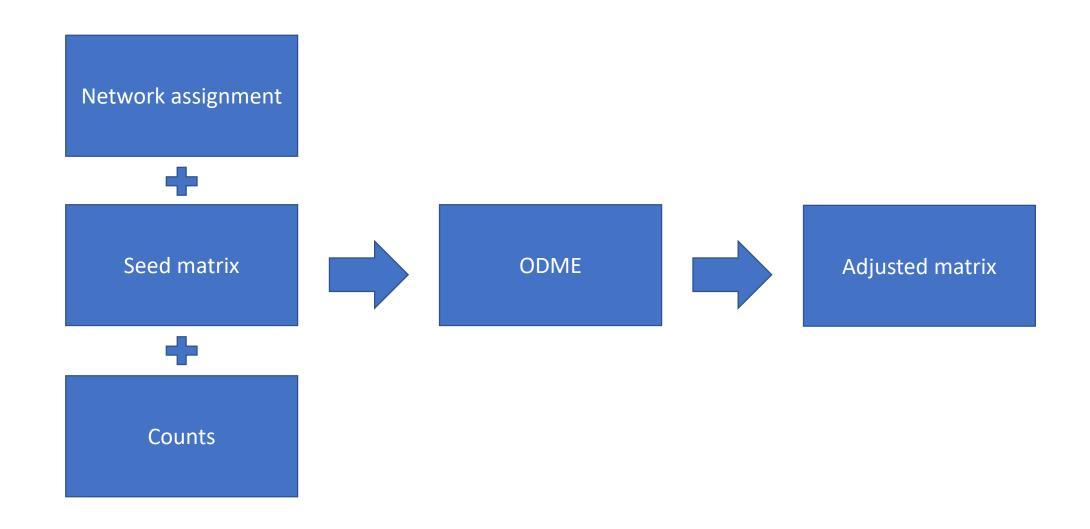


TRB Innovations – 2018, Atlanta GA

Open Source Sparse Matrix Implementation of Least Squares Matrix Estimation

Matrix Estimation Overview



Motivation

- Started as a prototyping experiment for application on large scale networks with noisy count data and possible use in persistently updated real time models
- Exploring the least squares formulation and the gradient method for solution quality and performance
- Making the open source prototype available in public domain may help demystify the ODME black box and encourage...

"proper and responsible application of ODME" –ref:

http://tfresource.org/Destination Choice: Data Sources

Formulation

Broadly, two well known formulations for ODME problem (problem is underspecified):

Maximum entropy via ME2 etc. [Willumsen (1978)]

$$\max S(T_{ij}) = -\sum_{ij} (T_{ij} \log T_{ij} - T_{ij})$$
 ST:

 $C_a - \sum_{ij} T_{ij} p_{ij}^a = 0$ $T_{ij} \ge 0$

a = link index

 $C_a = count \ at \ link \ a$

 $T_{ij} = trips between ij$

 $p_{ij}^a = contribution of od pair ij to flow on link a$

Least squares [Spiess (1990)]

$$min(Z) = \frac{1}{2} \times \sum_{a} \left\{ \sum_{ij} T_{ij} \times p_{ij}^{a} - C_{a} \right\}^{2}$$

Solution Algorithm

Gradient descent in general...

$$X_{k+1} = X_k - \lambda_k \nabla f|_{x_k}$$

$$\nabla f \equiv \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right]^T$$

Where,

 X_k = initial solution or solution at iteration k

 $X_{k+1} = updated solution at iteration k+1$

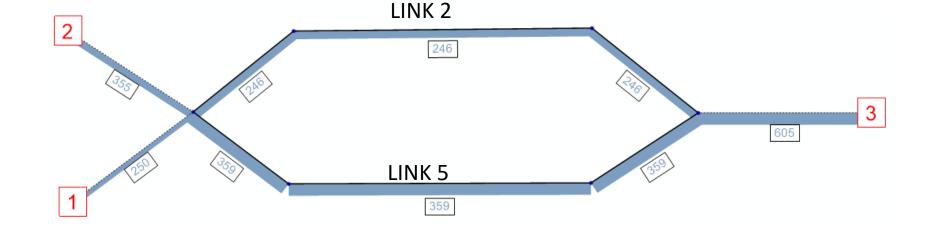
 $\nabla f|_{x_k}$ = gradient (first order partial drivative) value at x_k

 $\lambda_k = suitable step size$

Numerous applications including Machine Learning etc...

