

New Statewide Travel Model for Kansas

- Conventional four-step model
- Estimates weekday travel by four periods on all roads of Collector and above
- Short- and long-distance travel by auto, transit, air
- Integrated goods movement model by truck and rail
 - Medium truck, heavy truck, light-duty commercial
- Calibrated using recent observed travel data
- Includes user-friendly application package and documentation
- Uses the Cube software platform

What Makes It So Special?

- Unique static assignment approach, combining
 - Stochastic assignment
 - Capacity-restraint with fixed iterations and weights
 - Embedded toll diversion model
- Probably the first time these techniques have been combined

Key Motivations

- No prior statewide model existed
- Not a lot of congestion
- Keen interest in goods movement
- Major output: effect of economic growth, other factors on toll revenue
- Kansas Turnpike Authority was major project sponsor

Calibration Data

- > 2009 Nationwide Household Travel Survey data
 - * Kansas: not enough records (189 HH)
 - West North Central US: 5,758 HHs
 - ❖ Iowa, Kansas, Missouri, Minnesota, North Dakota, Nebraska, South Dakota
- Observed vehicle trips derived from cell phone signals
 - AirSage nationwide tables by purpose, resident/non-resident
 - Spring 2016
- National freight databases
 - Transearch (IHS Markit)
 - Freight Analysis Framework (FAF4)
- Traffic counts in Kansas
 - Weekday (3,596 links)
 - Hourly classification counts (642 links)

State Zones

External Zones

Person Travel Model

- Standard four-step
- 1,258 zones in Kansas, 615 in "halo" area, 48 in rest of US
- Purposes: work, school, university, shop, other, NHB work, NHB other, long-distance business, long-distance personal, light-duty commercial, medium truck, heavy truck
 - Long-distance is over 50 miles
- Conventional highway network
- > Typical socioeconomic data

Statewide Network

Toll Coding

- Different types of toll roads
 - Closed toll (Kansas Turnpike, Oklahoma turnpikes)
 - Barrier toll (E-470 Denver)
 - Distance-based tolls (future?)
- > Toll options
 - Can vary by time period and vehicle occupancy
- Kansas Turnpike uses closed toll system
 - Coding is very elaborate
 - Interchanges are coded in detail
- Tolls represented in general
 - Cash toll only
 - Auto (2 axle) and semi-trailer (5 axle) tolls coded
 - Total toll revenue based on fixed factors

Toll Interchange Coding Example

Goods Movement Model

- Developed using Transearch and FAF4 data
- Conventional generation model by 8 commodity groups
 - ❖ Trip rates ∞ employment by type, with dummy variables
 - Focus on agricultural goods
 - Wichita: aviation manufacturing
- Combined distribution/mode choice model
 - Truck vs. rail
 - Mode based on distance, time, and cost
 - Short, medium, and long distance groups
- Transport Logistics Nodes
 - 51 intermodal facilities, major warehousing/transfer points
- Vehicle model: converts payloads into trips
- Service model: light-duty commercial vehicles
- Implemented in Cube Cargo

Assignment Challenges

- Mostly uncongested grid network
- > Problems finding alternative paths without congestion
- Questions about equilibrium volume averaging process
 - Issues with stability
 - Convergence feasibility
 - Wanted reasonable run time
- Needed toll diversion process to be incorporated in assignment
- Also wanted full assignment capabilities
 - Select link analysis
 - Multi-path, multi-class assignment

Proposed Solutions

- Uncongested grid: stochastic assignment
 - Finds alternative paths
- Equilibrium: capacity-restrained method with fixed iterations and weights
 - Improves stability
- > Toll: logit toll model embedded within assignment
 - Turnpike traffic and revenue drove the project
- Can all of these be done at once?

The Grid Problem

- The real network looks a lot like this grid
- Path A-B-D looks very much like path A-C-D
- > Real traffic uses both paths
- How to model that?

Stochastic Assignment

- > Path-building uses a combination of time + distance
 - Toll is handled separately
- Create best path plus 3 more paths
- Use logit model to spread trips among paths
 - Split based on travel time difference
 - Coefficient developed from previous work
- Programmed in Cube

Equilibrium

- Good experience using fixed iterations and weights
- Run equilibrium (Frank-Wolfe) with reasonable convergence criterion to get the iterations and weights
 - Hold those constant for scenarios
 - One set for 2015, another for 2040
- Not clear that equilibrium theory is valid at the statewide level
- Stability of results is very important

Tolls

- Logit toll diversion model by period
 - Toll, time saved, log of trip distance
- Developed from prior work and surveys in other areas
 - No local survey data
- > 8 paths built (4 toll, 4 free) for 4 periods and 3 vehicle types
 - AM peak, midday, PM peak, night
 - SOV, HOV, Truck
- Diversion is incorporated into the assignment
- Adjust bias coefficients based on Turnpike counts

Value of Time

- Implied by toll model coefficients
- Values asserted, based on prior work
- Peak has more work trips than off-peak
- AM peak has more work trips than PM
- > Truck has a paid driver

	AM Peak	Midday	PM Peak	Night
Auto	\$15.00	\$7.80	\$12.93	\$6.07
Truck	\$34.91	\$34.91	\$34.91	\$34.91

Toll Diversion

Effect of Toll

Effect of Time Savings

Implementation

- > All 3 methods can be implemented at the same time, in Cube
- Probably the only time this has been done
- Cube Cluster used for multiprocessing (8 cores)
- Excellent match of volumes to counts
 - Overall volume/count difference = -0.9%
 - ❖ Volume/count on all facility types within ±2%
 - **❖** RMSE = 25%
 - \therefore Link $r^2 = 0.992$
- > Assignment run time (4 periods): 82 minutes

For More Information

Bill Allenwallen@citilabs.com(888) 770-CUBE(803) 642-4489