Development of a MultiModal Travel Demand Module for the Regional Strategic Planning Model tool

Experience of contributing to the VisionEval project

Liming Wang, Huajie Yang, Brian Gregor, and Tara Weidner

6/25/2018

Outline

- The VETravelDemandMM module
- Innovations
- The process of contributing to VisionEval
- Reflections

The VETravelDemandMM module

- Started in 2015 as an Oregon DOT SPR project to better capture mode shifting for the Regional Strategic Planning Model (RSPM) tool to
 - Incorporate non-auto modes into a mode choice module for the RSPM tool;
 - Explore and utilize the best data sources available for model estimation;
 - Leverage this effort for additional research and expand the scope to include emerging modes (bike sharing, car sharing, shared automated vehicles).

Progress

- Scope includes review of literature & data, model design and testing, and finally implementation
- The implementation was orginally planned for RSPM/GreenSTEP (ver 3.5)
- Modes/models included:
 - Annual Average Daily Vehicle Models Travelled (VMT) model
 - Transit trips (frequency and length) and Person Miles Travelled (PMT)
 - Biking trips and PMT
 - Walking trips and PMT
- Products (so far):
 - Project working papers and report deliverables
 - A poster presentation at the 2018 TRB annual meeting
 - A manuscript under review for publication at the Journal of Transport and Land Use
 - TRB ITM 2018

SPR Funded Research Project Work Plan for

Incorporate Travel Mode Choices in the Regional Strategic Planning Model (RSPM) Tool

SPR 788

	FY16							FY17							FY18															
		Qtr	1	9	Qtr	2	9	Qtr .	3	(Qtr	4	Ş)tr	1	9	2tr :	2	9)tr i	3	9	Qtr	4	9	Qtr	1	9	2tr	2
Project Tasks	l '	July Set	, - D		Uct Dec	-		Jan Mai	- r		Apr Jun	-	,	uly Sep	-		Det · Dec	-	1	∣an ∙ Mar		2	Apr Jun	-	1	uly Sep	-		Jet Dec	-
Task 1: Literature review		Γ																												\square
and data				•	Т									*																
exploration																														
Task 2: Model design and																		*												
estimation																				_										
Task 3: Model																														
Implementation																	Т			*										
Task 4: Mode testing	┝							\vdash	\vdash		-	-									*									\vdash
r uon 1: 1:1000 testing																					Т									
Task 5: Brian Gregor																														\square
training,																														
consultation and																														
support for Tasks 2_4																														
Task 6: Final Report	┢																							*						\square
																								Т						
Task 7: Code																														
Implementation																														
																												<u> </u>		

* Deliverables (*) Initial deliverables T - TAC Meeting

Innovations

- Utilizing **a novel nationwide dataset** of highly detailed information of households (2009 NHTS) and built environment (EPA Smart Location Database) with a complete US coverage;
- Modeling annual average daily Vehicle Miles Traveled (AADVMT), instead of the VMT during the day of the survey commonly used in similar models;
- Use of **cross validation** in model development to avoid overfitting;
- Conducting **model selection**, in addition to variable selection, in the model development process to select the best model structure among a handful of options;
- **Implemented as a self-contained R package for VisionEval**, which contains documents and functions for model (re-)estimation and prediction;
- The model development process, from data processing, model estimation, validation and testing, to report and document compiling, **follows the best practice of reproducible research**; results and products derived from our work, including this ITM paper/presentation, is fully reproducible by others (sans confidential data).

Model Selection

Elasticities

Validation: VETravelDemandMM Predictions

				Trips		PMT					
Category	n	AADVMT	BikeTrips	WalkTrips	TransitTrips	BikePMT	WalkPMT	TransitPMT			
Overall											
RVMPO	74045	41.800	0.146	0.891	0.144	0.290	0.578	0.751			
Developme	entTyp	e									
Rural	6476	49.200	0.158	0.754	0.134	0.294	0.513	0.816			
Urban	67569	41.100	0.145	0.905	0.145	0.290	0.584	0.745			
Income											
<\$40k	31432	25.100	0.124	0.762	0.180	0.167	0.482	0.676			
\$40k-\$80k	18071	43.800	0.149	0.907	0.125	0.288	0.586	0.754			
>\$80k	24542	61.800	0.172	1.045	0.111	0.449	0.694	0.844			
Popuplatio	on per S	Square Mile									
<1k	19126	42.300	0.143	0.710	0.133	0.249	0.476	0.739			
1k-5k	35477	42.300	0.144	0.898	0.141	0.294	0.579	0.753			
5k-10k	18211	40.700	0.151	1.071	0.157	0.327	0.682	0.757			
>10k	1231	36.900	0.157	0.876	0.202	0.258	0.575	0.792			

