The University of Vermont Transportation Research Center

Research Questions

1. Does participation in long-distance travel vary by socioeconomic group to suggest possible access or
equity issues?
2. Can methods to estimate the air access between longdistance trip ends be developed to facilitate mode choice models?

Data Summary

In the NHTS 2017, 3.7% of respondents were away-fromhome for the whole travel day (California 7.8%), 0.4% were
out-of-country for the whole travel day (California 0.5%), 0.6% used an airplane for travel (California 0.6%).
Of the trips recorded in the National NHTS, $6.7 \%, 4.4 \%$ and 0.2% were over 50,100 and 250 miles one-way.

Self-reported Recall

 CalTrans Add-On

Trips >50 miles by Purpose in the Last 2 Months

$\begin{aligned} & \mathrm{N}=55,819 \\ & \text { *weighted } \end{aligned}$		Number of Round Trips					
		Business		Personal		Other	
		Mean	SD	Mean	SD	Mean	SD
$\begin{aligned} & \text { Age } \\ & \text { (Years) } \end{aligned}$	<18	0.2	2.2	5.5	10.5	0.4	1.5
	18-25	2.2	9.6	4.5	7.4	0.4	1.9
	25-40	2.2	6.1	5.1	10.1	0.5	2.7
	40-55	3.0	8.9	5.0	9.0	1.0	6.4
	55-70	2.5	7.1	4.6	6.4	0.9	4.4
	$>=70$	0.9	2.9	4.3	7.1	0.7	2.7
Sex	Male	2.7	7.9	4.9	8.2	0.8	5.1
	Female	1.7	6.3	5.0	9.5	0.6	2.8
Race	White	2.2	7.1	5.0	9.0	0.5	3.0
	Black	3.2	10.6	5.0	8.0	1.1	2.8
	Asian	2.3	7.4	4.9	9.0	1.2	7.6
Income	<25k	2.2	7.8	5.3	10.8	0.9	2.2
	25k to 49.99kk	2.3	9.3	6.3	12.1	0.9	4.0
	50k to 99.99kk	2.1	6.1	4.4	6.7	0.7	4.6
	100k to 149.99k	2.4	7.4	4.8	8.4	0.3	2.0
	150k to 199.99kk	2.8	8.1	5.0	9.6	0.8	7.6
	>200k	2.2	5.1	4.1	5.9	0.5	2.9
Education	< high school	1.5	5.6	4.5	8.0	0.5	1.7
	High school or GED	3.5	11.3	5.0	9.2	0.9	5.2
	Some coll/assoc Deg	2.4	8.2	5.0	8.4	1.0	5.1
	Bachelor's Degree	2.5	6.6	5.1	9.9	0.5	3.9
	Grad/Prof degree	1.9	4.9	4.4	6.7	0.5	3.4

Travel Day Log ${ }_{\text {Nationa D Data }}$

$\stackrel{N}{N}=264,234$ (weighted)		Out ofTown	Out of Country	Used Airplane
Age (Years)	<18	3.4\%	0.2\%	0.2\%
	18-24	6.0\%	0.4\%	0.4\%
	25-39	3.3\%	0.6\%	0.5\%
	40-54	3.0\%	0.5\%	0.6\%
	55-69	3.1\%	0.4\%	0.6\%
	$>=70$	2.2\%	0.5\%	0.4\%
Sex	Male	3.6\%	0.4\%	0.6\%
	Female	3.3\%	0.4\%	0.4\%
Race	White	3.6\%	0.4\%	0.5\%
	Black	2.9\%	0.2\%	0.3\%
	Asian	3.3\%	1.0\%	0.4\%
Income	<25k	1.7\%	0.3\%	0.1\%
	25-49.99k	2.8\%	0.2\%	0.1\%
	50k-99.99k	3.3\%	0.4\%	0.4\%
	100k-149.99k	4.2\%	0.4\%	0.7\%
	150k-199.99k	5.8\%	0.8\%	1.0\%
	>200k	6.5\%	0.9\%	1.4\%
Education	Appropriate skip	3.7\%	0.2\%	0.2\%
	< High School graduate	2.4\%	0.3\%	0.2\%
	Bachelor's Degree	3.5\%	0.5\%	0.9\%
	Grad/Prof degree	4.6\%	0.8\%	1.0\%

Conclusions question

There is significant long distance travel (with significant variation between individuals).
In general, there is little difference in long distance travel by age, race and sex.
Long distance travel increases with income and education (with exceptions in CA add-on recall data).
There is more personal, than business, long distance travel.
hoice of distance threshold is important for analysts.

Measuring Air Access

CalTrans NHTS 2017 Add-On Data - 624 people with destinations > 100 miles from home.

Conclusions Question 2
Methods to estimate attributes of the unchosen air Methods to estimate attributes of the unchosen air
alternatives are viable and will be needed for longalternatives are viable and will
distance mode choice models.
Surface modes dominate < 500 miles as expected, but some still drive longer distances.
Those with higher incomes appear more likely than those
with lower incomes to fly including trips under 500 mile

Acknowledgments

 This research was funded by the National Center for Sustainable Transportation, a national We appreciate the provision of add-on data by CalTrans and the team's support assisting us indata processing. data processing.