Application to ODME

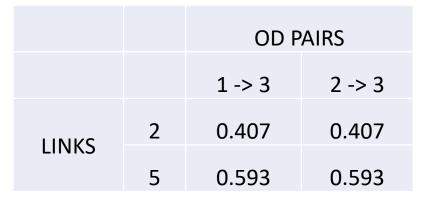
OD PAIR	TRIPS
1 -> 3	250
2 -> 3	355



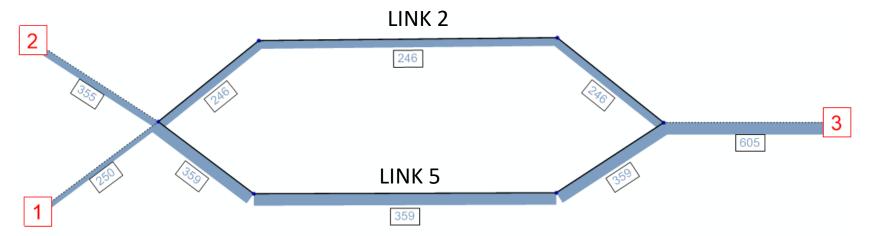
Path Flows

OZONE	DZONE	PATH INDEX	PATHFLOW
1	3	1	148
1	3	2	102
2	3	1	210
2	3	2	145

Flow Proportion Matrix



Application to ODME – Link Flow Evaluation



OD Flows

OD PAIR	1 -> 3	2 -> 3
TRIPS	250	355

Flow Proportion Matrix

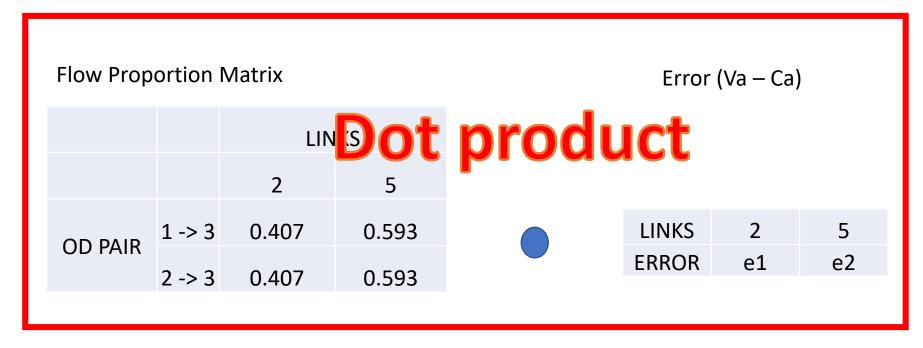
		LINKS		
		2	5	
OD PAIR	1 -> 3	0.407	0.593	
	2 -> 3	0.407	0.593	

L2 = 250*0.407 + 355*0.407 = 246

L5 = 250*0.593 + 355*0.593 = 359

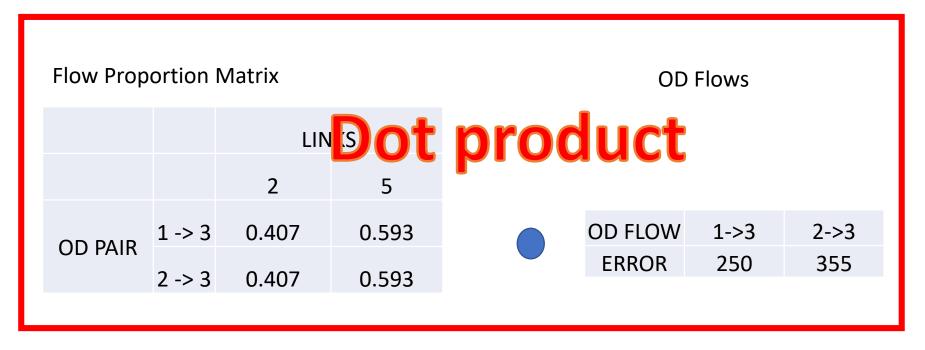
Application to ODME – Gradient Evaluation

