

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich







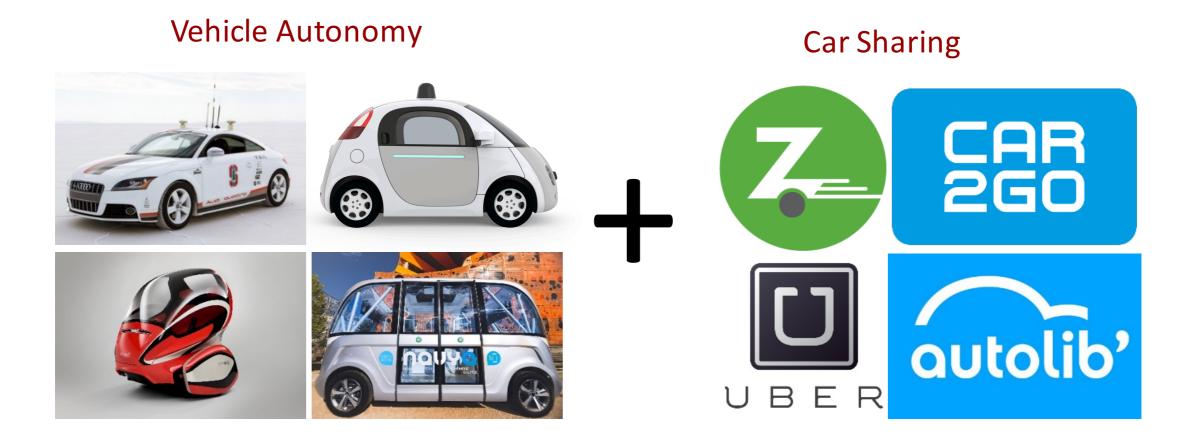
# Model-based Optimal Control of Autonomous Mobility-on-Demand Systems in Multi-modal Transportation Networks

Mauro Salazar

maurosalazar@idsc.mavt.ethz.ch

Contributors: Ramon Iglesias, Matthew Tsao, Federico Rossi, Maximilian Schiffer and Marco Pavone

