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Intermodal Autonomous Mobility-on-Demand

A. Recent Research

here comes the literature, bla bla bla - somebody has to
do it

B. Aims and Scope

As can be seen, no study on centrally operated intermodal
passenger transportation exists so far, especially with respect
to AMoD systems. Against this background, we provide
the first study that analyzes the benefit of such an inter-
modal transportation system from a mesoscopic point of
view. We develop an optimization approach that finds the
optimal control policy for this system under steady state
conditions. Herein, we incorporate different objectives that
consider either the total transportation time, or the generated
emissions, or both by incorporating a convexly combined
objective as well as a generalized cost function. We provide
a case study based on real-world data from Manhattan. Based
on the results for this study, we derive managerial insights
for both fleet operators and municipalities.

The contribution of our study is fourfold: First, we pro-
vide the first optimization framework for an intermodal
autonomous mobility-on-demand (I-AMoD) system, which
handles real-world data sets in short computational times
and delivers global optimality. Second, we provide a sound
case that is based on real-world data for Manhattan, an
urban area in which the need for a sustainable transportation
concept is more than urgent. Third, we present results that
are not limited to a single objective but include different
perspectives: i) the social welfare in monetary terms of value
of time and operational costs, and ii) the social welfare in
both monetary and environmental terms. Fourth, we derive
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managerial insights that, besides providing dedicated intu-
itions for single stakeholders, analyse the social optimum
that can be reached.

The remainder of this paper is structured as follows:
Section II presents the methodological background for our
studies. Section III derives a pricing scheme to steer self-
interested agents to the social optimum. Then, Section IV
details our case study and discusses our experiments and
results. Finally, Section V concludes the paper with a short
summary and an outlook on future research.

II. METHODOLOGY

This section presents the methodological background for
our studies. We aim at analyzing the benefit of AMoD
systems in an intermodal setting. Herein, we use a fluidic
optimization approach to determine the optimal equilibrium
for such a system. Within this approach, we consider

• the assignment of transportation requests to transport
flows,

• different modes of transportation,
• capacity limits which are specific to the transportation

mode, such as congestion and seats availability per unit
time on public transportation lines,

• and rebalancing flows for the AMoD system.
Section II-A describes such an optimization approach, as-
suming a globally controlled mobility system. Understanding

the unlikelihood of an intermodal system being globally
controlled, we derive a (Pigovian) pricing scheme that would
influence selfish actors to behave according to the social
optimum in Section III-B.

A. Multi Commodity Flow Based Optimization Approach

To represent the transportation system and its different
transportation modes, we use the (in)complete layered graph

[FR]:?
G = (V ,A ) shown in Fig. 1 with a set of vertices V
and a set of arcs A ✓ V ⇥V , comprising a road network
layer GR = (VR,AR), a subway layer GS = (VS,AS), and a
pedestrian layer GP = (VP,AP). The road layer represents
intersections i 2 VR and road links (i, j) 2 AR. The subway
layer comprises subway stops i 2 VS and the respective lines
(i, j) 2 AS, while the pedestrian layer represents walkable
streets (i, j) 2 AP in between intersections i 2 VP. Finally,
arcs out of set AC ✓VR⇥VP[VS⇥VP connect the pedestrian
layer to the road and to the subway layer, respectively,
such that V = VP [VR [VS, A = AP [AR [AS [AC and
VR \VS = /0 holds.

We use the following notation to describe characteristics
of G and define our optimization problem: Each arc has a
capacity ci j which denotes either the capacity of a certain
transportation mean (AR,AS) or remains as ci j = •, 8(i, j)2
AC,AP for transportation means without capacity limits,
i.e., walking. The travel time ti j denotes the average time
needed to traverse an arc (i, j). Times on arcs (i, j) 2 AC
represent switching times between or to reach a certain mean
of transportation. Let R be the set of all travel requests. A
request rm = (om,dm,am) 2 R is a triple composed by an
origin node om, a destination node dm and a request rate am
that denotes the amount of customers per unit time. Since
we identify different transportation modes by different arc
sets, we use only a single type of flow variables fm (i, j)
that denotes the flow on an arc (i, j) for a certain travel
request m 2 M = [1,M] ✓ N. Furthermore, f0 (i, j) denotes
the rebalancing flow of empty AMoD vehicles on the road
arcs (i, j) 2 AR.

