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Why Risk Analysis?
The base forecast model 
generates a single point 
estimate forecast for future 
conditions.
This estimate is not 
precise, because of 
incomplete or inaccurate 
representations of present 
or future inputs or 
assumptions embedded in 
the models. 
Robust planning and 
decision making processes 
instead will consider a 
range of model forecasts. 
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Risk Analysis Approach

Today’s Topic
these are important

but let’s assume these 
are already done
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Monte Carlo Simulation
To develop a robust distribution of outcomes, 
we want to run our model a lot: many 
thousands of times

But our simulation model is complex,
it takes a long time to complete a 
single experiment
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Monte Carlo Simulation
To develop a robust distribution of outcomes, 
we want to run our model a lot: many 
thousands of times

But our simulation model is complex,
it takes a long time to complete a 
single experiment

Solution: replace the model with a
simpler one, which takes only
fractions of a second to run 
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Enter the Meta-Model
We replace the expensive simulation model 
with a fast regression meta-model.

Common practice in transportation planning 
is to use a linear regression model:
» Easy to implement
» Exceptionally fast
» Generally appears to have good fit

§ But is it really good enough?
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An Illustration in One Dimension

Polynomial Regression

Simple Linear Regression

R2 = 0.99

R2 = 0.90 R2 this high is 
typically 

regarded as a 
good fit…
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An Illustration in One Dimension

Polynomial Regression

Simple Linear Regression

Suppose we want to predict at X=2.6

Probably the Real Value

Y=0.26

Y=0.43

Y=0.21

… but there is 
still some 
remaining 

error
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An Illustration in One Dimension

Polynomial Regression

Simple Linear Regression

Suppose we want to predict at X=2.6

Probably the Real Value

Y=0.26

Y=0.43

Y=0.21

And the 
errors are 
systematic
not random
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Gaussian Process Regression
Gaussian Process Regression (GPR) is a 
non-parametric “machine learning” tool for 
regression analysis

GPR does not impose a restriction on the 
functional form of the output

Instead, just assume the output is 
auto-correlated: if the inputs are similar, then 
the output should also be similar 
» This auto-correlation violates the independent 

errors assumption in OLS linear regression
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Two Important Features
The BPM-V3 model for the California HSR has 
two features that make it work well with GPR:
» Deterministic: Re-run the model with the same inputs, 

get the same output
» Smooth: Re-run the model with the infinitesimally 

different inputs, get the only infinitesimally different 
output

Conveniently, many travel demand models share 
these features
» Although it makes things simpler, neither is strictly 

necessary for the use of GPR
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GPR Illustration in One Dimension

Gaussian Process Regression R2 = 1.00

2 Standard Deviations

We will 
come back 

to this
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GPR Illustration in One Dimension

Gaussian Process Regression Y=0.21
Bingo!
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GPR Represents Best Practices
Although not widely used for 
transportation planning meta-model 
applications, it is widely used for 
computer simulation meta-models in 
other fields

Gaussian Process Regression is the 
textbook approach for modern meta-
models of computer experiments 

And this is the textbook:
Santner, T. J., Williams, B. J., & 
Notz, W. I. (2013). “The design and 
analysis of computer experiments.”
Springer Science & Business Media. 
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About that R2 of 1.0 
GPR meta-models cannot be evaluated 
based on traditional “goodness of fit” 
measures derived from the estimation data, 
as for deterministic models they by design 
always fit all the estimation data perfectly

Instead it is necessary to measure fit on a 
validation data set that is not used for model 
estimation 

Since additional data is expensive to collect, it 
is preferred to use k-fold cross-validation
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K-fold Cross-Validation

Data is randomly split into K groups of 

roughly even size

The model is fit using only K-1 groups, then 

evaluated based on the fit of the remaining 

holdout group

Process is repeated

for each of the K 

groups and averaged 

across them to create

fit statistics
Source: https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.jpg
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Design of Experiments
Previous transportation 
planning applications have 
focused on a factorial or 
fractional factorial design of 
experiments (example in 
red)

GPR instead is better 
supported by a Latin 
Hypercube design with 
irregular distances between 
experiments
(example in green)

If some dimensions are not 
important, the factorial 
design partially collapses 
but the hypercube design 
still recovers maximum 
information.

If the Y dimension is not important, the factorial 
design collapses to only 3 data points, while 
the Latin hypercube still has 9.
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Application:
California High Speed Rail

GPR was employed to conduct a risk analysis 
for the ridership and revenue forecasts for the 
California High Speed Rail Authority 2018 
Business Plan

The Latin Hypercube design was adopted to 
allow for 13 to 15 risk factors (varies by 
forecast year) — prior Business plans relied 
on a fractional factorial designs that limited 
the analysis to only 10 risk factors.
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Risk Factors Included
High speed rail constants
Trip frequency constants
Quality of connecting bus 
service
Coefficient on 
access/egress time by 
distance
Coefficient on extremely 
long access/egress
Impact of Automated 
Vehicles

Automobile operating 
cost
Air and High speed rail 
fares
High speed rail frequency 
of service
High speed rail reliability
Number and distribution 
of households throughout 
the state
Level of visitor travel
Level of extra induced 
ridership

Note: Not all risk factors are relevant for every forecast year
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Still a Heavy Computation Load

A single run of the full BPM-V3 simulation 
requires about 12 hours of CPU time

One pass of this risk analysis involved 
conducting 150 runs for each of 3 forecast 
years = 5,400 CPU-hours

We built an ad hoc cluster using 
Python and Dask with on average 
about 200 CPU cores available to 
complete the experimental runs 
in just a few days

DASK
Fast & flexible parallel computing library for Python 

dask

dask

dask

daskdaskdask

dask

dask
dask

dask
dask

dask



21

Results: Revenue

2029 –
VtoV

2033 –
Phase 1

2040 –
Phase 1

GPR Cross Validation Score
(Improvement over Linear Regression) 0.747 0.987 0.983

RMSE of Cross Validation 
Predictions (millions of 2017$)

$14.4 $7.1 $9.0

Long Distance HSR Revenue –
2018 Business Plan Base Runs
(millions of 2017$)

$823 $2,085 $2,329

RMSE as a percent of Base Run 
Long Distance HSR Revenue 1.7% 0.3% 0.4%
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Results: Ridership

2029 –
VtoV

2033 –
Phase 1

2040 –
Phase 1

GPR Cross Validation Score
(Improvement over Linear Regression) 0.834 0.986 0.983

RMSE of Cross Validation 
Predictions (millions of annual riders) 0.25 0.16 0.19

Long Distance HSR Revenue –
2018 Business Plan Base Runs
(millions of 2017$)

14.4 35.6 39.4

RMSE as a percent of Base Run 
Long Distance HSR Revenue 1.7% 0.4% 0.5%
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http://www.hsr.ca.gov/docs/about/business_plans/
2018_Business_Plan_Ridership_Revenue_Risk_Model.pdf

jnewman@camsys.com

http://www.hsr.ca.gov/docs/about/business_plans/
2018_CA_High_Speed_Rail_Business_Plan_Ridership_and_Revenue_Risk_Analysis.pdf


