CAV Trajectory Optimization & Capacity Analysis
- Modeling Methods and Field Experiments

Xiaopeng (Shaw) Li
Assistant Professor, Susan A. Bracken Faculty Fellow
Department of Civil and Environmental Engineering,
University of South Florida

6/25/2018

Session 2B: Are We Ready for the AV Future?
7th Innovations in Travel Modeling Conference
Hope for CAV: Capacity Booster

- People expect connected automated vehicles can significantly increase (or even multiple) highway capacity
- How to realize this potential?
Steps to Improve CAV Capacity

- Microscopic trajectory control
 - Reduce headway
 - Improve traffic smoothness

- Macroscopic capacity analysis
 - Understand the relationship between cav traffic characteristics (e.g., CAV penetration ratio) and macroscopic measures (e.g., traffic throughput)

- Validation
 - Field experiments
 - Data analysis
CAV Trajectory Optimization

- Signalized Intersections
 - Coordinate signal timing with vehicle trajectory control
Parsimonious Algorithms

- Shooting heuristic (SH)
 - A small number of analytical sections
Benchmark vs. SH

<table>
<thead>
<tr>
<th>$C'(s)$</th>
<th>$L(m)$</th>
<th>f^s</th>
<th>ΔT</th>
<th>ΔE</th>
<th>ΔS</th>
<th>ΔM</th>
<th>Solution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1500</td>
<td>0.9</td>
<td>35.22%</td>
<td>32.78%</td>
<td>66.36%</td>
<td>41.23%</td>
<td>12.14</td>
</tr>
<tr>
<td>60</td>
<td>1500</td>
<td>1.5</td>
<td>34.23%</td>
<td>33.86%</td>
<td>66.43%</td>
<td>40.00%</td>
<td>9.44</td>
</tr>
<tr>
<td>60</td>
<td>2500</td>
<td>0.9</td>
<td>41.86%</td>
<td>46.96%</td>
<td>77.79%</td>
<td>50.78%</td>
<td>9.63</td>
</tr>
<tr>
<td>60</td>
<td>2500</td>
<td>1.5</td>
<td>41.72%</td>
<td>48.07%</td>
<td>80.21%</td>
<td>51.01%</td>
<td>13.05</td>
</tr>
<tr>
<td>80</td>
<td>1500</td>
<td>0.9</td>
<td>40.11%</td>
<td>32.06%</td>
<td>62.94%</td>
<td>43.07%</td>
<td>9.16</td>
</tr>
<tr>
<td>80</td>
<td>1500</td>
<td>1.5</td>
<td>38.73%</td>
<td>40.10%</td>
<td>62.26%</td>
<td>44.28%</td>
<td>12.26</td>
</tr>
<tr>
<td>80</td>
<td>2500</td>
<td>0.9</td>
<td>32.29%</td>
<td>45.91%</td>
<td>74.00%</td>
<td>43.22%</td>
<td>8.89</td>
</tr>
<tr>
<td>80</td>
<td>2500</td>
<td>1.5</td>
<td>29.59%</td>
<td>37.96%</td>
<td>46.49%</td>
<td>34.20%</td>
<td>7.29</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>36.72%</td>
<td>39.71%</td>
<td>67.06%</td>
<td>43.47%</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Reference

CAV Trajectory Optimization

- Signalized Intersections
 - Mixed Traffic (CAVs + Human-driven vehicles (HVS))

Reference

CAV Trajectory Optimization

- Freeway Speed Harmonization

Reference:
Trajectory Control → Capacity Analysis

- CAV control → Heterogeneous headways in mixed traffic

CAV

Human-driven Vehicle (HV)

Freq. 0.3 2.0 h (s)
Freq. 0.5 2.6 h (s)
Freq. 0.6 2.6 h (s)
Freq. 0.7 2.4 h (s)
Capacity Analysis

- CAV technology uncertainties
 - Will CAV reduce headways?

