Crossroads of travel modeling today

Peter Vovsha (WSP)

Session 4C

"The Battle of the Methods – Machine/Deep Learning vs Econometric/Statistical Modeling"

Data-driven vs. analytical

Use model to predict growth or incremental change pivoting off the data

Basic differences

Analytical

Use trip patterns to estimate model coefficients

Rely on analytics to generate trip patterns from scratch

Applied identically to base year and forecasting

Data-driven

Use trip patterns directly to the maximum extent

Minimize data transformation to smoothing and expansion

Need growth factors and reexpansion for future years

115

Other angles of view

Data-driven models

- Essentially non-parametric overspecified structures w/zillions of constants
- Still need some analytics for forecasting:
 - Re-expansion (growth factors) for future years
 - At minimum mode choice and/or route-choice needed for policy sensitivity

Analytical models

- Somewhat data-driven through model estimation (training)
- Somewhat over-specified in the model calibration:
 - K-factors in trip distribution
 - Mode-specific constants by geography
 - Trip matrix adjustment to traffic counts

Intuitive applications of data-driven concept in the past

- Trip matrix balancing:
 - Spatial trip distribution (destination choice) is the most difficult travel dimension to tackle analytically
- Incremental logit models for mode choice:
 - Baseline mode choice can be well established by adjustment of auto trips table to traffic counts and transit trip table from OB survey
 - Incremental mode choice would always generate a logical modal shift
- Typical traffic engineering approach:
 - Take initial vehicle trip table from regional model or "big data"
 - Adjust to traffic counts
 - Randomize trip departure time
 - Rely on traffic simulation or DTA (w/route choice) to evaluate projects and polices

Hybrid balancing-gravity: data-driven & analytical **OD-Survey** Seed Matrix s_{ij} Impedance c_{ij} Gravity Model $x_{ij} = P_i \alpha_i A_j \beta_j \psi(c_{ij})$ **Proportional Balancing** $x_{ii} = P_i \alpha_i A_i \beta_i s_{ii}$ **Combined Model** $x_{ij} = P_i \alpha_i A_j \beta_j s_{ij}^{(\mu_i + \nu_j)/2} \psi(c_{ij})^{1 - (\mu_i + \nu_j)/2}$

Incrementality & pivoting

- Primarily for spatial distribution
- Trip generation as well
- Incremental logit mode choice and TOD choice:
 - Switching logit model for microsimulation
- Can it be extended to DAP?
 - MatSim concept (genetic algorithm)
 - C10 concept of gradual "freezing" of HHs (stressed/unstressed)

Switching Logit Model (more details in Session 6B)

Generalization of Incremental Logit:

- No base case calibration
- Standard Incremental Logit does not work with individual records
- Switching Logit is a theoretically sound construct that does the trick
- Explicitly model mode switch:
 - Previous (observed) mode is known
 - Switching probabilities are consistent with the estimated core model

Clarification:

- Switching Logit is the way of model application
- W/o transaction cost it is estimated as ordinary Logit

New view on travel model as data integration tool

- MPOs/DOTs collects many different types of data
- Travel model is the lowest possible denominator
- Travel model incorporates all surveys and consolidates them in one consistent output

Big Data vs. conventional surveys

How can we take a full advantage of passively collected Big Data beyond just travel model validation

Big Data invasion

- Big data has many advantages but can it be used beyond model validation?
- Big data is not behavioral:
 - Detailed trip purpose?
 - Other modes?
 - Household income?
 - Person type and age?
 - Trip chaining and linkage to person?

Behavior-ization of Big Data – closing the gap

• Trip purpose:

- Can be imputed based on detailed parcel-level land use and temporal profile of activity over multiple days
- Travel model can be reformulated in terms of activity profiles and establishment types rather than traditional trip purpose labels:
 - Instead of "shopping" trip purpose model could operate with a "recurrent activity of 2 hours or less at a shopping center with a weekly cycle"

• Trip mode:

• Can be reliably imputed based on speed profile and comparison of itinerary to the detailed road and transit networks

• Household income:

• Can be replaced with the average residential zone income as an explanatory variable that in several ABMs performed statistically better than individual household income.

• Person type and age:

- Deduced from activity types and levels over multiple days
- Travel model can be reformulated in terms of activity levels rather than person types and age categories

Retaining person ID over multiple trips and days is the key

- Sidewalk Labs "Replica"
- Observed individual daily patterns can be classified and linked to synthetic population
- Can be a breakthrough in combination with incremental/pivoting/switching ABM

ML vs. Econometrics

ML is teaching a machine to do what people can do easily

2 lines of research

- ML as replacement for logit models within the same model system design:
 - Classifiers instead of discrete choice
 - Penalized likelihood with priors and learning
 - Trials underway
- ML as principal revolution in the model structure:
 - Neural networks?
 - Pattern recognition for relating big data to synthetic population
 - Need more time to evaluate potential and directions

"Secrets" of ML match

Model	Major distinct feature
Neural network	Box-cox type logistic transformation of groups of variables and mapping to [0,1]
Random forest	Thresholds of variables and combinations of them
SVM	Kernels (combinations of variables) and separation of common cases from outliers
K-neighbor classifiers	Non-linear combinations of variables by regions of their values
Common to all ML	Model specification and estimation are integrated in one automated process

Important concerns to address with ML

- Expected logical properties of choice models:
 - Positive direct elasticity
 - Negative cross-elasticity
 - Sensitivity to policies in expected and controlled range
- All this is not automatically held for ML methods:
 - New toll road? And cost was not significant?
- Traditional high-tech-driven ML approaches are based on a very different notion of forecasting or predicting or dynamics:
 - ML predicting is similar to our Jack-knife validation
 - Dynamics are mostly real-time and rarely evolutionary (except for some AgBMs)
 - Sensitivity to policies (or changing environment) is not in the focus of ML

Conclusions

- Evolution or revolution?
 - Many useful hybrids emerge depending on the project
- Fine line between conservatism and jumping on shiny innovations:
 - Only detailed analysis and application experience can tell
- Forecasting is not exactly hi-tech:
 - Too open w/elements of art in addition to science
 - Inputs and outputs are not always well-defined

Evaluation of travel models: different aspects of "truth"

NSD

Contact(s)

Peter Vovsha, PhD

Assistant Vice President, WSP

Systems Analysis Group Peter.Vovsha@wsp.com Formerly WSP | PARSONS BRINCKERHOFF

Question the existing Imagine the impossible Create the enduring

wsp.com/usa

vsp