With this notation, the I-AMoD optimization problem
holds as follows: For a given set of transportation demands
(om,dm,am) 2 R, we want to find the optimal customer and
rebalancing flows, fm (i, j) ,(i, j) 2 A and f0 (i, j) , (i, j) 2
AR, such that the objective costs (1a) are minimized. Herein,
customer flow conservation constraints (1b), conservation of
vehicles (1c), capacity constraints on road (1d), and public
transportation links (1e) must hold.
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A. Recent Research
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do it

B. Aims and Scope

As can be seen, no study on centrally operated intermodal
passenger transportation exists so far, especially with respect
to AMoD systems. Against this background, we provide
the first study that analyzes the benefit of such an inter-
modal transportation system from a mesoscopic point of
view. We develop an optimization approach that finds the
optimal control policy for this system under steady state
conditions. Herein, we incorporate different objectives that
consider either the total transportation time, or the generated
emissions, or both by incorporating a convexly combined
objective as well as a generalized cost function. We provide
a case study based on real-world data from Manhattan. Based
on the results for this study, we derive managerial insights
for both fleet operators and municipalities.

The contribution of our study is fourfold: First, we pro-
vide the first optimization framework for an intermodal
autonomous mobility-on-demand (I-AMoD) system, which
handles real-world data sets in short computational times
and delivers global optimality. Second, we provide a sound
case that is based on real-world data for Manhattan, an
urban area in which the need for a sustainable transportation
concept is more than urgent. Third, we present results that
are not limited to a single objective but include different
perspectives: i) the social welfare in monetary terms of value
of time and operational costs, and ii) the social welfare in
both monetary and environmental terms. Fourth, we derive
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managerial insights that, besides providing dedicated intu-
itions for single stakeholders, analyse the social optimum
that can be reached.

The remainder of this paper is structured as follows:
Section II presents the methodological background for our
studies. Section III derives a pricing scheme to steer self-
interested agents to the social optimum. Then, Section IV
details our case study and discusses our experiments and
results. Finally, Section V concludes the paper with a short
summary and an outlook on future research.

II. METHODOLOGY

This section presents the methodological background for
our studies. We aim at analyzing the benefit of AMoD
systems in an intermodal setting. Herein, we use a fluidic
optimization approach to determine the optimal equilibrium
for such a system. Within this approach, we consider

• the assignment of transportation requests to transport
flows,

• different modes of transportation,
• capacity limits which are specific to the transportation

mode, such as congestion and seats availability per unit
time on public transportation lines,

• and rebalancing flows for the AMoD system.
Section II-A describes such an optimization approach, as-
suming a globally controlled mobility system. Understanding

the unlikelihood of an intermodal system being globally
controlled, we derive a (Pigovian) pricing scheme that would
influence selfish actors to behave according to the social
optimum in Section III-B.

A. Multi Commodity Flow Based Optimization Approach

To represent the transportation system and its different
transportation modes, we use the (in)complete layered graph

[FR]:?
G = (V ,A ) shown in Fig. 1 with a set of vertices V
and a set of arcs A ✓ V ⇥V , comprising a road network
layer GR = (VR,AR), a subway layer GS = (VS,AS), and a
pedestrian layer GP = (VP,AP). The road layer represents
intersections i 2 VR and road links (i, j) 2 AR. The subway
layer comprises subway stops i 2 VS and the respective lines
(i, j) 2 AS, while the pedestrian layer represents walkable
streets (i, j) 2 AP in between intersections i 2 VP. Finally,
arcs out of set AC ✓VR⇥VP[VS⇥VP connect the pedestrian
layer to the road and to the subway layer, respectively,
such that V = VP [VR [VS, A = AP [AR [AS [AC and
VR \VS = /0 holds.