### Optimal Operation of Intermodal AMoD Systems



# Optimal Operation of Intermodal AMoD Systems

#### Vehicle Autonomy







#### **Car Sharing**

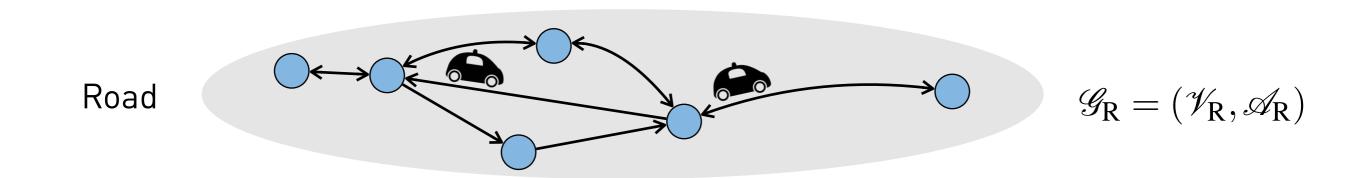


**Public Transit** 

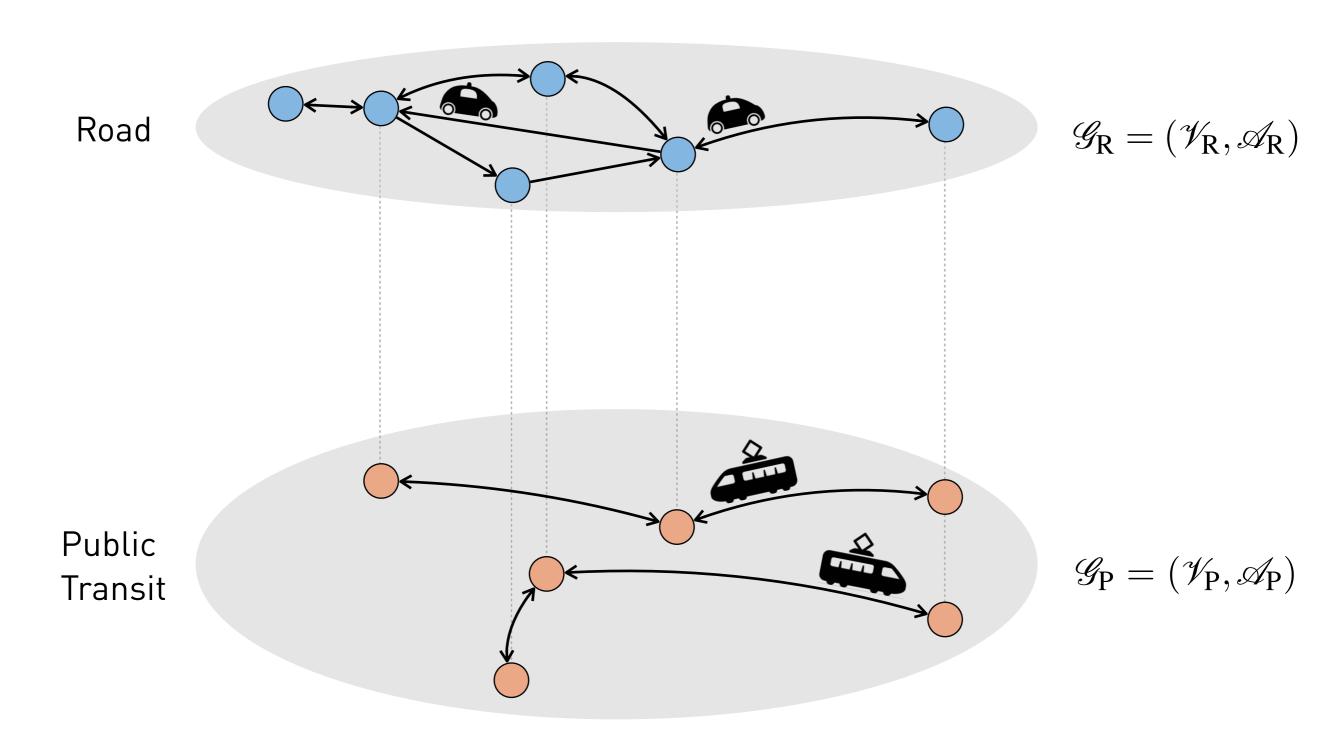




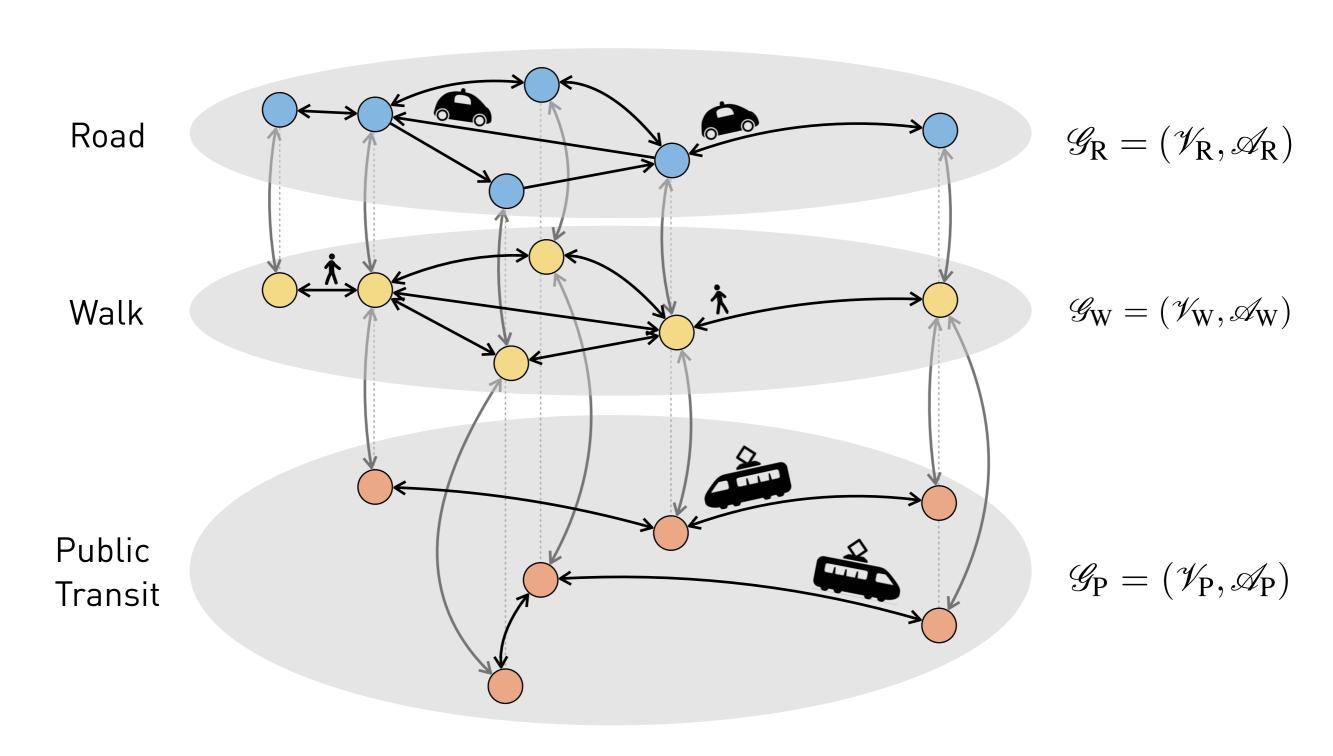
# Intermodal Autonomous Mobility-on-Demand



# Intermodal Autonomous Mobility-on-Demand



# Intermodal Autonomous Mobility-on-Demand



#### Advantages

- Highly scalable (LP)
- Very expressive

#### Advantages

- Highly scalable (LP)
- Very expressive

#### Assumptions

- No stochasticity
- Continuum approximation
- One passenger per car

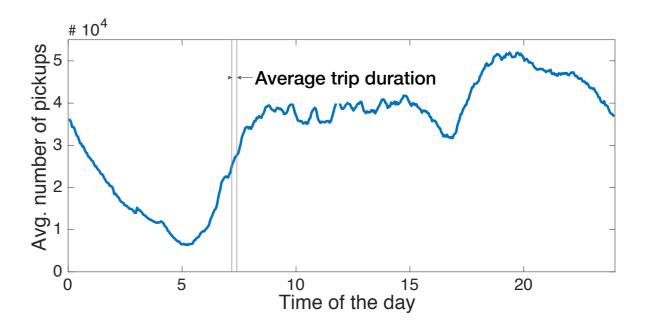
Stochastic process in expectation [Iglesias et al. 2018]

