Discovering Robust Urban Mobility Futures via Agent Based Simulation in Prototype Cities

Jimi Oke, Eytan Gross, Bat-hen Nahmias-Biran Carlos Lima Azevedo, P. Christopher Zegras, Joseph Ferreira, Moshe Ben-Akiva 7th TRB Innovations in Travel Modeling Conference | Atlanta, GA. June 27, 2018

Intelligent Transportation Systems Lab | MIT Energy Initiative Massachusetts Institute of Technology

Mobility of the future: motivation

Key question

How would

- Smart mobility/autonomous mobility on demand
- Vehicle and fuel technologies
- Energy and environmental policies

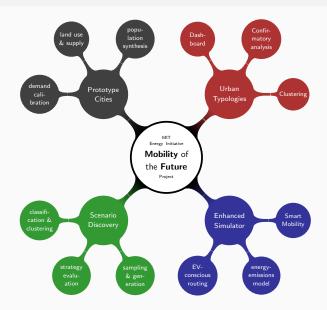
affect future urban mobility?

Approach

- Understand and replicate mobility and energy-related urban dynamics in worldwide prototypical metropolitan areas
- Build enhanced urban laboratory to simulate individual traveler reaction and transportation system performance
- Identify efficient policy intersections across various strategies under uncertainty futures

1

Research overview



Motivation for scenario discovery

Traditional scenario analysis

- Does not adequately address uncertainties in decision making
- Relies on overly narrow deterministic definition of a small number of scenarios

Scenario discovery

- Provides framework for sampling across space of multiple futures
- Allows for identification of clusters of cases where base strategy fails
- These give rise to robust scenarios

SCENARIO GENERATION

- · identify & quantify uncertainties
- · sample scenarios

SIMULATION

- run model for enumerated strategies across feasible scenarios
- obtain futures matrix

POLICY DECISIONS

- conditions under which chosen strategy would fail
- recommendation for alternative strategies
- policy insights based on robustness analysis
- further exploration of cases within critical regions identified

BENCHMARKING/CLASSIFICATION

- evaluate on performance metric(s)
 rank strategies based on minimum
- rank strategies based on minimul regret
- choose benchmark strategy
- classify success/failure outcomes on regret threshold

identify hig

DISCOVERY

search/cluster benchma

identify high-interest regions where benchmark strategy fails (using PRIM algorithm)

- covering a large number of points
- dense in number of failure cases
- interpretable by parameter ranges

Prior work and significance of current contributions

Notable academic efforts and key milestones

- Foundations: exploratory modeling Bankes 1993
- Development of Patient Rule Induction Method (PRIM) for high dimensional clustering Friedman and Fisher 1999
- Formalization of scenario discovery/robust decision making^{Lempert et al. 2006}
- Demonstration of scenario discovery concept for robust urban planning Swartz and Zegras 2013
- Climate change and resource management; Ethiopia Shortridge and Guikema 2016 Global Rozenberg et al. 2014, California Sroves 2006
- Extensions and improvements: data transformation Dalal et al. 2013, heterogeneous types J. H. Kwakkel and Jaxa-Rozen 2016, random bagging J. Kwakkel and Cunningham 2016
- Software: exploratory modeling workbench^{J. H. Kwakkel 2017}, many-objective robust decision making^{Hadka} et al. 2015

Urban mobility arena

- Current work largely dominated by traditional scenario analysis and limited uncertainty analyses
- Bus lane strategy analyses in Marina Bay, Singapore Song 2013
- Current: future urban mobility across global urban typologies

Case study: futures for autonomous mobility on demand (AMOD)

Scenarios (each a unique combination of discrete uncertainty factor outcomes)

Uncertainty	Levels / Probabilities				
Household level of motorization	-40% 0.1	-20% 0.3	0 0.5	+20% 0.1	
ICEV proportion	25% 0.1	50% 0.2	75% 0.3	95% 0.4	
Fuel price change	-50% 0.25	0 0.30	+50% 0.20	+100% 0.15	+150% 0.10
Smart mobility modeshare change	0 0.25	+25% 0.25	+50% 0.25	+75% 0.25	

Prototype city testbed: dense public transit-oriented network; 2 rail lines, 5 bus lines, 99 nodes, 127 bidirectional links

Strategies (each corresponds to a fixed policy implementation)

