

CAV Trajectory Optimization & Capacity Analysis - Modeling Methods and Field Experiments

Xiaopeng (Shaw) Li Assistant Professor, Susan A. Bracken Faculty Fellow Department of Civil and Environmental Engineering, University of South Florida

6/25/2018

Session 2B: Are We Ready for the AV Future? 7th Innovations in Travel Modeling Conference

Hope for CAV: Capacity Booster

- People expect connected automated vehicles can significantly increase (or even multiple) high way capacity
- How to realize this potential?

Steps to Improve CAV Capacity

- Microscopic trajectory control
 - Reduce headway
 - Improve traffic smoothness
- Macroscopic capacity analysis
 - Understand the relationship between cav traffic characteristics (e.g., CAV penetration ratio) and macroscopic measures (e.g., traffic throughput)
- Validation
 - Field experiments
 - Data analysis

CAV Trajectory Optimization

- Signalized Intersections
 - Coordinate signal timing with vehicle trajectory control

Parsimonious Algorithms

- Shooting heuristic (SH)
 - A <u>small</u> number of <u>analytical</u> sections

Benchmark vs. SH

C(s)	L(m)	f^s	ΔT	ΔE	ΔS	ΔM	Solution Time
60	1500	0.9	35.22%	32.78%	66.36%	41.23%	12.14
60	1500	1.5	34.23%	33.86%	66.43%	40.00%	9.44
60	2500	0.9	41.86%	46.96%	77.79%	50.78%	9.63
60	2500	1.5	41.72%	48.07%	80.21%	51.01%	13.05
80	1500	0.9	40.11%	32.06%	62.94%	43.07%	9.16
80	1500	1.5	38.73%	40.10%	62.26%	44.28%	12.26
80	2500	0.9	32.29%	45.91%	74.00%	43.22%	8.89
80	2500	1.5	29.59%	37.96%	46.49%	34.20%	7.29
Average			36.72%	39.71%	67.06%	43.47%	10.2

Reference

*Ma, J., Li, X., Zhou, F., Hu, J. and Park, B. 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: Computational issues and optimization" Transportation Research Part B, 95, 421-441.

*Zhou, F., Li, X. and Ma, J. 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography." Transportation Research Part B, 95, 394-420.

CAV Trajectory Optimization

- Signalized Intersections
 - Mixed Traffic (CAVs + Human-driven vehicles (HVS))

Reference

*Yao, H., Cui, J., Li, X., Wang, Y. and An, S., 2018, "A Trajectory Smoothing Method at Signalized Intersection based on Individualized Variable Speed Limits with Location Optimization", Transportation Research Part D, 62, pp. 456-473

CAV Trajectory Optimization

Freeway Speed Harmonization

Reference:

* Ghiasi, A., Li, X., Ma, J. and Qu, X. 2018. "A Mixed Traffic Speed Harmonization Model with Connected Automated Vehicles", Transportation Research Part C. Under Revision

Trajectory Control \rightarrow Capacity Analysis

 CAV control → Heterogeneous headways in mixed traffic

- CAV technology uncertainties
 - Will CAV reduce headways?

Google car pulled over for being too slow http://www.bbc.com/news/technology-34808105

Different technology scenarios

CAV market penetration rate

Low CAV market penetration rate

High CAV market penetration rate

CAV platooning intensity

Low CAV platooning intensity

High CAV platooning intensity

Analytical Capacity Formulation

Markov chain model

14

Analytical Capacity Formulation

Markov chain model

- $P_1 \in [0,1]$: CAV market penetration rate
- $0 \in [-1,1]$: CAV platooning intensity
- $T \coloneqq \begin{bmatrix} t_{11} & t_{10} \\ t_{01} & t_{00} \end{bmatrix}$

$$\begin{split} t_{10}\left(P_{1},O\right) &:= \begin{cases} P_{0}(1-O), & O \geq 0; \\ P_{0}+O\left(P_{0}-\min\left\{1,\frac{P_{0}}{P_{1}}\right\}\right), & O < 0, \end{cases} \\ t_{11}\left(P_{1},O\right) &:= 1-t_{10}\left(P_{1},O\right), \\ t_{01}\left(P_{1},O\right) &:= \begin{cases} P_{1}(1-O), & O \geq 0; \\ P_{1}+O\left(P_{1}-\min\left\{1,\frac{P_{1}}{P_{0}}\right\}\right), & O < 0, \end{cases} \\ t_{00}\left(P_{1},O\right) &:= 1-t_{01}\left(P_{1},O\right). \end{split}$$

Analytical Capacity Formulation

Approximate capacity

•
$$\hat{C} \coloneqq \frac{N-1}{\sum_{n=1}^{N-1} \mathbb{E}(h_n)} = \frac{N-1}{\sum_{n=1}^{N-1} \overline{h}_{A_n A_{n+1}}} = \frac{1}{\sum_{s \in S, r \in S} P_s t_{sr} \overline{h}_{sr}}$$

- **Theorem 1:** $\hat{c} \leq \bar{c}$ for any finite N
- Theorem 2: When 0 < 1, $Pr(\hat{c} \rightarrow \bar{c} \text{ as } N \rightarrow \infty)$

Numerical analysis

Application – Lane Management

Determine the optimal number of CAV lanes

 $Q \coloneqq q_A + \min(D - q_A, (L - l_A)\hat{c}_{\min})$

ML :
$$Q^* := \max_{l_A} Q(l_A, P_1, D, \alpha)$$

subject to $l_A \in [0, 1, \dots, L]$

Reference:

* Ghiasi, A., Hussein, O., Qian, S.Z. and Li, X., 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: a Markov chain method", Transportation Research Part B, 106, pp. 266-292.

19

Ongoing Research

Reference: Qian, Z.S., Li, J., Li, X., Zhang, M. and Wang, H., 2017. "Modeling heterogeneous traffic flow: A pragmatic approach". Transportation Research Part B, 99, pp.183-204.

Field Experiments

 10 HVs following tests in Harbin, China (collaborating with Harbin Institute of Technology)

Following vehicles

21

Field Experiments

- HV following CAV/HV at the 2.4 km test track at Chang'an University, China
- Test different drivers, different CAV speed

Field Experiments

- HV following CAV/HV at the 2.4 km test track at Chang'an University, China
- Test different drivers, different CAV speed

Field Experiments

 Difference between HV-following-CAV and HV-following-AV

Acknowledgements

Students

- Fang Zhou (Li's student)
- Amir Ghiasi (Li's student)
- Omar Hussain (Li's student)
- Handong Yao (Harbin Institute of Technologies)
- Zhen Wang (Chang'an University)
- Collaborators
 - Jiaqi Ma (University of Cincinnati)
 - Zhigang Xu (Chang'an University)
 - Jianxun Cui (Harbin Institute of Technologies)
 - Sean Qian (CMU)
- Funding agencies

Thank you! Q & A?

Xiaopeng (Shaw) Li, Ph.D. Assistant Professor, Susan A. Bracken Faculty Fellow Department of Civil and Environmental Engineering University of South Florida 4202 E. Fowler Avenue, ENG 207 Tampa, FL 33620-5350 E-mail: <u>xiaopengli@usf.edu</u> Phone: <u>813-974-0778</u>; Fax: <u>813-974-2957</u> Website: <u>http://cee.eng.usf.edu/faculty/xiaopengli/</u>