We use the following notation to describe characteristics
of G and define our optimization problem: Each arc has a
capacity ci j which denotes either the capacity of a certain
transportation mean (AR,AS) or remains as ci j = •, 8(i, j)2
AC,AP for transportation means without capacity limits,
i.e., walking. The travel time ti j denotes the average time
needed to traverse an arc (i, j). Times on arcs (i, j) 2 AC
represent switching times between or to reach a certain mean
of transportation. Let R be the set of all travel requests. A
request rm = (om,dm,am) 2 R is a triple composed by an
origin node om, a destination node dm and a request rate am
that denotes the amount of customers per unit time. Since
we identify different transportation modes by different arc
sets, we use only a single type of flow variables fm (i, j)
that denotes the flow on an arc (i, j) for a certain travel
request m 2 M = [1,M] ✓ N. Furthermore, f0 (i, j) denotes
the rebalancing flow of empty AMoD vehicles on the road
arcs (i, j) 2 AR.

With this notation, the I-AMoD optimization problem
holds as follows: For a given set of transportation demands
(om,dm,am) 2 R, we want to find the optimal customer and
rebalancing flows, fm (i, j) ,(i, j) 2 A and f0 (i, j) , (i, j) 2
AR, such that the objective costs (1a) are minimized. Herein,
customer flow conservation constraints (1b), conservation of
vehicles (1c), capacity constraints on road (1d), and public
transportation links (1e) must hold.

2

A. Recent Research

here comes the literature, bla bla bla - somebody has to
do it

B. Aims and Scope

As can be seen, no study on centrally operated intermodal
passenger transportation exists so far, especially with respect
to AMoD systems. Against this background, we provide
the first study that analyzes the benefit of such an inter-
modal transportation system from a mesoscopic point of
view. We develop an optimization approach that finds the
optimal control policy for this system under steady state
conditions. Herein, we incorporate different objectives that
consider either the total transportation time, or the generated
emissions, or both by incorporating a convexly combined
objective as well as a generalized cost function. We provide
a case study based on real-world data from Manhattan. Based
on the results for this study, we derive managerial insights
for both fleet operators and municipalities.

The contribution of our study is fourfold: First, we pro-
vide the first optimization framework for an intermodal
autonomous mobility-on-demand (I-AMoD) system, which
handles real-world data sets in short computational times
and delivers global optimality. Second, we provide a sound
case that is based on real-world data for Manhattan, an
urban area in which the need for a sustainable transportation
concept is more than urgent. Third, we present results that
are not limited to a single objective but include different
perspectives: i) the social welfare in monetary terms of value
of time and operational costs, and ii) the social welfare in
both monetary and environmental terms. Fourth, we derive

[MaS]:Update
managerial insights that, besides providing dedicated intu-
itions for single stakeholders, analyse the social optimum
that can be reached.

The remainder of this paper is structured as follows:
Section II presents the methodological background for our
studies. Section III derives a pricing scheme to steer self-
interested agents to the social optimum. Then, Section IV
details our case study and discusses our experiments and
results. Finally, Section V concludes the paper with a short
summary and an outlook on future research.

II. METHODOLOGY

This section presents the methodological background for
our studies. We aim at analyzing the benefit of AMoD
systems in an intermodal setting. Herein, we use a fluidic
optimization approach to determine the optimal equilibrium
for such a system. Within this approach, we consider

• the assignment of transportation requests to transport
flows,

• different modes of transportation,
• capacity limits which are specific to the transportation

mode, such as congestion and seats availability per unit
time on public transportation lines,

• and rebalancing flows for the AMoD system.
Section II-A describes such an optimization approach, as-
suming a globally controlled mobility system. Understanding

the unlikelihood of an intermodal system being globally
controlled, we derive a (Pigovian) pricing scheme that would
influence selfish actors to behave according to the social
optimum in Section III-B.

