Bridging Survey Response and Revealed Preference in a Quantum Cognition Model

Gabriel Jiangbo Yu, Ph.D.
University of California, Irvine
Cambridge Systematics

R. Jayakrishnan, Ph.D.
University of California, Irvine

Why Bother Using Quantum Mechanics

- Precedents of using methods from physics
 - Gravity Model, Equilibrium, Fluid Mechanics, Maximum Entropy...
- Quantum Mechanics was accepted (only) because it works (and classical mechanics doesn't)
- Non-Boolean Quantum Logic. E.g., $(A \text{ and } B) \neq (B \text{ and } A)$
- An Experiment

What is Quantum Logic?

Intuitive Explanation: Measurement Alters the System Itself!

In A and B experiement, the measurement B changes the syste $|\uparrow\rangle$, and B measures $|\uparrow\rangle$, not $|\swarrow\rangle$.

In **B** and **A** experiement, the measurement **A** changes the syste $| \rangle$, and **A** measures $| \rangle$, not $| \updownarrow \rangle$.

Survey Question Alters A Participant's Mental State!

Disclaimer: using quantum principles, not implying quantum nature of cognition/consciousness

Quantum Cognition (Quantum-like Mind) vs. Quantum

Challenges in quantifying survey bias

- Important role of stated preference survey when no observation available
- "Framing Effect" and "Mere Measurement Effect"
 - Stopher et al. (07)
 - "25% more trips were over-reported than trips that were under-reported in terms of actual travel time in 2003/2004 Syndey Household Travel Survey.
 - McFadden and Leonard (92)
 - "The results the stated preference (SP) survey change noticeably when response format and the wording of the questions were varied"
 - Morwitz et al. (93)
 - "... merely measuring intent will increases subsequent purchase behavior."
 - Surgery decision (McNeil, 1982; Tversky & Kahneman, 1986)
 - "There's a 90% chance of death without the surgery."
 - "There's a 10% chance of survival without surgery."
 - Water & Electricity Bills (Richard Thaler, 2008)
 - "Please pay \$xxx for water and electricity."
 - "Most of your neighbors have paid the bill, but you still have \$xxx deficit."
 - Traveler Information
 - "You have 80% chance of arriving on time or early."
 - "You have 20% chance of arriving late."
 - Various Survey Wording, Sequence, Instruments (picture/video/VR), etc.

Simple Survey Example

- Survey Format 1
 - Q_A : Would you consider environmental impact when making travel decision?
 - Q_B : Do you prefer transit or auto?
- Survey Format 2
 - Q_B : Do you prefer transit or auto?
 - Q_A : Would you consider environmental impact when making travel decision?

A Geometric Illustration

Quick Intro to Some Key Concepts

•	Sample	Space vs. ((Unit-Length)	Vector Space
---	--------	-------------	---------------	--------------

•	Bra vector, say $\langle \phi = [1 \;\; 0]$. Ket vector, say $ \psi angle =$	$\sqrt{2/3}$
		$\left[\sqrt{1/3}\right]$

• "Bracket":
$$\langle \phi | \psi \rangle = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2/3} \\ \sqrt{1/3} \end{bmatrix} = \sqrt{2/3} \approx 0.82 \cdot \langle \psi | \psi \rangle = \frac{2}{3} + \frac{1}{3} = 1$$

- Probability & Probability Amplitude, $|\langle \psi_D | \psi \rangle|^2 = \langle \psi | \psi_D \rangle \langle \psi_D | \psi \rangle \approx 0.67$
- *Matrix representation of an observable (e.g., a survey response)
- Each "coordinate systems" are the set of eigenvectors of a (Hermitian) matrix
- Note that once we observe, the system "collapses" into one of the eigenvectors

$$p_D + p_R = \psi_D^* \psi_D + \psi_R^* \psi_R = 1$$

Core Ideas of Applying QM to travel survey study

- The unit-length state vector captures respondent's attributes/characteristics relevant to answering the survey question
 - Different angles represent different mental states relevant to the survey question
 - The angel is a function of attributes/characteristics of the observer
- The "coordinate system" captures information relevant to the survey question (measurement)
 - Different survey instruments, platforms, wordings are represented by different coordinate systems formed by different sets of bases.
 - The state vector BECOMES one of the eigenvectors after the measurement