Flow decomposition and sampling

In line with current trends

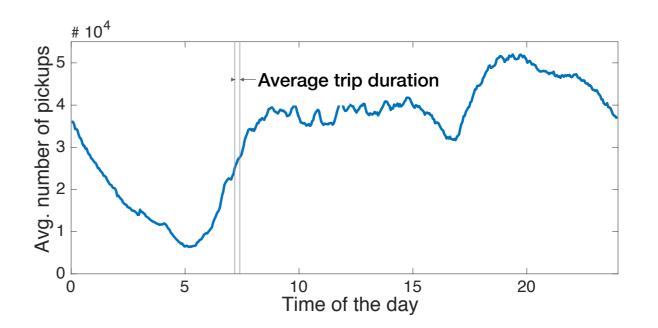
# Network Flow Model - Assumptions

Demand is time-invariant

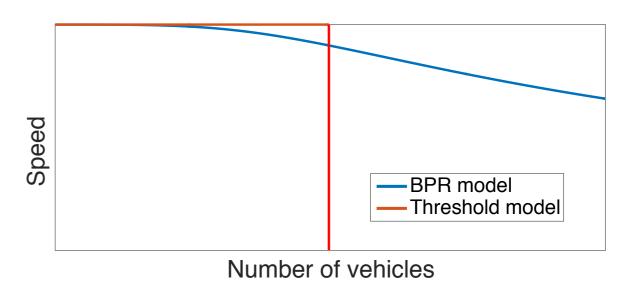


### Network Flow Model - Assumptions

• Demand is time-invariant

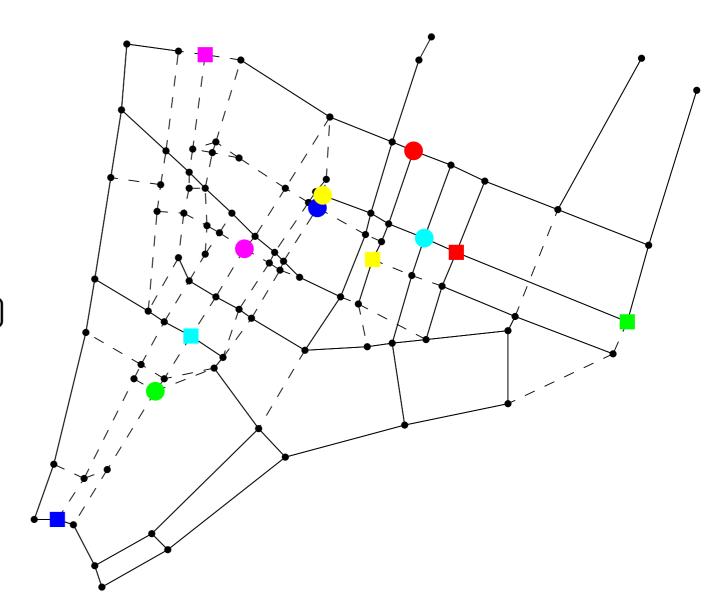


Congestion as a threshold



#### Transportation requests

- Origin
- Destination
- Rate of demand (customers/minute)



#### Transportation requests

- Origin
- Destination
- Rate of demand (customers/minute)

#### Network model

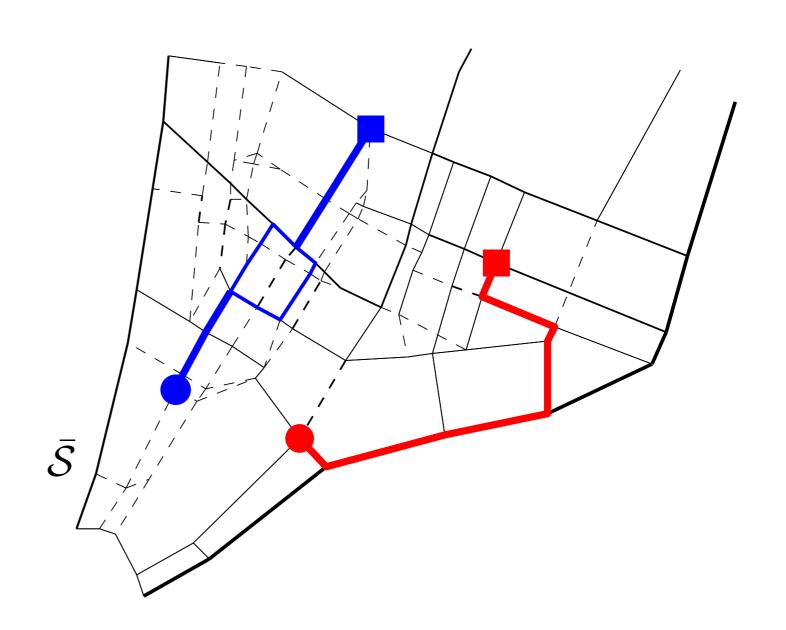
- Nodes: intersections and stops
- Capacitated arcs: roads, walk, switch and public transit