- CBD_Restriction: restriction of AMOD to CBD; Mass Transit included, private cars excluded
- Do_Nothing: no AMOD, current on-demand levels
- Full_AMOD: full AMOD deployment including first/last mile
- MOD_PT_Complement: MOD as Public Transportation Complement (first/last mile)
- No_PT_AMOD_Substitution: AMOD as Mass Transit substitute
- PT_Enhancement Public Transportation Enhancement (doubling of frequency; first/last mile)

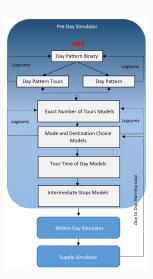
24 zones, population 350 000; CBD encircled in red; darker shades indicate greater population density

Case study: Simulation and evaluation framework

Simulation laboratory: SimMobility Mid-Term

Components:

- Integrated agent-based simulator with full feedback loops
- Initial exploration conducted for activity-based model (pre-day component)
- 126 scenarios generated
- Run across 6 strategies



 The regret is computed for all scenarios based on the benchmark strategy specified

Regret

For benchmark strategy $s^b \in S$ and a scenario $f \in F$, the regret r is

$$r(f) = Z(s^b, f) - \min_{s \in S} Z(s, f) \quad (1)$$

 Futures are evaluated using the median activity-based accessibility (ABA) measure in terms of time (minutes).

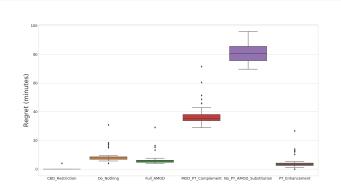
Performance

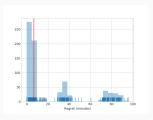
We define cost function Z(s, f) as

$$Z(s,f) = median(-ABA_n(f,s))$$
 (2)

where ABA_n is the activity-based accessibility for each individual n and N is the population.

Preliminary results: regret distribution and thresholding

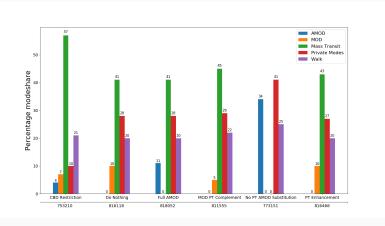




- Median regret across all strategy benchmarks: 6.6 minutes
- ullet Chosen as failure threshold heta
- Strategy used as benchmark for PRIM analyses:
 Full_AMOD
- Number of failure cases: 16/126
- A given scenario is classified a failure if regret is greater than θ

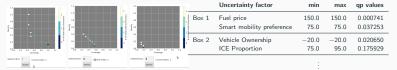
Modeshare across strategies

- Initially simulate demand for base scenario (no change in any of uncertainty factors) across all six strategies
- Second x axis indicates total number of trips

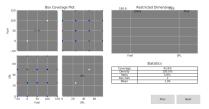


Preliminary results: PRIM outcomes

Box-finding sequence and limits:



First box has 50% coverage and 47% density and 1 significant constrained dimension
 Peeling/Pasting Trajectory 7



- Subsequent boxes discovered do not have significant bounds
- "Full_AMOD" strategy is vulnerable under highest fuel price
- Indicates that proper planning must be done to ensure demand is met without lowering performance
- Further exploration required to measure modal shifts and levels of service based on network effects to properly measure impacts of other uncertainty factors

Outlook

- · Current case study performed for only activity-based accessibility outcomes
- Supply to be simulated for energy, network performance outcomes, feedback for ABA iterations
- Further experimental design for discovery across 4 distinct prototype cities representing key urban typologies¹:
 - Auto-Sprawl Auto-Innovative Innovative-Heavyweight Sustainable Anchor
- Key expected result: policy recommendations for robust strategies and efficient outcomes given the urban typology with focus on AMOD implementation²

¹ Yafei Han et al. (2018). "Global Urban Typology Discovery with a Latent Class Choice Model". In: Transportation Research

Roard 97th Annual Meeting. Washington DC, United States.

Rounag Basu et al. (2018). "Automated Mobility-on-Demand vs. Mass Transit: A Multi-Modal Activity-Driven Agent-Based Simulation Approach". In: Transportation Research Record 0.0. p. 0361198118758630. DOI: 10.1177/0361198118758630.