

Estimating Transit Fare Elasticity using Panel Models

Metro Vancouver Case Study

Mohamed Salah Mahmoud, PhD Senior Modeller, Forecasting

translink.ca

ITM June 26th, 2018

Transit Fare Elasticity

"Elasticity values in the APTA study varied from -0.12 to -0.85 among the 52 transit systems" [TRB's <u>TCRP REPORT 95</u>]

- For a 10% increase in fares in Metro Vancouver: the difference between an assumed elasticity of -0.2 and -0.7 is ~20M boardings per year
- That is ~\$30M annually!

Panel-data

- Time-series: 1990 2017 (monthly)
- Cross-sectional units:
 - 53 SkyTrain stations
 - 8 Bus depots
- Panel dimension (unbalanced) long panel
 - n = 61 (cross-sectional units)
 - T = 5 323 (time periods)
 - N = 11,926 (total observations)

$$Y_{it} = X_{it}\beta + u_{it}$$

- *Y_{it}* is the number of boardings at station/depot *i* in month-year *t*
- *X_{it}* is a series of independent variables
- β is a vector of coefficients to be estimated

•
$$u_{it}$$
 is the error term $(u_{it} = \alpha_i + \varepsilon_{it})$

Individual i.i.d effects

• The underlying data generating process characterizes the econometric model structure

- Static Model $Y_{it} = X_{it}\beta + \alpha_i + \varepsilon_{it}$
 - Auto-correlation in the idiosyncratic errors
- Dynamic Model

$$Y_{it} = \varphi Y_{it-n} + X_{it}\beta + \alpha_i + \varepsilon_{it}$$

- φ is significant and close to 1
- Persistent auto-correlation in the idiosyncratic errors
- Omitted variable that is autoregressive?
 - The DGP is not truly dynamic but rather static with an error term that is autoregressive

• Fixed-effects (within estimator) Model with AR(1) Errors:

$$Y_{it} = X_{it}\beta + \alpha_i + \varepsilon_{it} \qquad i = 1, ..., N; \ t = 1, ..., T$$
$$\varepsilon_{it} = \rho \varepsilon_{it-1} + \eta_{it}$$

- |ρ| is <1
- η_{it} is independent and identically distributed (i.i.d) with mean 0 and variance σ_{η}^2
- α_i is the individual-specific fixed-effects

Variables

- Demand (number of boardings)
- ← Dependent Variable
- Supply (number of service hours) ← Instrumented (endogeneity)
- Employment
- Gas prices
- Transit fare

14

15

Model Results

- Fare elasticity ~ -0.3%
 - A 1% increase in transit fares is associated with a 0.3% drop in ridership.
- Gas elasticity ~ 0.08%
 - A 1% increase is gas prices is associated with a 0.08% increase in ridership.

Model Diagnostics

Model Validation

Acknowledgement

- Mark Pickup, Associate Professor, Simon Fraser University
- Jacob Fox, Senior Planner, TransLink