Google car pulled over for being too slow
Capacity Analysis

- Different technology scenarios

![Diagram showing different technology scenarios with frequency and time intervals.]
Capacity Analysis

- CAV market penetration rate

Low CAV market penetration rate

High CAV market penetration rate
Capacity Analysis

- CAV platooning intensity

Low CAV platooning intensity

High CAV platooning intensity
Analytical Capacity Formulation

- Markov chain model

\[t_{11}, h_{11}, t_{01}, h_{01}, t_{00}, h_{00}, t_{10}, h_{10} \]

n
n + 1
Analytical Capacity Formulation

- Markov chain model
 - $P_1 \in [0,1]$: CAV market penetration rate
 - $O \in [-1,1]$: CAV platooning intensity
 - $T := \begin{bmatrix} t_{11} & t_{10} \\ t_{01} & t_{00} \end{bmatrix}$

$$
t_{10} (P_1, O) := \begin{cases} P_0 (1 - O), & O \geq 0; \\
P_0 + O \left(P_0 - \min \left\{ 1, \frac{P_0}{P_1} \right\} \right), & O < 0,
\end{cases}
$$

$$
t_{11} (P_1, O) := 1 - t_{10} (P_1, O),
$$

$$
t_{01} (P_1, O) := \begin{cases} P_1 (1 - O), & O \geq 0; \\
P_1 + O \left(P_1 - \min \left\{ 1, \frac{P_1}{P_0} \right\} \right), & O < 0,
\end{cases}
$$

$$
t_{00} (P_1, O) := 1 - t_{01} (P_1, O).
$$
Analytical Capacity Formulation

• Approximate capacity

\[\hat{c} := \frac{N-1}{\sum_{n=1}^{N-1} \mathbb{E}(h_n)} = \frac{N-1}{\sum_{n=1}^{N-1} h_{AnA_{n+1}}} = \frac{1}{\sum_{s \in S, r \in S} P_{tsr} h_{sr}} \]

- **Theorem 1:** \(\hat{c} \leq \bar{c} \) for any finite \(N \)
- **Theorem 2:** *When \(0 < 1 \), \(\text{Pr}(\hat{c} \to \bar{c} \text{ as } N \to \infty) \)
Capacity analysis

- Numerical analysis

Optimistic Headway

Conservative Headway
Application – Lane Management

• Determine the optimal number of CAV lanes

\[\hat{c}_A := \frac{1}{\hat{h}_{11}} \]
\[q_A := \min(P_1 D, l_A \hat{c}_A) \]
\[p_1 := \frac{\max(0, P_1 D - l_A \hat{c}_A)}{\max(1, D - q_A)} \]
\[\hat{c}_{\text{mix}} := \frac{1}{\sum_{s \in S, r \in S} p_s t_{sr} \bar{h}_{sr}} \]

\[Q := q_A + \min(D - q_A, (L - l_A) \hat{c}_{\text{mix}}) \]

\[\text{ML} : \quad Q^* := \max_{l_A} Q(l_A, P_1, D, \alpha) \]

subject to \(l_A \in [0, 1, \ldots, L] \)

Reference:
CAV Fundamental Diagrams

- Ongoing Research

Field Experiments

- 10 HVs following tests in Harbin, China (collaborating with Harbin Institute of Technology)
Field Experiments

- HV following CAV/HV at the 2.4 km test track at Chang’an University, China
- Test different drivers, different CAV speed
Field Experiments

- HV following CAV/HV at the 2.4 km test track at Chang’an University, China
- Test different drivers, different CAV speed
Field Experiments

- Difference between HV-following-CAV and HV-following-AV
Acknowledgements

• Students
 ▪ Fang Zhou (Li’s student)
 ▪ Amir Ghiasi (Li’s student)
 ▪ Omar Hussain (Li’s student)
 ▪ Handong Yao (Harbin Institute of Technologies)
 ▪ Zhen Wang (Chang’an University)

• Collaborators
 ▪ Jiaqi Ma (University of Cincinnati)
 ▪ Zhigang Xu (Chang’an University)
 ▪ Jianxun Cui (Harbin Institute of Technologies)
 ▪ Sean Qian (CMU)

• Funding agencies
Thank you!

Q & A?

Xiaopeng (Shaw) Li, Ph.D.
Assistant Professor, Susan A. Bracken Faculty Fellow
Department of Civil and Environmental Engineering
University of South Florida
4202 E. Fowler Avenue, ENG 207
Tampa, FL 33620-5350
E-mail: xiaopengli@usf.edu
Phone: 813-974-0778; Fax: 813-974-2957
Website: http://cee.eng.usf.edu/faculty/xiaopengli/