Validation: RSPM Predictions

				Trips	
Category	n n	DVMT	BikeTrips	WalkTrips	TransitTrips
Overall					
RVMPO	74045	52.400	0.092	0.690	0.037
Developme	entType				
Rural	6676	65.400	0.088	0.741	0.023
Urban	67369	51.200	0.092	0.685	0.038
Income					
< \$40k	31791	34.700	0.090	0.604	0.053
\$40k-\$80k	17852	56.200	0.090	0.645	0.023
>\$80k	24402	72.800	0.095	0.834	0.026
Popuplatio	n per S	quare Mil	e		
<1k	19208	57.400	0.087	0.598	0.022
1k-5k	34215	54.300	0.093	0.704	0.035
5k-10k	19384	45.900	0.094	0.752	0.050
>10k	1238	29.200	0.103	0.751	0.108

Validation: "Observed" OHAS

				Trips		PMT						
Category	n	DVMT	BikeTrips	WalkTrips	TransitTrips	BikePMT	WalkPMT	TransitPMT				
Overall												
RVMPO	931	36.700	0.232	0.870	0.094	0.395	0.276	0.538				
Developme	entTy	ре										
Rural	81	50.200	0.159	0.435	0.008	0.210	0.137	0.042				
Urban	850	35.700	0.237	0.901	0.100	0.408	0.286	0.573				
Income												
<\$40k	367	27.200	0.138	0.798	0.144	0.164	0.222	0.762				
\$40k-\$80k	329	39.100	0.455	0.777	0.014	0.763	0.313	0.050				
>\$80k	235	53.900	0.072	1.186	0.114	0.300	0.336	0.845				
Popuplatio	n per	Square N	Mile									
<1k	226	40.800	0.079	0.510	0.037	0.270	0.135	0.013				
1k-5k	460	37.100	0.361	0.891	0.084	0.595	0.304	0.495				
5k-10k	232	32.800	0.167	1.036	0.145	0.222	0.310	0.979				
>10k	13	43.500	0.000	1.408	0.076	0.000	0.528	0.055				

VisionEval Framework

- When the project started, VisionEval (formerly RSPM Framework) was still on the drawing board;
- As VE development picked up steam and materialized, the project team and TAC decided that it made more sense to implement for VE instead;
- Started swtiching to implement as a VE module package in 12/2016;
- Amended the Scope of Work to include the contribution review in 02/2017

VETravelDemandMM Implementation

- GitHub Repository: https://github.com/cities-lab/VETravelDemandMM
- A standard R package with
 - inst/extdata external datasets (HPMS, NTD, Place Types etc; 2009 NTHS and SLD are dependencies as separate packages)
 - data-raw/ scripts for model estimation; can be adapted for reestimating models with new data
 - data/ estimated R model objects
 - R/ implementation of the module
 - man/ manuals for functions implemented in the package
 - vignettes/ vignettes (documents) for the package, including an introduction document, contribution review and feedback
 - test/ tests that are automatically with travis-ci build passing

Contribution Review Process

- Contribution Review Criteria Check List
- Responses to Contribution Review Criteria
- Pull Request
- Comments from the Review team

Reflections

- The modular VE framework, along with the design principle, sample modules, extensive documentation and coding style guide, is extremely helpful;
- Best practices we follow facilitate incorporating our code with the VE code base:
 - The git/GitHub workflow
 - Automated tests and continous integration
 - Code organization as R package
 - Reproducible research practice
- Working closely with VE core developers like Brian Gregor and review team members (Tara Weinder, Ben Stabler, et al) helped tremendously;
- Bridging the gap between transportation research and professional practice and leveraging SPR/UTC funding

Acknowledgements

- Oregon Department of Transportation (SPR 788)
- National Institute for Transportation and Communities (NITC-881)