Need for and Uses of Risk Analysis: Technical approaches from the university perspective

Jimi Oke

Risk Analysis Workshop, ITM 2018 Atlanta, GA. June 24, 2018

Intelligent Transportation Systems Lab | MIT Energy Initiative Massachusetts Institute of Technology

Introduction

Research question

How will new vehicle technologies and environmental policy affect future urban mobility?

• Can we identify potential vulnerabilities given variability in urban outcomes?

Approach

Discover policy-relevant mobility futures in prototype cities:

- · Identify sources of uncertainty
- · Generate scenarios by sampling from uncertainty combinations
- · Enumerate strategies for exploration
- Simulate activity patterns and movements for all scenarios across strategies
- · Evaluate scenarios and determine success based on regret minimization and thresholding
- · Find robust policy intersections and determine critical regions of interest

Outcomes

- · Determine vulnerabilities in prevailing strategies
- Find critical regions in uncertainty space
- Proper quantification of strategy impacts

1

Motivation for scenario discovery

Traditional scenario analysis

- Does not adequately address uncertainties in decision making
- Relies on overly narrow deterministic definition of a small number of scenarios

Scenario discovery

- Provides framework for sampling across space of multiple futures
- Allows for identification of clusters of cases where base strategy fails
- · These give rise to robust scenarios

SCENARIO GENERATION

- · identify & quantify uncertainties
- · sample scenarios

SIMULATION

- run model for enumerated strategies across feasible scenarios
- obtain futures matrix

POLICY DECISIONS

- · strategies characterizing better alternatives
- non-extreme cases of interest missed by traditional approach
- exploration & analyses of cases to inform decisions

BENCHMARKING/CLASSIFICATION

- evaluate on performance metric(s)
- find optimal strategies for minimum regret
- · classify outcomes based on threshold

DISCOVERY

search/cluster identify high-interest regions

- covering a large number of points
- dense in number of failure cases
- interpretable by parameter ranges

Prior work and significance of current contributions

Notable academic efforts and key milestones

- Foundations: exploratory modeling Bankes 1993
- Development of Patient Rule Induction Method (PRIM) for high dimensional clustering Friedman and Fisher 1999
- Formalization of scenario discovery/robust decision making^{Lempert et al. 2006}
- Demonstration of scenario discovery concept for robust urban planning^{Swartz and Zegras 2013}
- Climate change and resource management; Ethiopia^{Shortridge and Guikema 2016}, Global^{Rozenberg et al. 2014},
 California^{Groves 2006}
- Extensions and improvements: data transformation Dalal et al. 2013, heterogeneous types^{J. H. Kwakkel} and Java-Rozen 2016, random bagging^{J. Kwakkel} and Cunningham 2016
- Software: exploratory modeling workbench^{1. H. Kwakkel 2017}, many-objective robust decision making^{Hadka} et al. ²⁰¹⁵

Urban mobility arena

- Current work largely dominated by traditional scenario analysis and limited uncertainty analyses
- Bus lane strategy analyses in Marina Bay, Singapore Song 2013
- Current: future urban mobility across global urban typologies

Case study: discovering robust futures for autonomous mobility on demand (AMOD)

Prototype city testbed: dense public transit-oriented network; population 350,000

Uncertainty	Levels / Probabilities				
Household level of motorization	-20%	-10%	0	+20%	
	0.1	0.3	0.5	0.1	
ICEV proportion	25%	50%	75%	95%	
	0.1	0.2	0.3	0.4	
Fuel price change	-50%	0	+50%	+100%	+150%
	0.25	0.30	0.20	0.15	0.10
Smart mobility modeshare change	0	+25%	+50%	+75%	
	0.25	0.25	0.25	0.25	

Strategies

Each of these correspond to a fixed policy implementation:

- Do Nothing (no AMOD, current on-demand levels)
- AMOD as Mass Transit Complement (first/last mile)
- AMOD as Mass Transit substitute
- Full AMOD deployment
- · CBD restriction to AMOD and Mass Transit
- Mass Transit Enhancement

Evaluation metrics

- Activity-based accessibility
- Energy consumption
- Network performance
- Vehicle miles traveled

Case study: Simulation and evaluation

- Agent-based urban mobillity simulator: SimMobility
- Initial exploration for activity-based model (pre-day)
- 126 scenarios simulated across 6 strategies

Regret

Given a strategy $s \in S$ and a future state $f \in F$, the regret r is given by

$$r(s, f) = Z(s, f) - \min_{s' \in S} Z(s', f)$$
 (1)

Performance

We define cost function Z(s, f) as

$$Z(s,f) = -\frac{1}{N} \sum_{n} ABA_{n}(f,s) \quad (2)$$

where ABA_n is the activity-based accessibility for each individual n and N is the population.

5

Outlook

- Current case study performed for only activity-based accessibility outcomes (results to be presented Wednesday)
- Supply to be simulated for energy and network performance outcomes
- Further experimental design for discovery across 4 distinct prototype cities representing key urban typologies:
 - Auto-Sprawl
 - Auto-Innovative
 - Innovative-Heavyweight
 - Sustainable Anchor
- Key outcomes: levels of AMOD deployment, fuel prices and preferences required for robust strategy implementations given future considerations

Appendix

SimMobility overview: simulation laboratory

- A laboratory for analyzing future urban scenarios
- Integrated/modular agent-based platform
- Mobility-sensitive behavioral dynamic plan/action models
- Local and city-wide multimodal networks
- Multiple spatial-temporal scales

