#Function that creates set of households for an Azone

Create simulated households for an Azone

\code{createHhByAge} creates a set of simulated households for an Azone that
reasonably represents a population census or forecast of persons in each of 6
age categories.

This function creates a set of simulated households for an Azone that
reasonably represents the population census or forecast of persons in each of
6 age categories: 0 to 14, 15 to 19, 20 to 29, 30 to 54, 55 to 64, and 65
plus.

@param Prsn_Ap A named vector containing the number of persons in each age
category.
@param MaxIter An integer specifying the maximum number of iterations the
algorithm should use to balance and reconcile the population allocation to
household types.
@param TargetHhSize A double specifying a household size target value or NA
23

Example Module Script

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

#Main module function that creates simulated households

Main module function to create simulated households

\code{CreateHouseholds} creates a set of simulated households that each have
a unique household ID, an Azone to which it is assigned, household

size (number of people in the household), and numbers of persons in each of
6 age categories.

This function creates a set of simulated households for the model region
where each household is assigned a household size, an Azone, a unique ID, and
numbers of persons in each of 6 age categories. The function calls the
createHhByAge and createGrpHhByAge functions for each Azone to create
simulated households containing persons by age category from a vector of
persons by age category for the Azone. The list of vectors produced by the
Create Households function are to be stored in the "Household" table. Since
this table does not exist, the function calculates a LENGTH value for the
table and returns that as well. The framework uses this information to
initialize the Households table. The function also computes the maximum
numbers of characters in the HhId and Azone datasets and assigns these to a
SIZE vector. This is necessary so that the framework can initialize these
datasets in the datastore. ALl the results are returned in a list.

@param L A list containing the components listed in the Get specifications
for the module.

@return A 1list containing the components specified in the Set
specifications for the module along with:

24

Example Module Script

714 #' @export
715 HCreateHouseholds <- function(L) {

716 #Define dimension name vectors

717 Ap <=

718 c("AgeOtold"”, "Agel5tol9", "Age20to29", "Age30tob54", "Ageb5to64", "Ageb5Plus")
719 Ag <- pasteO("Grp", Ap)

720 Az <- L$Year$Azone$Azone

721 #fix seed as synthesis involves sampling
722 set.seed(LGSeed)

723 #Initialize output list

724 OQut_1ls <- initDatalist()

725 OQut_1ls$Year$Azone$NumHh <= numeric(0)
726 OQut_1ls$Years$Household <-

727 List(

728 Azone = character(0),

729 Marea = character(0),

730 HhId = character(0),

731 HhSize = integer(0),

732 HhType = character(0),

733 AgeOtold = integer(0),

734 Agel5tol9 = integer(0),

735 Age20to029 = integer(0),

736 Age30to54 = integer(0),

7137 Age55to64 = integer(0),

738 Ageb5Plus = integer(0)

739)

740 #Make matrix of regular household persons by Azone and age group
741 Prsn_AzAp <-

Other Features

 Logical design of datastore and the software interface enables
alternative implementations
e Column-oriented table structure to support vectorized calculations
e Current implementations include HDF5 and R binary files

 Module testing functionality
 Module developers can test their module during the development process

e Tests check whether
* The module interface is correct
* The test input files are consistent with interface specifications
» Test datastore data are consistent with interface specifications
* Module outputs are consistent with interface specifications

 Module test data and scripts are included in the package

A model run can reference one or more datastores
 Facilitate scenario management
 Facilitate consistency in model applications

Status

* VisionEval model system design and software framework package
(visioneval) are complete

e RPAT and RSPM models have been converted to VisionEval and work
is underway to convert the GreenSTEP model

e Work is underway to develop:
* A full-featured graphical user interface
 Methods and tools to set up and run large numbers of scenarios
e Data visualizer to investigate the results of large numbers of scenarios

e A software management and testing process has been set up (Ben
Stabler presentation)

* A new multi-modal travel module has been developed (Liming Wang
presentation)

e A pooled fund project to support further development has been set
up (Dan Flynn presentation)

Thank You

Brian Gregor

Oregon Systems Analytics
gregor@or-analytics.com
https://github.com/gregorbij

Acknowledgements:

e Oregon Department of Transportation
e Federal Highway Administration Office
of Planning, Environment, and Realty
 American Association of State Highway

and Transportation Officials
e Volpe National Transportation Systems
Center

Pooled Fund (FHWA-Volpe)

vision

exploring tomorrow today

visioneval.org

Participants
DOTs MPOs

=OR =LlasVegas
=MD = Atlanta

= WA = Houston
= Ohio

= NC

= CA

Jeremy Raw, FHWA jeremy.raw@dot.gov

28

mailto:gregor@or-analytics.com
https://github.com/gregorbj

	Slide Number 1
	Definitions
	VisionEval Modeling Domain:� Strategic Visioning and Planning
	VisionEval Model Characteristics
	Key VisionEval Model System Goals
	Benefits of Modular, Transparent, & Open System
	Connecting Research and Practice
	VisionEval Model System in a Nutshell
	Functional Design for Modularity
	Detailed Module Interface Describes All Resources Needed and Produced
	Detailed Data Specifications
	Services Supported by Detailed Specifications
	Interaction Between Modules is Controlled
	Modules are Contained in Packages
	Example Module Script
	Example Module Script
	Example Module Script
	Example Module Script
	Example Module Script
	Example Module Script
	Example Module Script
	Example Module Script
	Example Module Script
	Example Module Script
	Example Module Script
	Other Features
	Status
	Thank You