# Network Flow Model - Assumptions

#### Flows

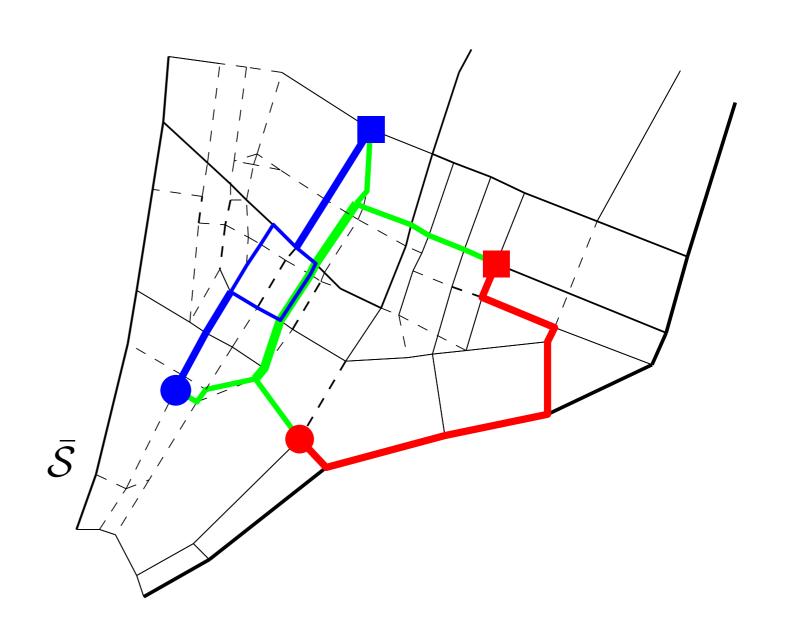
- Customer flows  $f_m(i,j)$
- Rebalancing flows



