

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Model-based Optimal Control of Autonomous Mobility-on-Demand Systems in Multi-modal Transportation Networks

Mauro Salazar

maurosalazar@idsc.mavt.ethz.ch

Contributors: Ramon Iglesias, Matthew Tsao, Federico Rossi, Maximilian Schiffer and Marco Pavone

Optimal Operation of Intermodal AMoD Systems

Optimal Operation of Intermodal AMoD Systems

Vehicle Autonomy

Car Sharing

Public Transit

Intermodal Autonomous Mobility-on-Demand

Intermodal Autonomous Mobility-on-Demand

Intermodal Autonomous Mobility-on-Demand

Advantages

- Highly scalable (LP)
- Very expressive

Advantages

- Highly scalable (LP)
- Very expressive

Assumptions

- No stochasticity
- Continuum approximation
- One passenger per car

Stochastic process in expectation [Iglesias et al. 2018]

Flow decomposition and sampling

In line with current trends

Network Flow Model - Assumptions

Demand is time-invariant

Network Flow Model - Assumptions

• Demand is time-invariant

Congestion as a threshold

Transportation requests

- Origin
- Destination
- Rate of demand (customers/minute)

Transportation requests

- Origin
- Destination
- Rate of demand (customers/minute)

Network model

- Nodes: intersections and stops
- Capacitated arcs: roads, walk, switch and public transit

Network Flow Model - Assumptions

Flows

- Customer flows $f_m(i,j)$
- Rebalancing flows

Network Flow Model - Assumptions

Flows

- Customer flows
- Rebalancing flows $f_0(i,j)$

Intermodal AMoD - Full Graph - Manhattan

54000 taxi rides during rush hour, distributed in 6774 origin destination pairs

Compute optimal control strategies to maximise social welfare

Case Study - NYC

I-AMoD - Optimal Control Policy for Different Road Capacities

Case Study - NYC

Pure AMoD VS I-AMoD - Optimal Control Policy for Different Road Capacities

Coordination with public transit significantly reduces travel times, number of vehicles, emissions and cost!

Outlook

- Real-time operational algorithms
- · Stochastic effects: demand, congestion and delays
- Interaction with the power grid
- Human-centred metrics: comfort and switch-over costs

Extended Graph

$$G = (\mathcal{V}, \mathcal{A}), \ \mathcal{V} = \mathcal{V}_{R} \cup \mathcal{V}_{P} \cup \mathcal{V}_{W}, \ \mathcal{A} = \mathcal{A}_{R} \cup \mathcal{A}_{P} \cup \mathcal{A}_{W} \cup \mathcal{A}_{RW} \cup \mathcal{A}_{PW}$$

Conservation of Customers

$$\sum_{i \in \mathcal{V}} f_m(i,j) + \mathbf{1}_{j=o_m} \cdot \alpha_m = \sum_{k \in \mathcal{V}} f_m(j,k) + \mathbf{1}_{j=d_m} \cdot \alpha_m \quad \forall m \in \mathcal{M}, \forall j \in \mathcal{V}$$

Conservation of Vehicles

$$\sum_{i \in \mathcal{V}_{\mathcal{R}}} \left(f_0(i,j) + \sum_{m \in \mathcal{M}} f_m(i,j) \right) = \sum_{k \in \mathcal{V}_{\mathcal{R}}} \left(f_0(j,k) + \sum_{m \in \mathcal{M}} f_m(j,k) \right) \quad \forall j \in \mathcal{V}_{\mathcal{R}}$$

Capacity of Road and Public Transportation

$$f_0(i,j) + \sum_{m \in \mathcal{M}} f_m(i,j) \le c_{\mathcal{R}}(i,j), \ \forall (i,j) \in \mathcal{A}_{\mathcal{R}}$$
$$\sum_{m \in \mathcal{M}} f_m(i,j) \le c_{\mathcal{P}}(i,j), \ \forall (i,j) \in \mathcal{A}_{\mathcal{P}}$$

Objective Social Welfare: time, operational costs and energy

$$\min_{f_m(i,j),f_0(i,j)} \sum_{(i,j)\in\mathcal{A}} \sum_{m\in\mathcal{M}} V_{\mathrm{T}} \cdot t_{ij} \cdot f_m(i,j)
+ \sum_{(i,j)\in\mathcal{A}_{\mathrm{R}}} (V_{\mathrm{D,R}} \cdot d_{ij} + V_{\mathrm{E}} \cdot e_{\mathrm{R},ij}) \cdot \left(f_0(i,j) + \sum_{m\in\mathcal{M}} f_m(i,j) \right)
+ \sum_{(i,j)\in\mathcal{A}_{\mathrm{P}}} V_{\mathrm{D,P}} \cdot d_{ij} \cdot \sum_{m\in\mathcal{M}} f_m(i,j)$$

Network Flow Model - Flow Bundling

Bundle flows with same destination

Flow decomposition algorithm

Theorem: Flow bundling is lossless [Rossi et al. 2018]

Intermodal AMoD - AMoD and Pedestrian

Manhattan Road Network - Data from OpenStreetMap

Consider 54000 taxi rides during rush hour, distributed in 6774 origin destination pairs

Since cabs are only a fraction of the vehicles, we will assume a baseline road usage of 90-100%

Intermodal AMoD - Subway

-74.04 -74.02

-74

-73.98 -73.96 -73.94 -73.92 -73.9 -73.88 -73.86

Manhattan Subway Network - Data from data.cityofnewyork.us and mta.info

Case Study - NYC - 98% Road Usage

Sample optimal paths

Case Study - NYC

Pure AMoD - Scan in road capacity

A Socially Optimal Road Tolling Scheme

Municipality wants to relieve congestion through road tolls

The New York Times

N.Y. / REGION

Congestion Plan for Manhattan Gets Mixed Reviews

By WINNIE HU and VIVIAN WANG JAN. 19, 2018

Congestion constraint and dual multipliers

$$f_0(i,j) + \sum_{m \in \mathcal{M}} f_m(i,j) - c_{\mathcal{R}}(i,j) \le 0, \ \forall (i,j) \in \mathcal{A}_{\mathcal{R}} \quad \leftrightarrow \quad \mu_{c\mathcal{R}}(i,j) \ge 0$$

Optimal road tolls are the dual multipliers of the road congestion constraints

$$t_{\rm R}(i,j) = \mu_{\rm cR}(i,j)$$

Theorem: Tolling scheme guarantees social optimum [Salazar et al. 2018]

Case Study - NYC - 98% Usage

I-AMoD - Tolling scheme

The average surcharge would be about \$2 VS almost \$6 with pure AMoD. In line with Cuomo's per-trip surcharge of \$2-5! [New York Times, Jan 2018]