Gradient



Application to ODME – Step Length

Evaluate Gradient Value at OD flow...



Final Step Length by Projection of Gradient... {ref: Spiess (1990)}

Matrix Sparsity

3406

3380

Tokyo

Matrices for implementation of Gradient Method can be huge, including the prior / seed matrix in the objective function can make it even larger...

Sparse dot product with python SciPy

(SciPy.org)

(SciPy.org)

0.043%

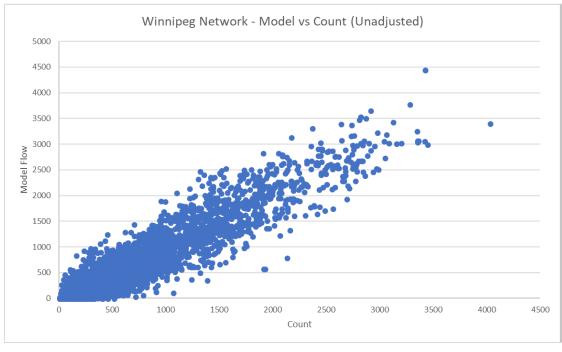
Winnipeg 1136 4424 1,594,355,889,456 0.003%

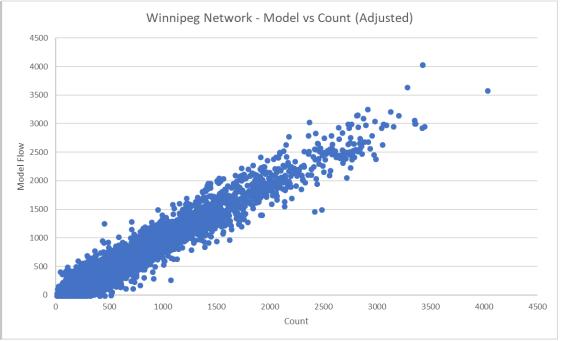
3,118,216,303,004

0.001%

Results from Real World

			Seed		Adjusted	
Network	Zones	Counts	R2	%RMSE	R2	%RMSE
Winnipeg	1136	4493	0.88	38%	0.94	25%
Tokyo	3406	3380	0.77	35%	0.89	24%





Results – Quality and Run Time

Entropy...

	Entropy		
Formulation	Newport	Winnipeg	
Entropy max w OD constraint (Bell)	-12974.58	-355398.47	
Least Squares w OD constraint	-6989.18	-59786.55	

Run Time...

	Run Time	
Formulation and Solution Method	Winnipeg	Tokyo
Entropy max w OD constraint (Bell) - Newton Raphson	76min 24s	52min 11s
Least Squares w OD constraint - Gradient Descent	1min 38s	3min

Finally

• Where is the code:

https://github.com/joshchea/python-tdm/blob/master/scripts/MatEstimateGradient.py

• Credits:

Klaus Noekel – adult supervision

Sergio Grosso – providing test networks and feedback

• References:

- [1] Spiess, H., A Gradient Approach for the O-D Matrix Adjustment Problem, Publication 693, CRT, University of Montreal, 1990
- [2] Willumsen, L. G., Simplified transport models based on traffic counts, Transportation 10 (3):257-278, 1981
- [3] Aerde, Michel, Hesham Rakha, and Harinarayan Paramahamsan, Estimation of Origin-Destination Matrices: Relationship Between Practical and Theoretical Considerations, Transportation Research Record: Journal of the Transportation Research Board, 2003