

Impacts of Transit-Oriented Compact-Growth on Air Pollutant Concentrations and Exposures in the Tampa Region

Sashikanth Gurram Amy L. Stuart Abdul R. Pinjari

June 26, 2018

Urbanization and Air Pollution

Source: United Nations, Department of Economic and Social Affairs, Population Division (2014). World Urbanization Prospects: The 2014 Revision, CD-ROM Edition.

- Economic growth
- Poverty reduction
- Access to facilities and infrastructure
- Environment and climate (Burak et al., 2004; Seto et al., 2010; Kalnay & Cai, 2003)
- Urban air pollution
 - Traffic—related air pollution

SCOPE

- Study area: Hillsborough County, Florida
 - Diverse mix of air pollutant emission sources
 - Few transportation modes apart from automobile
 - Diverse socioeconomic makeup
 - Underwent significant amount of sprawl

Pollutant focus

- NO_x
- Linked to transportation emissions
- Surrogate for traffic-related air pollution (HEI 2010)
- NO₂ is a criteria pollutant with known health effects

METHODOLOGY

NOVELTY OF WORK

- Daily activities (DaySim)
 - 100% population
 - Spatial resolution of parcels
- Agent-based dynamic traffic assignment (MATSim)
 - 100% population
- Mobile emissions (EPA MOVES)
 - Link-level emissions
- Concentrations (RLINE)
 - Receptors every 500 meters (13,806 receptors)
 - Entire winter season (3,131 hours of meteorology)
- Exposures
 - Spatial resolution of parcels and updated locations every 5 seconds along roadways

TRANSPORTATION AND LAND-USE SCENARIOS

urban form and transportation characteristics	Scenario		
	low-transit	enhanced-transit	compact growth
urban form	2040 base population distribution		reallocated base population
	lower residential density		higher residential density
transportation	2040 highway		
	2010 diesel-bus service	2040 diesel-bus service	

RESIDENTIAL DENSITY (YEAR 2040)

$$AI_i = \frac{t_i}{\log D_{t_i}} \sum_{k=1}^n \frac{r_k}{\log D_{r_k}}$$

TRANSPORTATION INFRASTRUCTURE

low-bus

- 2010 transit with diesel
- 6284 bus stops
- 94 routes
- 2811 km of bus-serviced roadways

enhanced-bus

- 2040 transit with diesel
- 8754 bus stops
- 195 routes
- 5413 km of bus-serviced roadways

roadway type

highway only
highway and transit

TRANSPORTATION AND LAND-USE SCENARIOS

urban form and transportation characteristics	Scenario		
	low-transit	enhanced-transit	compact growth
urban form	2040 base population distribution		reallocated base population
	lower residential density		higher residential density
transportation	2040 highway		
	2010 diesel-bus service	2040 diesel-bus service	

TRAVEL MODE SHARES

TRAVEL CHARACTERISTICS COMPARED WITH THE LOW-TRANSIT SCENARIO

DIURNAL NO_X EMISSIONS AND CONCENTRATIONS

Spatial Differences in NO_X Levels between the Compact growth and Low-transit scenarios

DISTRIBUTION OF POPULATION EXPOSURES

EXPOSURE DENSITY (NORMALIZED BY THE BLOCKGROUP AREA)

CONCLUSIONS AND FUTURE WORK

Conclusions

- Increased diesel-bus services increased emissions and concentrations – not enough mode shift from cars to offset
- Compact scenario lowered travel distances and increased active modes, including walk and transit (by a small amount)
- Access to transit at the origin location had only a marginal effect on travel characteristics and mode shares
- Compact growth improved air quality overall, but increased population exposure (due to reallocation of population to higher pollution zones)

Future Work

• Investigation of CNG fuel for transit services

Thank You

Contact:
sgurram@airsage.com