A. Multi Commodity Flow Based Optimization Approach

To represent the transportation system and its different
transportation modes, we use the (in)complete layered graph

[FR]:?
G = (V ,A ) shown in Fig. 1 with a set of vertices V
and a set of arcs A ✓ V ⇥V , comprising a road network
layer GR = (VR,AR), a subway layer GS = (VS,AS), and a
pedestrian layer GP = (VP,AP). The road layer represents
intersections i 2 VR and road links (i, j) 2 AR. The subway
layer comprises subway stops i 2 VS and the respective lines
(i, j) 2 AS, while the pedestrian layer represents walkable
streets (i, j) 2 AP in between intersections i 2 VP. Finally,
arcs out of set AC ✓VR⇥VP[VS⇥VP connect the pedestrian
layer to the road and to the subway layer, respectively,
such that V = VP [VR [VS, A = AP [AR [AS [AC and
VR \VS = /0 holds.

We use the following notation to describe characteristics
of G and define our optimization problem: Each arc has a
capacity ci j which denotes either the capacity of a certain
transportation mean (AR,AS) or remains as ci j = •, 8(i, j)2
AC,AP for transportation means without capacity limits,
i.e., walking. The travel time ti j denotes the average time
needed to traverse an arc (i, j). Times on arcs (i, j) 2 AC
represent switching times between or to reach a certain mean
of transportation. Let R be the set of all travel requests. A
request rm = (om,dm,am) 2 R is a triple composed by an
origin node om, a destination node dm and a request rate am
that denotes the amount of customers per unit time. Since
we identify different transportation modes by different arc
sets, we use only a single type of flow variables fm (i, j)
that denotes the flow on an arc (i, j) for a certain travel
request m 2 M = [1,M] ✓ N. Furthermore, f0 (i, j) denotes
the rebalancing flow of empty AMoD vehicles on the road
arcs (i, j) 2 AR.

With this notation, the I-AMoD optimization problem
holds as follows: For a given set of transportation demands
(om,dm,am) 2 R, we want to find the optimal customer and
rebalancing flows, fm (i, j) ,(i, j) 2 A and f0 (i, j) , (i, j) 2
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A. Multi Commodity Flow Based Optimization Approach
To represent the transportation system and its different

transportation modes, we use the digraph G = (V ,A ) shown
in Fig. 1, which has a set of vertices V and a set of
arcs A ✓ V ⇥ V . The graph contains a road network
layer GR = (VR,AR), a subway layer GP = (VP,AP), and
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a pedestrian layer GW = (VW,AW). Herein, the road layer
represents intersections i 2 VR and road links (i, j) 2 AR.
The subway layer comprises subway stops i 2 VP connected
by arcs (i, j) 2 AP, while the pedestrian layer represents
walkable streets (i, j) 2 AW between intersections i 2 VW.
Finally, arcs out of set AC ✓ VR ⇥VW [VP ⇥VW connect
the pedestrian layer to the road and to the subway layer,
respectively. These arcs model the customer’s ability to
switch transportation modes, such that V = VW [VR [VP,
A = AW [AR [AP [AC and VR \VP = /0 holds.

To consider congestion we use a simplified threshold
model: Each arc (i, j) has a capacity ci j which denotes
the maximum flow of passengers or vehicles that the arc
can accommodate without encountering traffic congestion
((i, j) 2 AR) or overcrowding ((i, j) 2 AP). The capacity of
walking arcs remains as ci j = •, 8(i, j) 2 AC,AW. Travers-
ing an arc (i, j) takes on average ti j time units. Note herein,
that ti j8(i, j) 2 AC denotes the time necessary to switch
between two means of transportation. Given the threshold
modeling approach, we assume ti j to be constant if an arc’s
capacity constraint holds.

Let R be the set of all travel requests. A request rm =
(om,dm,am) 2 R is a triple of an origin node om 2 VW,
a destination node dm 2 VW, and a request rate am that
denotes the amount of customers per unit time for each
request. Note that om and dm lie on the pedestrian digraph.
Accounting for different transportation modes by separate
arc sets, fm (i, j) denotes the flow on arc (i, j) 2 A for a
certain travel request m 2 M = [1,M] ✓ N. To account for
rebalancing flows between a customer’s destination and the
next customer’s origin, f0 (i, j) denotes the flow of empty
vehicles on road arcs (i, j) 2 AR.