# Network Flow Model - Assumptions

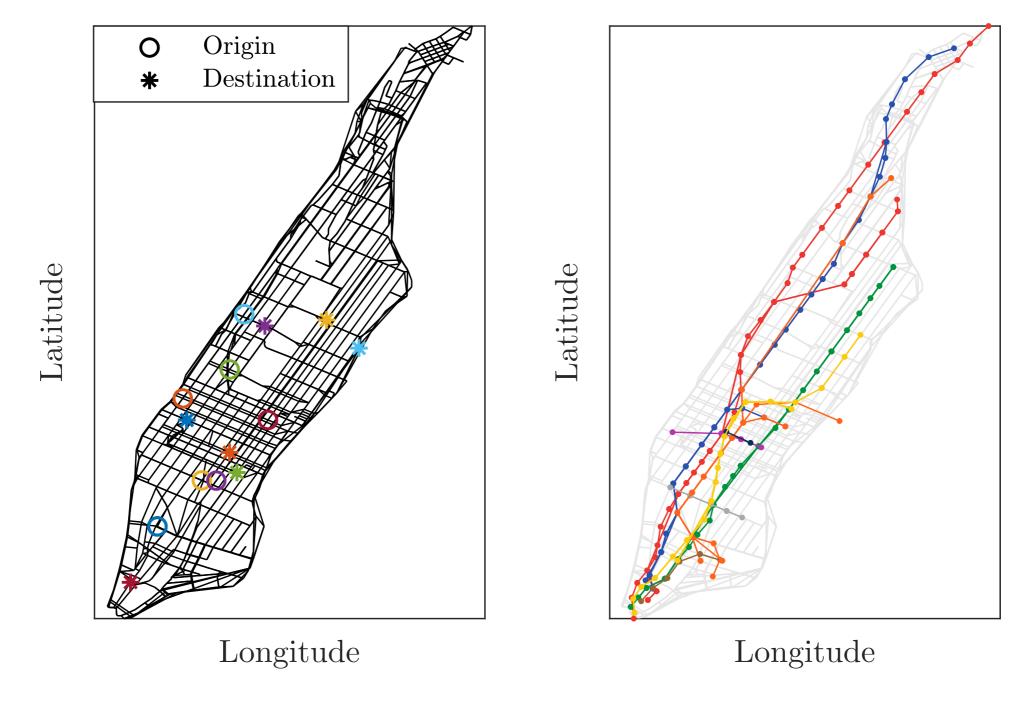
#### Flows

- Customer flows
- Rebalancing flows  $f_0(i,j)$



### Intermodal AMoD - Full Graph - Manhattan

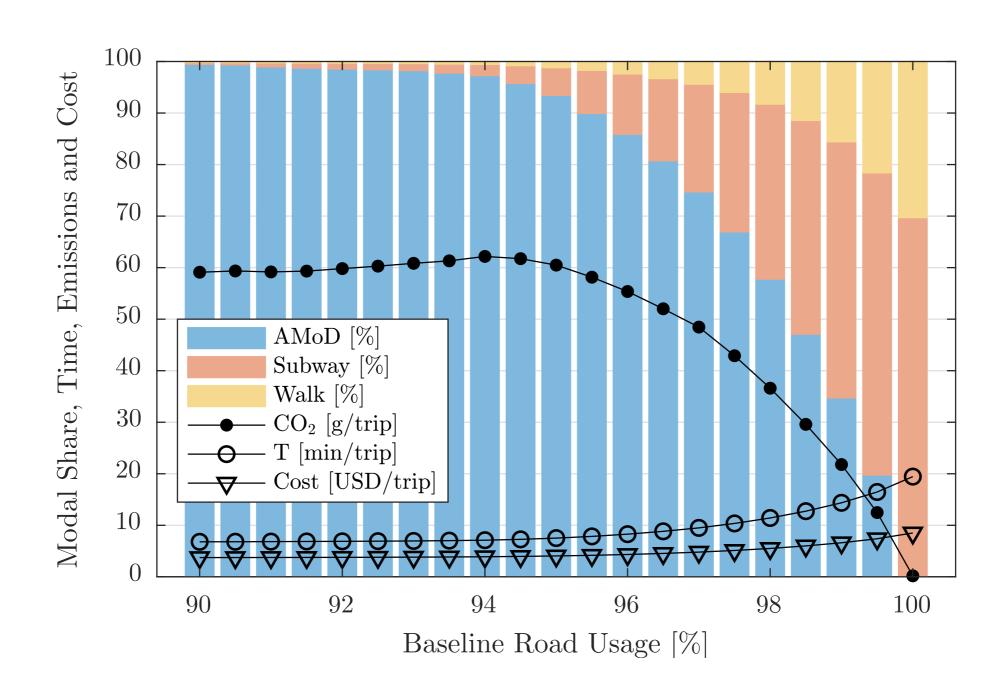
54000 taxi rides during rush hour, distributed in 6774 origin destination pairs



Compute optimal control strategies to maximise social welfare

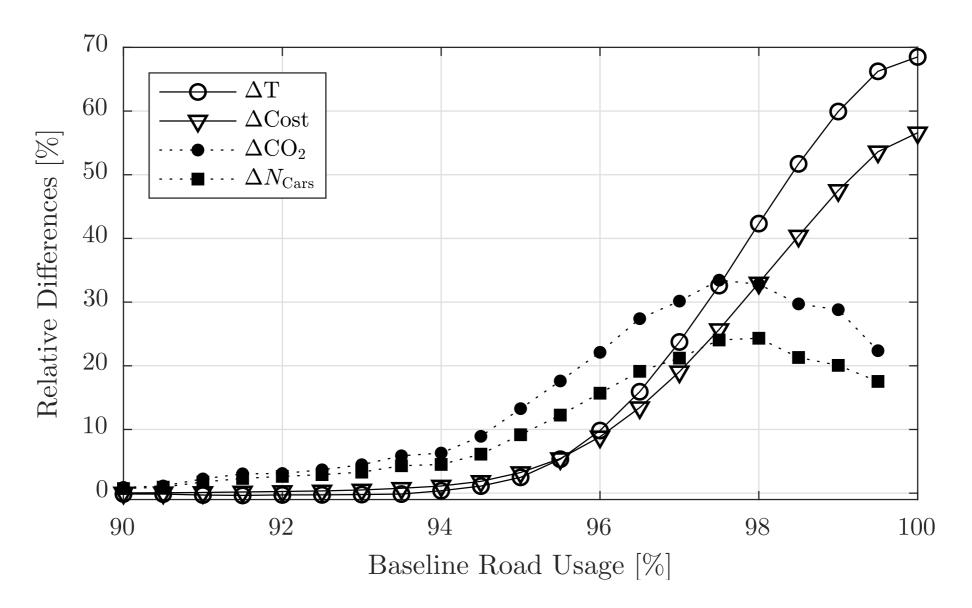
### Case Study - NYC

#### I-AMoD - Optimal Control Policy for Different Road Capacities



### Case Study - NYC

Pure AMoD VS I-AMoD - Optimal Control Policy for Different Road Capacities



Coordination with public transit significantly reduces travel times, number of vehicles, emissions and cost!

#### Outlook

- Real-time operational algorithms
- · Stochastic effects: demand, congestion and delays
- Interaction with the power grid
- Human-centred metrics: comfort and switch-over costs

#### Extended Graph

$$G = (\mathcal{V}, \mathcal{A}), \ \mathcal{V} = \mathcal{V}_{R} \cup \mathcal{V}_{P} \cup \mathcal{V}_{W}, \ \mathcal{A} = \mathcal{A}_{R} \cup \mathcal{A}_{P} \cup \mathcal{A}_{W} \cup \mathcal{A}_{RW} \cup \mathcal{A}_{PW}$$

#### Conservation of Customers

$$\sum_{i \in \mathcal{V}} f_m(i,j) + \mathbf{1}_{j=o_m} \cdot \alpha_m = \sum_{k \in \mathcal{V}} f_m(j,k) + \mathbf{1}_{j=d_m} \cdot \alpha_m \quad \forall m \in \mathcal{M}, \forall j \in \mathcal{V}$$

#### Conservation of Vehicles

$$\sum_{i \in \mathcal{V}_{\mathcal{R}}} \left( f_0(i,j) + \sum_{m \in \mathcal{M}} f_m(i,j) \right) = \sum_{k \in \mathcal{V}_{\mathcal{R}}} \left( f_0(j,k) + \sum_{m \in \mathcal{M}} f_m(j,k) \right) \quad \forall j \in \mathcal{V}_{\mathcal{R}}$$

