

the science of insight

Innovations in Travel Modeling

June 27, 2018

Insights from big and small data

Which trips and travelers are captured by location-based services data?

Leah Flake, RSG Vince Bernardin, RSG Elizabeth Greene, RSG Rebekah Anderson, ODOT Jeffrey Dumont, RSG

Case Study Background

Evaluated similarities & differences between smartphone data collected for a household travel survey using RSG's rMove™ app and location-based services (LBS) data collected passively from smartphone apps for FHWA's TMIP

Data characteristics for the same day of data between LBS and rMove:

	LBS	rMove
Total devices	95,697	222
Points	12,128,310	124,681
Median time between points	147 seconds (2.5 minutes)	4 seconds (0.06 minutes)
Standard deviation between points	2.2 hours (132 minutes)	0.72 hours (43 minutes)

 High variance in LBS data collection among devices (many with high point frequency, many with sparse point frequency)

LBS vs. rMove Spatial Coverage

DURING THE SAME DAY:

LBS locations

rMove locations

Trip Inference in LBS Data

- To understand how comprehensively travel patterns are collected from the LBS source, we developed an algorithm to infer trips from LBS data
- Resulting trip characteristics compared to rMove trips:

	LBS	rMove
Number of Trips	378,953	1,187
Median Distance (straight line)	1.56 mi	1.64 mi
Median Travel Time	34 minutes	12 minutes
Number of Trips per Device	4.73	5.34

Matching LBS and rMove users

- Identified common users between rMove and the LBS source to have a better idea of LBS data collection gaps & to help adjust the trip inference algorithm
- Resulted in 26 likely matches (of 222 devices) between rMove and LBS for given day

Demographics of LBS Users Matched to rMove Survey

- The subset of users in the LBS dataset is younger than in the Census
- LBS subset has relatively fewer people in the low-income ranges (less than \$50k) compared to Census

Complementarity of Passive LBS and Travel Surveys

Passive LBS and rMove data together allow us to understand travel better than either alone

PASSIVE LBS

- Spatial coverage from LBS data is complete
 - to a degree that is impossible to achieve with survey data
- Device matching with targeted spatial data is feasible
- User persistence appears to be very good
- Longitudinal observation may be possible (e.g., for trend monitoring)

TRAVEL SURVEYS (rMove)

- **Temporal coverage** of trip data is complete
 - Identifies missing short trips in passive LBS data
- Traveler characteristics (and mode and purpose) are observed
 - Identifies LBS bias towards young adults, more affluent
 - If we can measure bias, we can correct for it -

Potential for blended datasets with representativeness of surveys and volume of passive data