Presents the survey differently

- Q1: Verbal Description about Route 1 and Route 2
- Q2: Photo/VR Description about Route 1 and Route 2

Intuitive (Geometric) Understanding of Quantum Cognition Model

Vector representation of a person's probability to choose between Route 1 and Route 2

Asking different participants the same way

- In heterogenous case, $\theta \in [0,2\pi]$ is a function of an individual's attributes
- Question 1 for Alice and Bob

Heterogeneous sample

- In heterogenous case, θ is a function of their attributes, $\theta \in [0,2\pi]$
- Question 2 for Alice and Bob

Example 1: Case study using Fujii & Garling's data

- Kyoto, Japan, 2003
- 903/20000 respondents before-and-after survey (by mails)
 - First wave
 - info about the new service and socio-demographic attributes of the participants
 - Second wave (6 months later)
 - Whether moved since the first wave, and whether "kept their words."

Revealed Choice (%) for Non Transit Users

		Non-Transit Users		
		No	Yes	Total
Stated	No	82.90	3.62	86.52
Preference	Yes	9.84	3.64	13.48
(%)	Total	92.74	7.26	

Revealed Choice (%) for Transit Users

		Transit Users		
		No	Yes	Total
Stated	No	73.13	5.10	78.23
Preference	Yes	6.46	15.31	21.77
(%)	Total	79.58	20.42	

Example 1: Case study using Fujii & Garling's data

- They selected responses only when the participants experienced little changes (e.g., no home/work relocation and no major income change)
- Revealed preference is considered as a "self-imposing question"
- New transit service (e.g., frequency, fare) was verified to be consistent with what was provided in the survey
- Original transit users tend to predict their behavior better; OR, transit users are less likely to be framed by the question

Example 2 (A mixed approach)

- Suppose we estimated parameters based on RP data of a new transit feeder system with rideshare service
- We can evaluate the SP data using the calibrated model and a "quantum corrector"
- Now, we can then use it to predict new actual behavior based on what we give in SP

Example 2 Step 1: Calibrate Discrete Choice Model Using RP Data after Phase I

Example 2 Step 2a: Evaluate Discrete Choice Model Using SP data obtain probabilities

Example 2 Step 2b: Obtain the angel, θ , between the two coordinate systems

SP Survey:
e.g., would you use the upcoming rideshare service for transit?

RP

SP Survey:
e.g., would you use the upcoming rideshare service for transit?

Transit Feeder Phase II
Implemented

Transit Feeder Phase I Implemented TIME

Example 2 Step 3: Obtain $\Delta\theta$ between the two coordinate systems

 $\max \sum_m (y_r^m log p_r^m + y_{ar{r}}^m log p_{ar{r}}^m)$, where $p_r^m = rac{1}{1 + \exp(2\ln(an(heta^m + \Delta heta^m)))}$, $p_{ar{r}}^m = 1 - p_r^m$

Note: the only unknown is $\Delta\theta^m$, which might be a function of m's attributes and question's wording type dummy. The optimal $\Delta\theta^m$ function specification maximizes the likelihood function.

SP Survey:
e.g., would you use the upcoming rideshare service for transit?

RP

SP Survey:
e.g., would you use the upcoming rideshare service for transit?

E.g., four wording types suggested by Schriesheim (1995):

Regular:

Would you use the upcoming rideshare service for transit?

• Polar Opposite:

Would you keep using the current mode after the implementation of the rideshare service for transit?

• Negated Polar Opposite:

Would you not keep using the current after the implementation of the rideshare service for transit?

• Negated Regular:

Would you not use the upcoming rideshare service for transit?

What's the RP?

TIME

Transit Feeder Phase II
Implemented

Transit Feeder Phase I Implemented

Example 2 Step 4: Predict based on new SP data using the joint model

Greater Flexibility (Through Hilbert Space)

Note that, since the ratio $\sqrt{\frac{p_{ar{r}}}{p_{r}}}=\sqrt{\frac{\left|\langle\psi_{ar{r}}|\psi_{ar{r}}\rangle\right|^{2}}{\left|\langle\psi_{r}|\psi_{r}\rangle\right|^{2}}}$ determines the revealed probabilities, any $\psi_{ar{r}}=\sqrt{p_{ar{r}}}e^{-i\delta_{ar{r}}}$ and $\psi_{r}=\sqrt{p_{r}}e^{-i\delta_{r}}$ would produce the same ratio.