Capacity of Road and Public Transportation

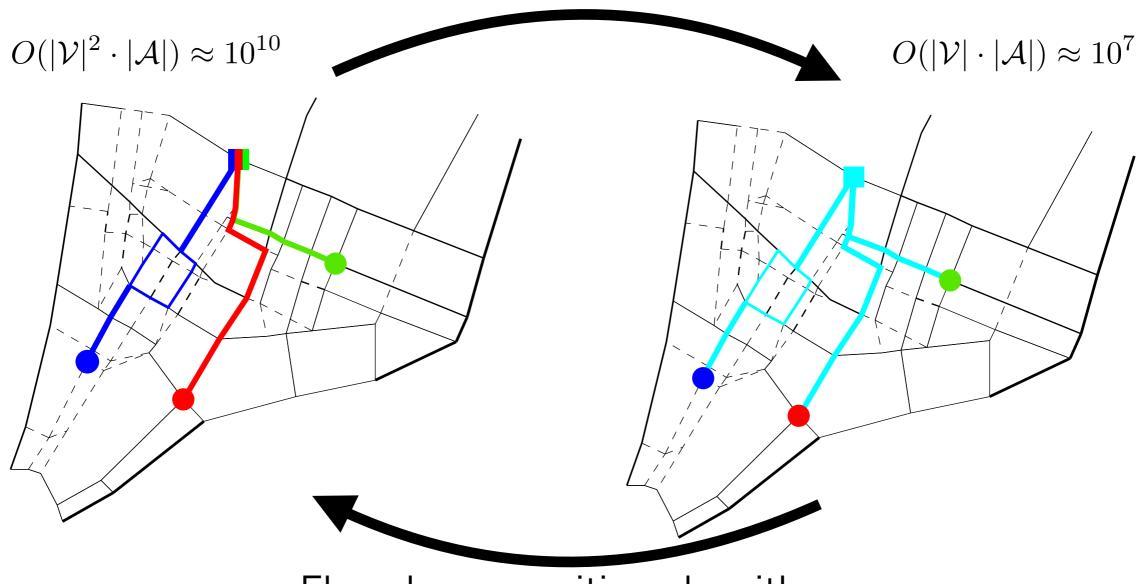
$$f_0(i,j) + \sum_{m \in \mathcal{M}} f_m(i,j) \le c_{\mathcal{R}}(i,j), \ \forall (i,j) \in \mathcal{A}_{\mathcal{R}}$$
$$\sum_{m \in \mathcal{M}} f_m(i,j) \le c_{\mathcal{P}}(i,j), \ \forall (i,j) \in \mathcal{A}_{\mathcal{P}}$$

Objective Social Welfare: time, operational costs and energy

$$\min_{f_m(i,j),f_0(i,j)} \sum_{(i,j)\in\mathcal{A}} \sum_{m\in\mathcal{M}} V_{\mathrm{T}} \cdot t_{ij} \cdot f_m(i,j) 
+ \sum_{(i,j)\in\mathcal{A}_{\mathrm{R}}} (V_{\mathrm{D,R}} \cdot d_{ij} + V_{\mathrm{E}} \cdot e_{\mathrm{R},ij}) \cdot \left( f_0(i,j) + \sum_{m\in\mathcal{M}} f_m(i,j) \right) 
+ \sum_{(i,j)\in\mathcal{A}_{\mathrm{P}}} V_{\mathrm{D,P}} \cdot d_{ij} \cdot \sum_{m\in\mathcal{M}} f_m(i,j)$$

### Network Flow Model - Flow Bundling

#### Bundle flows with same destination



Flow decomposition algorithm

Theorem: Flow bundling is lossless [Rossi et al. 2018]

### Intermodal AMoD - AMoD and Pedestrian

#### Manhattan Road Network - Data from OpenStreetMap



Consider 54000 taxi rides during rush hour, distributed in 6774 origin destination pairs

Since cabs are only a fraction of the vehicles, we will assume a baseline road usage of 90-100%

