Achieving massively parallel agent-based microsimulations through the actor model of computation

Presenter: Sid Feygin, UC Berkeley

Development Team:

Colin Sheppard, Rashid Waraich, Andrew Campbell, UC *Berkeley* Michael Zilske, Anand Gopal, *Lawrence Berkeley National Lab* Art Balayan, Zeeshan Bilal, Justin Pihony, *Seven Summits*

7th Innovations in Travel Modelling Conference June 25, 2018 -- Atlanta, GA

MATSim Agent-Based Travel Demand Microsimulation Framework

Concurrency Challenges in BEAM

BEAM Goals:

- Simulate within-day mobility behavior for hundreds to millions of synthetic agents.
- Behavioral mode choice model based on random utility maximization
 - Compute optimal route for feasible mode alternatives between activities.
- Maintain compatibility with existing MATSim codebase (to extent possible)

Challenges:

- Router to asynchronously handle multimodal requests for each agent multiple times per day.
- Take best advantage of AWS cloud infrastructure to scale to size of simulation while minimizing execution time.
- Multi-threaded inter-agent communication required for within-day planning

Actor Model of Computation - Brief Overview

Actors:

- Lightweight addressable thread encapsulating state and behaviors as reaction to messages
- Actors can only message other actors they "know"
- Specialized for concurrency
 - No shared memory (state) between actors
 - Lock-free, non-blocking
- Actor System:
 - Hierarchical
 - Fault tolerant ("Let It Crash")
- Implementation (Akka)
 - Runs on Java Virtual Machine (Scala/Java)
 - Built-in networking (remoting) and cluster capabilities
 - Lightweight actors and messages

Agents as Actors

- BEAM Simulation Environment
 - BEAM Scheduler controls parallel discrete event simulation using Triggers
 - Any BEAMAgent can add Triggers to the Trigger Priority Queue
 - Triggers are dispatched asynchronously and over a defined window
 - Scheduler holds all dispatched Triggers and waits for a completion notice from agent before moving window forward.
- BEAM Agents are finite state machines (FSMs)
 - Abstraction over agent types (persons, vehicles, etc.)
 - Each agent-actor has <u>unique</u> logical address based on Home ID
 - Example: ../sys/user/beam/<home_id>/<agent_id>
 - Event message may activate different behavior
 - New behavior. react differently or to different set of triggers

Results: Router Clustering

Conclusions

Benefits of Actor Model in BEAM:

- Focus on developing asynchronous within-day behavior rather than debugging low level concurrency complexities.
- Akka is well-supported on JVM, simplifying compatibility with MATSim.
- Scale routing horizontally across several nodes.

Ongoing Parallelization Work:

- Fixing processing lags due to garbage collection
- So far, only router uses clustering capability considering parallelization of full model.