Given this notation, the I-AMoD optimization problem
holds as follows:

min
fm(i, j), f0(i, j)

C ( fm (i, j) , f0 (i, j)) (1a)

s.t.

Â
i:(i, j)2A

fm(i, j)+1 j=om ·am = Â
k:( j,k)2A

fm( j,k)+1 j=dm ·am

8m 2 M , j 2 V (1b)

Â
i:(i, j)2AR

 
f0 (i, j)+Â

m2M

fm(i, j)

!
=

Â
k:( j,k)2AR

 
( f0 ( j,k)+Â

m2M

fm( j,k)

!
8 j 2 VR (1c)

f0 (i, j)+Â
m2M

fm (i, j) cR
i j 8(i, j) 2 AR (1d)

Â
m2M

fm (i, j) cP
i j 8(i, j) 2 AP. (1e)

For a given set of transportation demands (om,dm,am)2R,
we minimize the objective cost C with the customer flows

fm (i, j) and rebalancing flows f0 (i, j) in Eq. (1a). The
constraint (1b) guarantees flow conservation for customers,
whereby 1 j=x is a boolean indicator function. We secure
further flow conservation for vehicles in Eq. (1c), and enforce
capacity limits for roads in Eq. (1d) and public transportation
links in Eq. (1e).

B. I-AMoD Objective

The generalized cost function (1a) can be used to address
different objectives. In our studies, we optimize the social
welfare by minimizing overall costs. Specifically, we define
commuting costs that depend on the customers’ value of
time VT and on operational costs for the AMoD fleet and the
subway. Herein, costs for the AMoD fleet comprise mileage
dependent ownership costs VD,R to account for maintenance
and depreciation as well as energy costs VE. For the subway
system, VD,P comprises all operational costs per passenger
kilometer. This way, we define the social cost as

CM ( fm (i, j) , f0 (i, j)) =VT ·Â
m2M ,(i, j)2A

ti j · fm (i, j)

+Â
(i, j)2AR

(VD,R ·di j +VE · eR,i j) ·
 

f0 (i, j)+Â
m2M

fm (i, j)

!

+VD,P ·Â
(i, j)2AP

di j ·Â
m2M

fm (i, j) .

(2)

Given the mesoscopic nature of our study, we estimate the
energy consumption of a single vehicle eR,i j > 0, (i, j) 2AR
assuming that road arcs are traversed at the constant speed
vi j =

di j
ti j

. Considering electric vehicles with full recuperation
capabilities and an overall tank-to-wheel efficiency hEV, the
energy consumption for a road arc is

eR,i j =
⇣ra

2
·Af · cd · v2

i j + cr ·mv ·g
⌘
·

di j

hEV

8(i, j) 2 AR. (3)

The first term in (3) represents the aerodynamic drag com-
posed by the air density ra, the frontal area Af, and the drag
coefficient cd, and the rolling friction computed combining
its coefficient cr with the mass of the vehicle mv and the
gravity g [22].

C. Discussion

A few comments are in order. First, we consider time-
invariant travel requests. This assumption is valid if requests
change slowly compared to the average travel time of an
individual trip, as is often the case in densely populated urban
environments [23]. Second, we adopt a threshold model for
congestion. The model is consistent with classical traffic flow
theory [24] and it is adequate for the goal of efficiently
optimizing customer and vehicle routes. Congestion models
offering higher accuracy can be used for the analysis of
specific control policies. Third, the model in this paper
represents customer and vehicle routes as fractional flows
and does not capture the stochastic nature of the customer
arrival process. These approximations are in line with the

3

3
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Network Flow Model

• Highly scalable (LP) 

• Very expressive
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Network Flow Model

Stochastic process in expectation 
[Iglesias et al. 2018] 

Flow decomposition and sampling 

In line with current trends

• No stochasticity  

• Continuum approximation 

• One passenger per car

• Highly scalable (LP) 

• Very expressive

Advantages

Assumptions
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Network Flow Model - Assumptions
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• Demand is time-invariant
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Network Flow Model - Assumptions

• Congestion as a threshold
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Network Flow Model

