Integrating Travel and Epidemic Models for Vector Borne Disease Surveillance

presented to

7th International Conference on Innovations in Travel Modeling

presented by

Krishnan Viswanathan

Co-Authors

Seyed Meysam G. Dehkordi, Florida State University Ashok Srinivasan, Ph.D., Florida State University Anuj Mubayi, Ph.D., Arizona State University

- Objectives and Motivation
- Methodology and Data
- Results
- Summary and Next Steps

Objectives and Motivation

- Air Travel Implications
- Risk maps of local transmission
- FAA data good but inadequate
- Epidemic model limitations
- Link travel models with metapopulation epidemic models to develop risk maps

Source: New York Times. https://www.nytimes.com/interactive/2016/02/06/scie nce/air-travel-from-countries-affected-by-zika.html

Vector borne disease outbreaks

Disease	Year	Travel Imported	Local	Source-of-data
Chikungunya	2014	475	12	CDC
Dengue	2009-10	N/A	66	FDH
Dengue	2013	70	28	FDH
Zika	2016	1065	274	FDH

Air Travel within Florida

		Destination	Percent of	Number of	Destination
Origin	Destination	Airport	Passengers	Passengers	Airport Total # of
County	Airport	Code	from Origin	(Leakage)	Passengers
Duval	Orlando	MCO	0.9	173,576	19,286,291
Duval	Daytona	DAB	0.6	1,888	314,700
Alachua	Jacksonville	JAX	2.3	63,214	2,748,451
Leon	Panama City	ECP	1.4	6,195	442,534

Epidemic model

- Steady state between zones for Humans and Vectors
 - » Two zones Puerto Rico & FL Counties
- The model considers the following:
 - » Number of people in each zone
 - » Estimation number of vectors in those zones
 - » The rate of people movement between two zones
- Find the number of infected humans/vectors for each day

State \rightarrow \rightarrow S_{hi} \rightarrow E_{hi} \rightarrow l_{hi} \rightarrow A_{hi} \rightarrow R_{hi} \rightarrow S_{vi} \rightarrow I_{vi}

Variable Description Susceptible Humans Exposed Humans Symptomatic Humans Asymptomatic Humans Recovered Humans Susceptible Vectors Infected Vectors

Used parameters

Parameter	Description	Value	Source
b	Biting rate	0.5 per day	Andraud, Hens, Marais, and Beutels (2012)
β _{hv}	Human to vector infection probability	0.5 per day	Chikaki & Ishikawa (2009)
β_{vh}	Vector to human infection probability	0.4 per day	Andraud et al. (2012)
1/δ	Intrinsic Incubation period	5 days	Bearcroft (1956); Kucharski, 2016
γ	Recovery rate	0.14 or 0.25 per day	Gao et al. (2016); Majumder et al., 2016
ф	Proportion of asymptomatic infections	0.18	Gao et al. (2016);

Transportation Models

Gravity Model

$$T = \theta \, \frac{n_i^{\alpha} n_j^{\beta}}{d^{\gamma}}$$

Radiation Model*

$$\langle T_{ij} \rangle = T_i \frac{m_i n_j}{(m_i + s_{ij})(m_i + n_j + s_{ij})}$$

Destination Choice Model

 $U_{i} = \alpha * (Travel time) + \beta * (Waiting time airport) + \gamma$ * (Flight time) + δ * (Flight price) $\alpha = -0.9898$ $\beta = 0.2885$ $\gamma = -0.3703$ $\delta = -0.6856$

*Source: Simini, Filippo, et al. "A universal model for mobility and migration patterns." *Nature* 484.7392 (2012): 96.

Methodology

- Determine the number of passengers who end up in locations outside of the county where the airport is located.
 - » The model is trained to detect the leakage
- Used epidemic model to calculate risk of disease propagation from Puerto Rico to each of the counties
- Compare this risk with the reported infections in 2016
 - » Provides risk profile for disease propagation

Results

Results

Results

County	Travel	Local	Total
Miami Dade	350	287	681
Broward	182	1	183
Orange	167	0	167
Volusia	12	0	12
Hillsborough	46	0	46
Duval	11	0	12
Leon	2	0	2
Sarasota	5	0	5
Lee	15	0	15
Alachua	12	0	12

Risk of Human and Vector Infection

Risk of Infection

Twitter Data

- Processed more than 500,000 Twitter users tweets
 - » 100 GB of tweets
 - » Detected people from Puerto Rico with Twitter activities in Florida
 - » Analyzed them to extract the tweet locations
- Compared popular places in Miami for Puerto Ricans with CDC red area designated zones for Zika

CDC designated Red Areas versus Twitter Data

Red Area designation for Zika:

- » Miami beach: December 9, November 21, August 19, September 17
- » Wynwood: September 19, August 1
- » Little River : December 2, October 13

Popular Tweet's location in Miami for Puerto Ricans:

Neighborhood	Tweets with Geo-tag
Miami International Airport (MIA)	203
Marlins Park	171
The Wynwood Walls	168
InterContinental Miami	163
Miami Beach	119

https://www.cdc.gov/zika/intheus/florida-update.html

Summary and Next Steps

- Predict the risk of disease infection which will propagate with travelers
- Determine risk for each county
- Destination choice seems to work well (compared to other models)
- Social media can be a potential source for real time disease location
 Need to be careful about using it though
- Additional demographic variables to refine the destination choice model

- Krishnan Viswanathan kviswanathan@camsys.com
- Seyed Meysam Ghaffari Dehkordi <u>sg15w@my.fsu.edu</u>
- Ashok Srinivasan <u>asriniva@cs.fsu.edu</u>

