

Mobility-as-a-Service in Car-Dominated Cities

Modeling Individuals' Willingness-to-Share Trips with Strangers in an Autonomous Vehicle Future

Patricia S. Lavieri

Co-author: Chandra R. Bhat

ITM 2018

Context

The Supply Perspective...

- Based on data from taxi trips in Singapore: if rides were split by multiple passengers there would be 20%–30% reduction on distances traveled (Wang et al., 2018)
- "Without dynamic ride-sharing, the additional empty repositioning trips made by SAVs increased congestion and travel times. However, dynamic ridesharing resulted in travel times comparable to those of personal vehicles because ride-sharing reduced vehicular demand." (Levin et al., 2017)
- "DRS appears critical to avoiding new congestion problems, since VMT may increase by over 8 % without any ride-sharing." (Fagnant and Kockelman, 2018)
- Greater the number of users willing to participate in the ridesharing system, easier the matching and better the travel times

Dynamic ridesharing seems promising **BUT**

are travelers willing to share rides?

Objectives

- 1) Quantify willingness-to-pay to not share rides with strangers
 - Define distributions for different market segments
- 2) Understand user response to delays due to pick-up/drop-off of additional passengers
- 3) Understand the impacts of current ride-hailing behavior on willingness-to-share while controlling for self-selection effects

Behavioral Framework

Stated Choice Experiment

Imagine that ride-sourcing services (similar to Uber and Lyft) use self-driving vehicles for all of their clients. Imagine also that you plan to go out on a **leisure activity** and you will use one of these ride-sourcing services. In the three scenarios described below, which option would you choose?

- Orthogonal design scenarios with dominant alternatives were removed
- Similar scenarios for commute trips
- Maximum number of additional passengers : 3

SCENARIO 2

Call a private self-driving cab service (similar to Uber/Lyft)

Travel time: 20 min Cost: \$ 19.5 No additional passengers

Call a shared self-driving cab service (similar to UberPool/LyftLine)

Travel time: 30 min Cost: \$ 16 Additional passengers: 2

SCENARIO 3

Call a private self-driving cab service (similar to Uber/Lyft)

Travel time: 15 min Cost: \$ 16.5 No additional passengers

Call a shared self-driving cab service (similar to UberPool/LyftLine)

Travel time: 23 min Cost: \$ 10 Additional passengers: 1

Sample

- Dallas-Fort Worth MSA
 - fastest growing metropolitan area in the U.S.
 - Car dominated and spread urban area

- Survey distribution: local transportation planning organizations, universities, private transportation sector companies, non-profit organizations, and online social media
- Sample of 1,607 commuters (Fall 2017)
- Overrepresentation
 - Middle-aged, males, non-Hispanic White individuals
 - Multi-worker and high-income households

Population expansion: 3.4 million workers
53% has experienced ride-hailing
9% has experienced shared ride-hailing
26.5% < monthly
14.3% ≥ weekly

Modeling Methodology: Generalized Heterogeneous Data Model (GHDM) + Panel Choices

Structural Eq. Model Component (SEM)

$$z^* = \alpha w + \eta$$
Measurement Eq. Model
Component (MEM)
$$\overrightarrow{y}^* = \widetilde{\gamma} x + \widetilde{d}z^* + \widetilde{\varepsilon}, \quad \widetilde{\psi}_{low} < \widetilde{y}^* < \widetilde{\psi}_{up}$$
(ordinal)
$$U = bx + \varpi z^* + \varsigma,$$
(nominal)

MEM

See Bhat, C.R. (2015), "A New Generalized Heterogeneous Data Model (GHDM) to Jointly Model Mixed Types of Dependent Variables," *Transportation Research Part B* Bhat, C.R., and S.K. Dubey (2014), "A New Estimation Approach to Integrate Latent Psychological Constructs in Choice Modeling," *Transportation Research Part B*

Determinants of Psycho-social Constructs

- Non-Hispanic White
- High-income
- Between 18 and 54 years old

- Full-time employee
- Between 35 and 44 years old

Ride-hailing Experience: Selected Results

Solo ride-hailing

- age
- + income
- + self-employed
- + living alone
- + living in central areas
- + vehicle availability
- + Interest in productive use of TT

Shared ride-hailing

- age
- + income
- Non-Hispanic White
- + living alone or multi-worker HH
 - + living in central areas
 - + vehicle availability
 - Privacy-sensitivity
- + Interest in productive use of TT

Base alternative: never used ridehailing

Shared vs. Solo AV Trip: Selected Results

- Privacy-sensitivity: direct & moderating effects
- Time-related constructs: moderating effects only
- Vehicle availability, being a woman, being between 35 and 44 years old:
 - reduce interest in sharing for commute but not for leisure trip purpose
- Experience with solo ride-hailing reduces the likelihoods of choosing the shared alternative
- Experience with pooled has a positive effect even after controlling for common unobserved effects
 - Significant differences between leisure and work purposes

Sample WTS and IVTT

	Leisure Trip		Commute Trip	
	IVTT (\$/hour)	WTS (\$/add person)	IVTT (\$/hour)	WTS (\$/add person)
Median	\$ 23.10	\$ (0.91)	\$ 24.84	\$ (0.49)
Minimum	\$ 21.24	\$ (0.80)	\$ 17.45	\$ (0.45)
Maximum	\$ 24.19	\$ (1.02)	\$ 30.22	\$ (0.53)
Mean	\$ 23.05	\$ (0.89)	\$ 24.83	\$ (0.48)
Std. Dev	\$ 0.49	\$ 0.05	\$ 2.45	\$ 0.02

- WTS leisure trip: $(\$0.80-3.06) \rightarrow 4\%$ to 55% of trip cost
- WTS commute trip: $(\$0.45-1.59) \rightarrow 2\%$ to 29% of trip cost

Policy implications & Research Needs

RIDE SHARING SHARING 37

- Urgent need to encourage individuals to try shared rides now!
 - (and discourage solo rides)
 - Significant effects even after controlling for self-selection
- GOOD NEWS: individuals' willingness-to-pay to NOT share rides for commute purposes is lower
- How can we reduce the privacy-sensitivity of Non-Hispanic Whites?
- Why are newer generations becoming more privacy-sensitive?
- Groups that are more time-sensitive also have direct effects that reduce the likelihood to choose the shared option
 - Women & individuals between 35 and 44
 - Children? Escorting trips? need for more elaborate experiments (?)

Thank you

Patricia S. Lavieri

lavieri@utexas.edu