Transportation requests

• Origin

• Destination

• Rate of demand (customers/minute)
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Network Flow Model

Transportation requests

• Origin

• Destination

• Rate of demand (customers/minute)

Network model 

• Nodes: intersections and stops 

• Capacitated arcs: roads, walk, switch 
and public transit
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Network Flow Model - Assumptions

Flows 

• Customer flows 

• Rebalancing flows

fm(i, j)
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Network Flow Model - Assumptions

Flows 

• Customer flows 

• Rebalancing flows f0(i, j)
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Intermodal AMoD - Full Graph - Manhattan
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54000 taxi rides during rush hour, distributed in 6774 origin destination pairs

Compute optimal control strategies to maximise social welfare



Case Study - NYC
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I-AMoD - Optimal Control Policy for Different Road Capacities
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Case Study - NYC

11

Pure AMoD VS I-AMoD - Optimal Control Policy for Different Road Capacities

Baseline Road Usage [%]
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Coordination with public transit significantly reduces travel times, number of 
vehicles, emissions and cost!



Outlook
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• Real-time operational algorithms 

• Stochastic effects: demand, congestion and delays 

• Interaction with the power grid 

• Human-centred metrics: comfort and switch-over costs
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Conservation of Customers

Extended Graph

X

i2V
f
m

(i, j) + 1
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=
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k2V
f
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(j, k) + 1
j=dm · ↵

m

8m 2 M, 8j 2 V

Conservation of Vehicles

Network Flow Model

G = (V, A), V = VR � VP � VW, A = AR � AP � AW � ARW � APW

�

i�VR

�
f0(i, j) +

�

m�M
fm(i, j)

�
=

�

k�VR

�
f0(j, k) +

�

m�M
fm(j, k)

�
�j � VR
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Network Flow Model

Objective Social Welfare: time, operational costs and energy

Capacity of Road and Public Transportation

f0(i, j) +
�

m�M
fm(i, j) � cR(i, j), �(i, j) � AR

�

m�M
fm(i, j) � cP(i, j), �(i, j) � AP

min
fm(i,j),f0(i,j)

�

(i,j)�A

�

m�M
VT · tij · fm(i, j)

+
�

(i,j)�AR

(VD,R · dij + VE · eR,ij) ·
�

f0(i, j) +
�

m�M
fm(i, j)

�

+
�

(i,j)�AP

VD,P · dij ·
�

m�M
fm(i, j)
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Network Flow Model - Flow Bundling

Bundle flows with same destination

Flow decomposition algorithm

Theorem: Flow bundling is lossless [Rossi et al. 2018]

O(|V|2 · |A|) � 1010 O(|V| · |A|) � 107



Intermodal AMoD - AMoD and Pedestrian
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Manhattan Road Network -  Data from OpenStreetMap

Consider 54000 taxi rides during rush hour, 
distributed in 6774 origin destination pairs

Since cabs are only a fraction of the vehicles, we 
will assume a baseline road usage of 90-100%



Intermodal AMoD - Subway
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Manhattan Subway Network -  Data from data.cityofnewyork.us and mta.info
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Very advanced format…
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Case Study - NYC - 98% Road Usage
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Sample optimal paths

—Line M
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—Line 3

I-AMoD Pure AMoD
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Case Study - NYC
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Pure AMoD - Scan in road capacity



21

Congestion constraint and dual multipliers

A Socially Optimal Road Tolling Scheme

Optimal road tolls are the dual multipliers of the road congestion constraints

Theorem: Tolling scheme guarantees social optimum [Salazar et al. 2018]

Municipality wants to relieve congestion through road tolls

f0(i, j) +
�

m�M
fm(i, j) � cR(i, j) � 0, �(i, j) � AR � µcR(i, j) � 0

tR(i, j) = µcR(i, j)
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I-AMoD - Tolling scheme

Case Study - NYC - 98% Usage

The average surcharge would be about $2 VS almost $6 with pure AMoD. 
In line with Cuomo’s per-trip surcharge of $2-5! [New York Times, Jan 2018]

Road Tolls [USD]Road Usage [%]


