7th International Conference on Innovations in Travel Modeling (ITM)

A Time-Dependent Intermodal A* Algorithm for Heterogeneous Travelers with Efficient Heuristics

Ömer Verbas, Joshua Auld, Hubert Ley, Randy Weimer

Argonne National Laboratory

June 25th, 2018 Atlanta, GA

Motivation – Technology and User Experience

- New Mobility Alternatives
 - Car Sharing
 - Bike Sharing
 - Transportation Network Companies
 - Demand-Responsive Transit
- Real-Time Information
 - Traffic
 - Transit
- New Technologies
 - Connected and Autonomous Vehicles (CAV)
- New Business Models
 - Personally owned vs shared?
 - Compete vs. complement?
- User heterogeneity

Tree-Based vs. Point-to-Point (A*) Algorithms

- Tree-based algorithms find paths from a single origin to all destinations or from all destinations to a single destination
 - Very efficient for homogenous travelers
 - Since it is computationally challenging to find path to/from all nodes zonal aggregation is utilized.
 - Time discretization is used both for departure/arrival times and timedependent attributes
- Point-to-point algorithms find paths from a single origin to a single destination
 - Can reflect traveler heterogeneity
 - Time discretization is used for time-dependent attributes
 - Issues of admissibility in time-dependent networks with FIFO violations

A Dijkstra-Based Estimated Cost Calculation

- Common practice is using the Euclidean distance divided by maximum speed.
- Not very practical for transit
- Khani, A., M. Hickman, and H. Noh. Trip-Based Path Algorithms Using the Transit Network Hierarchy. Networks and Spatial Economics, Vol. 15, No. 3, 2015, pp. 635–653. <u>https://doi.org/10.1007/s11067-014-9249-3</u>.
 - Obtain the minimum observed travel time on every link
 - Ignore waiting times, transfer penalties etc.
 - Solve tree-based algorithms from all nodes to all nodes and store the values
 - Admissible because actual travel times which also include waiting times can never be lower

Time-Dependent Intermodal A* (TDIMA*) Algorithm

- Multi-modal network
 - Transit links
 - Walking links
 - Vehicular links
- Intermodal routes
 - Cars
 - Walking
 - Walk-to-transit
 - Drive-to-transit (PNR, KNR)
 - Taxi/TNC/CAV before/after transit
 - Rail only versions

- Node switching penalties
 - Turn movements
 - Transfer penalties
- Individual upper bounds on:
 - Waiting
 - Walking
 - Driving
- Individual weights for:
 - Waiting
 - Walking
 - Driving
 - Transit vehicle
 - Transfer penalties

Network Representation

Chicago Regional Network

- 54,028 nodes
 - 35,077 transit
 - 18,951 vehicular
- 217,119 links
 - 37,642 transit
 - 123,000 walking
 - 56,477 vehicular
- 173,236 activity locations
- 1,961 traffic analysis zones
- 344 transit routes
- 2,098 transit patterns
- 28,138 transit trips

Mode Choice and Transit Routing Integration

Better filters eliminate infeasible walk-to-transit queries

- A Dijkstra-based one-to-all routing algorithm is written
- From every driving link in the multimodal network, we find the shortest driving time to a transit stop and store this as a link attribute.
- There are 123,000 walking links in the Chicago network. The overall process takes less than a minute.
- This gives the mode choice component to filter out the walk-to-transit option if the walking distance to the closest transit stop is more than 2 km, 5 km, or any selected value.
 - We check both walking distances at the origin and at the destination.
- The upper bound on walking is agent-specific, i.e. every traveler can have their own upper bound.

Mode Choice and Transit Routing Integration

Better filters eliminate infeasible drive-to-transit queries

- A Dijkstra-based one-to-all routing algorithm is written
- From every driving link in the multimodal network, we find the shortest distance to a transit stop and store this as a link attribute.
- There are around 56,000 driving links in the Chicago network. The overall process takes less than 30 seconds.
- This gives the mode choice component to filter out the drive-to-transit option if the driving time to the closest transit stop is "too close" to the overall duration of the trip.
 - If driving to the train station is 40 minutes, and the traveler would only travel in transit for 5 minutes, it is not reasonable to choose-park-and-ride. The person would drive for their entire trip.
- This relative upper bound on driving is agent-specific, hence we can allow the above behavior for certain travelers.

Validation of Walk-to-Transit Trips

Histogram

1,800 120% 1,526 1,600 100% 1,400 **A 1,200** 1,000 800 600 80% 72% 60% 657 600 40% 400 203 20% 200 13 26 8 3 0 0 0% 1 hr ۲ Ч -2 hr and less 2 to -1 hr 1 hr to -40 min -20 min 20 to 0 min 0 to 20 min 20 to 40 min 1 to 2 2 40 min to nore than -40 to Bins

Comparison with Google

- 2,500 random queries
- A negative value in the xaxis means that the Argonne algorithm finds shorter paths
- Argonne algorithm found shorter trips for 72% of the queries
- (1526+657)/2500 = 87% of the results are within ± 20 minutes.

Validation of Park-and-Ride Trips

- Data
 - Chicago Metropolitan Agency for Planning (CMAP) 2008 Travel Tracker survey
 - 180 PNR trips out of 6,500 valid transit trips
- Scenario Runs
 - TDIMA* algorithm using PNR mode
 - Google Directions API using transit mode
 - Regional Transit Authority (RTA) trip planner using PNR mode

Validation Runs

- TDIMA* Parameters
 - Base transfer penalty; x = 5 minutes,
 - Weight of time spent waiting; $w_{\omega} = 2$,
 - Weight of time spent walking; $w_{\kappa} = 2$,
 - Weight of time spent in a transit vehicle; $w_{\lambda} = 1$,
 - Weight of time spent in a traffic vehicle, $w_{\mu} = 3$,
 - Upper bound on individual waiting time; $U^{\omega} = 60$ minutes;
 - Upper bound on total walking time; $U^{\kappa} = 60$ minutes; with walking speed $v_{\kappa} = 1.39$ m/s; $U^{\kappa} = 5$ km in distance,
 - Upper bound on total time in a traffic vehicle: The remaining estimated cost

Total Travel Times

Total Non-Transit Time

Total Waiting Time

Total In-Transit Vehicle Travel Time

Questions?

- Thank you very much for your time!
- https://github.com/anl-polaris/polaris
- https://polaris.es.anl.gov/