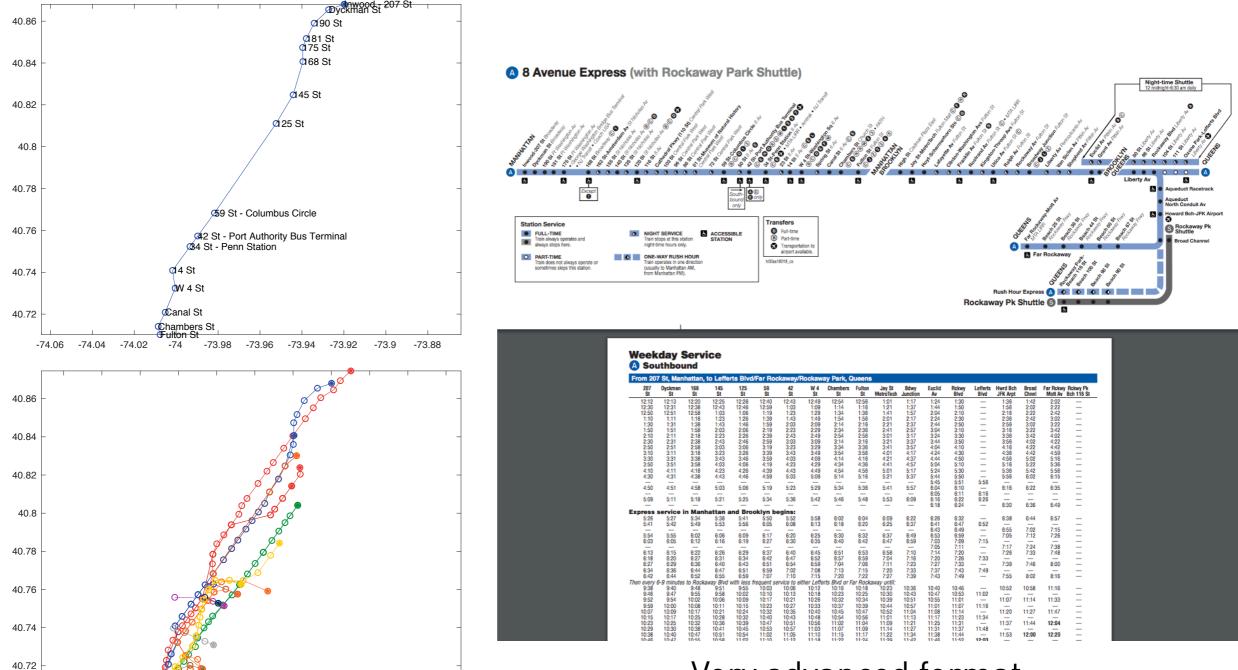
# Intermodal AMoD - Subway

-74.04 -74.02

-74

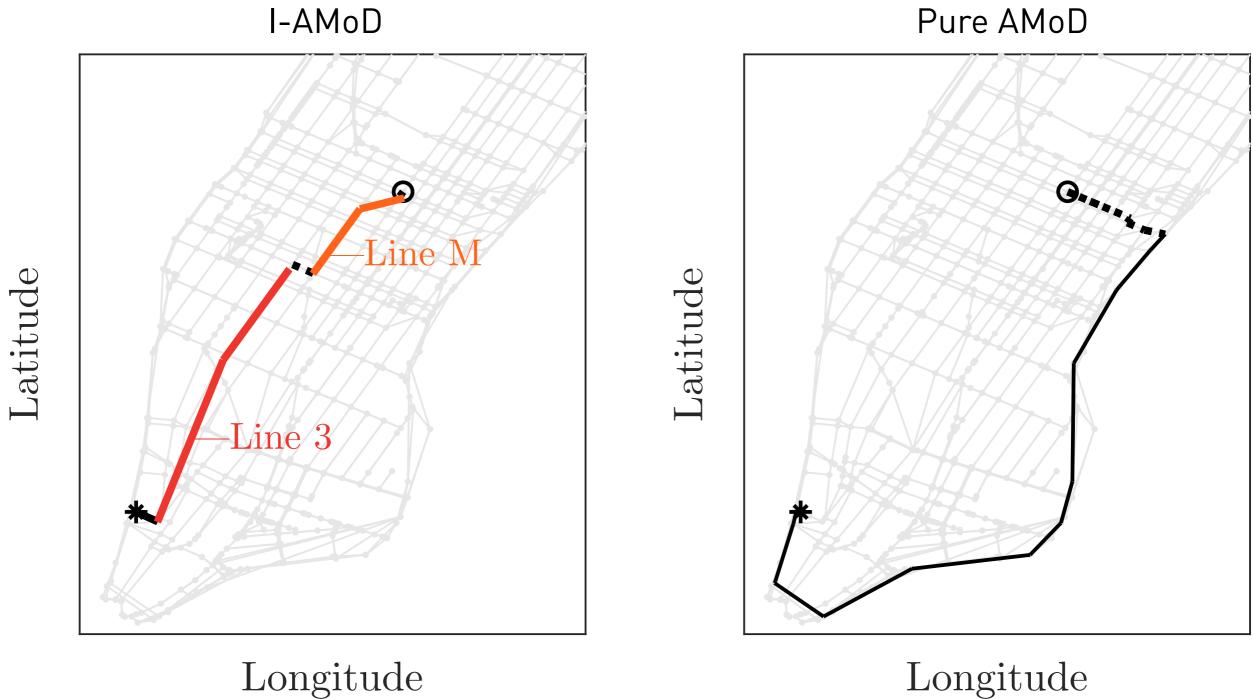
-73.98 -73.96 -73.94 -73.92 -73.9 -73.88 -73.86

