Bridging discrete mode choice models and microsimulation in MATSim

Sebastian Hörl, Milos Balac, Kay Axhausen

IVT ETH Zürich

June 2018

What is MATSim?

- Open-source transport simulation software
- Agent-based
- Uses a co-evolutionary approach
- Data driven
- Suitable for simulation of emerging mobility options and policies
- Jointly developed by TU Berlin and ETH Zurich

MATSim Loop

Motivation

Much work and effort has been put into choice modeling at IVT

- Discrete choice models are readily available
 - National travel diaries RP (SP)
 - Autonomous vehicles SP
 - Post car world

How to make use of them in MATSim?

Mode choice in MATSim

First idea of integration

Selection between chains

- Two components:
 - Choice set generation
 - A priori mode choice based on estimated travel characteristics

Choice set generation

- Obtain the set of all possible chains of modes for a given chain of trips with origin and destination
 - Constrained by agent-level attributes (e.g. car availability)
 - Constrained by continuity constraints (e.g. vehicle location)
- Maximum set: $|C| = M^N$
- Feasible set: $|C_f \subset C| = M^N q$

Selection procedure

Three + one (-imperfect) approaches:

Best response selection:

$$k = \operatorname{argmax}\{\tilde{u}_1, \dots, \tilde{u}_K\}$$

Total chain utility sampling:

$$k=\mathrm{argmax}\{\tilde{z}_1,\ldots,\tilde{z}_K\}$$
 with $\tilde{z}_k=\sum_i u_{k,i}+\varepsilon_{k,i}$ and $\varepsilon_{k,i}{\sim}\mathrm{Gumbel}$

Naïve chain sampling:

$$k = \operatorname{Cat}(\widetilde{\pi}_1, \dots, \widetilde{\pi}_k)$$
 $\widetilde{\pi}_k = \frac{\widetilde{w}_k}{\sum_{k'} \widetilde{w}_{k'}}$ $\widetilde{w}_k = \prod_i \pi_{k,i}$

First simulation results

Teleportation-based simulation
Best-response is upper bound
Fast convergence for tested approaches vs SMC

First simulation results

Network-based simulation
Best-response is **not** upper bound

That one approach missing

Multinomial chain sampling:

$$k = Cat(\pi_1, ..., \pi_k) \qquad \qquad \pi_k = \frac{e^{U_k}}{\sum_m e^{U_m}} \qquad \qquad U_k = \sum_n U_{k,i}$$

The best of both worlds?

- Improves convergence
- Avoids "innovation turn-off"
- May introduce bias through estimates
- Maintains stability
- Compensates for estimation bias

Questions?

Appendix

- •Questionable to draw conclusions from trip-based model in chain-based environment (MATSim)
- •Choice model makes life easier we can argue to skip some calibration work, faster convergence
- •Choice model makes life harder we need to come up with good **estimates** for the trip characteristics
- •Which one is right?