$$\psi_{ar{ ext{r}}}^* \cdot \psi_{ar{ ext{r}}} = \sqrt{p_{ar{ ext{r}}}} e^{i\delta_{ar{ ext{r}}}} \cdot \sqrt{p_{ar{ ext{r}}}} e^{-i\delta_{ar{ ext{r}}}} = p_{ar{ ext{r}}}$$

 $\psi_{\overline{r}}^*\cdot\psi_{\overline{r}}=\sqrt{p_{\overline{r}}}e^{i\delta_{\overline{r}}}\cdot\sqrt{p_{\overline{r}}}e^{-i\delta_{\overline{r}}}=p_{\overline{r}}$ In other words, the same $\sqrt{\frac{p_{\overline{r}}}{p_{r}}}$ could come from different combinations of framing effects.

 $e^{-i\delta_{\overline{r}}}$ is also related to the time evolution of the system.

Interference Effect of Survey Question

•
$$Pr(A) = |\langle A|\psi_0\rangle|^2 = \langle \psi_0|A\rangle\langle A|\psi_0\rangle$$

•
$$\Pr(A|N \text{ or } C) = |\langle A|N \rangle \langle N|\psi_0 \rangle + \langle A|C \rangle \langle C|\psi_0 \rangle|^2$$

$$= |\langle A|N \rangle \langle N|\psi_0 \rangle|^2 + |\langle A|C \rangle \langle C|\psi_0 \rangle|^2 + \langle A|N \rangle \langle N|\psi_0 \rangle \langle A|C \rangle \langle C|\psi_0 \rangle$$

$$+ \langle A|C \rangle \langle C|\psi_0 \rangle \langle A|N \rangle \langle N|\psi_0 \rangle$$

$$= |\langle r_D|q_D \rangle \langle q_D|\psi_0 \rangle|^2 + |\langle r_D|q_R \rangle \langle q_R|\psi_0 \rangle|^2 + 2 \cdot \delta_D \cdot Int(\Delta\theta)$$

Summary

- SP-RP relationship could potentially benefit from the quantum cognition approach.
- Travel behavior studies can provide an application field and contribute to the development of this new method
- Just a Beginning!
 - Identifying factors that affect θ and $\Delta\theta$
 - Sequencing Effect of Information Provision (e.g., traveler information, stakeholder investment decisions, etc.)
 - Considering dynamics time evolution of mental state vectors
 - Modeling impact of format/instrument of traveler information on system performance
 - Modeling impact of various information provision scheme to decision makers

Selected References

- Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). *Quantum cognition: a new theoretical approach to psychology*. Trends in cognitive sciences, 19(7), 383-393.
- Busemeyer, J. R., & Bruza, P. D. (2012). *Quantum models of cognition and decision*. Cambridge University Press.
- Franco, R. (2009). The conjunction fallacy and interference effects. *Journal of Mathematical Psychology*, 53(5), 415-422.
- Fujii, S., & Gärling, T. (2003). Application of attitude theory for improved predictive accuracy of stated preference methods in travel demand analysis. *Transportation Research Part A: Policy and Practice*, 37(4), 389-402.
- Haven, E., & Khrennikov, A. (2013). Quantum social science. Cambridge University Press.
- Railsback, S. F., & Grimm, V. (2011). *Agent-based and individual-based modeling: a practical introduction*. Princeton university press.
- Shannon, C. E. (1948). A mathematical theory of communication. *Bell System Technical Journal*, 30:47-51
- Stopher, P., FitzGerald, C., & Xu, M. (2007). Assessing the accuracy of the Sydney Household Travel with GPS. *Transportation*, 34(6), 723-741.
- Thaler, R. H. (2015). *Misbehaving: how economics became behavioural*. Allen Lane.
- Thaler, R., Sunstein C. (2008). Nudge: Improving decisions about health, wealth, and happiness.
- Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. *Psychological review*, 90(4), 293.
- Ben-Akiva, M., Bradley, M., Morikawa, T., Benjamin, J., Novak, T., Oppewal, H., & Rao, V. (1994). Combining revealed and stated preferences data. *Marketing Letters*, 5(4), 335-349.
- Ben-Elia, E., Erev, I., & Shiftan, Y. (2008). The combined effect of information and experience on drivers' route-choice behavior. *Transportation*, 35(2), 165-177.

Thank You