Manhattan Subway Network - Data from data.cityofnewyork.us and mta.info



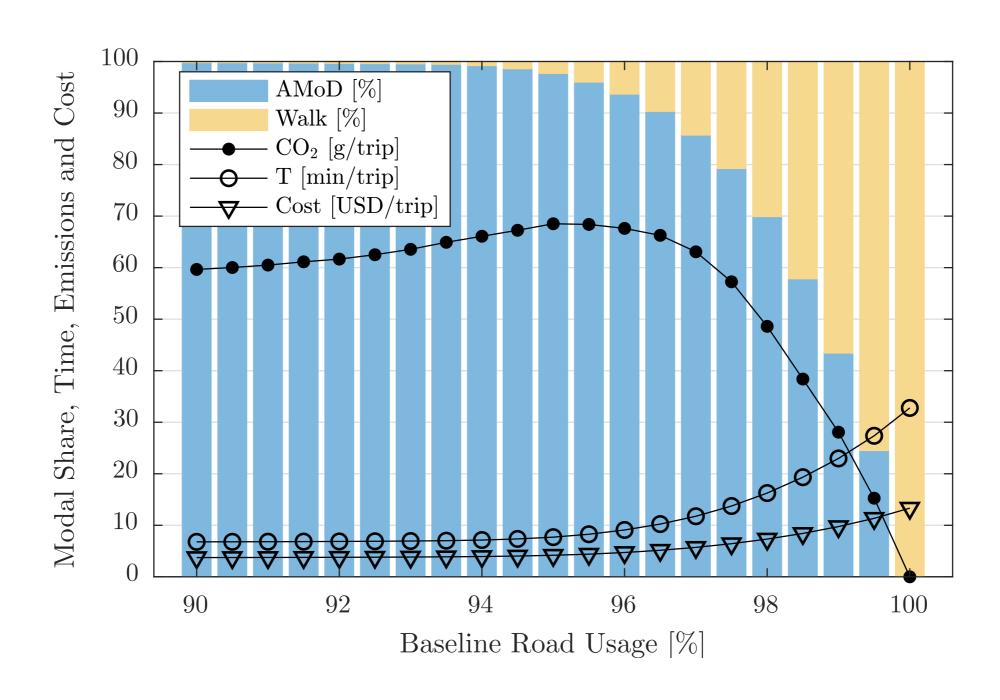
# Case Study - NYC - 98% Road Usage

Sample optimal paths



# Case Study - NYC

#### Pure AMoD - Scan in road capacity



### A Socially Optimal Road Tolling Scheme

Municipality wants to relieve congestion through road tolls

### The New York Times

N.Y. / REGION

### Congestion Plan for Manhattan Gets Mixed Reviews

By WINNIE HU and VIVIAN WANG JAN. 19, 2018

Congestion constraint and dual multipliers

$$f_0(i,j) + \sum_{m \in \mathcal{M}} f_m(i,j) - c_{\mathcal{R}}(i,j) \le 0, \ \forall (i,j) \in \mathcal{A}_{\mathcal{R}} \quad \leftrightarrow \quad \mu_{c\mathcal{R}}(i,j) \ge 0$$

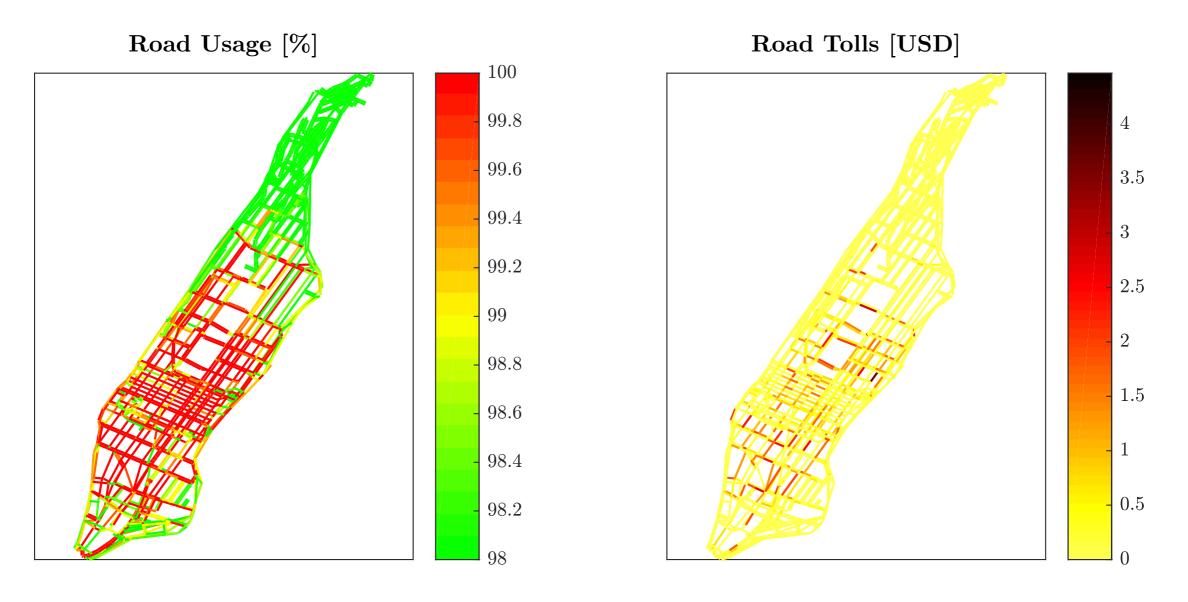
Optimal road tolls are the dual multipliers of the road congestion constraints

$$t_{\rm R}(i,j) = \mu_{\rm cR}(i,j)$$

Theorem: Tolling scheme guarantees social optimum [Salazar et al. 2018]

# Case Study - NYC - 98% Usage

#### I-AMoD - Tolling scheme



The average surcharge would be about \$2 VS almost \$6 with pure AMoD. In line with Cuomo's per-trip surcharge of \$2-5! [New York Times, Jan 2018]