
Combining NHTS and Passive 
OD Data for Charleston, SC

Vince Bernardin, PhD

Hadi Sadrsadat, PhD

Jason Chen, PhD

August 9, 2018



2

Charleston

• MPO: Berkeley-Charleston-

Dorchester Council of 

Governments (BCDCOG)

• Population ~775k

• Among the top 20 fastest 

growing MSAs in US

• Model Update:
‒ Hybrid w/ NHB-HB linkage

‒ New Modes, Nesting

‒ Destination Choice

‒ Visitor Model
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Charleston Data

Sample: 1,104 Households

2017 NHTS

PASSIVE DATA

AirSage
– 870 x 870 matrices

– By residents & visitors

ATRI
– Over 37,000 trucks

– Over 150k truck trips 

– 30 days of data 



Limitations of NHTS
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Why not just use NHTS?

• Never has been “just” NHTS

‒ All surveys use control data 

for sampling

• Need for more frequent data to track 

changes – but no $

• Better location/spatial coverage from 

Passive OD data

‒ OD Pairs

Total: 760,384

Survey: 5,006 0.7%

AirSage: 253,304 33.0%
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Can you recognize the pattern based on 0.7%?
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How about based on 33%?
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Big Data allows us to see the big picture.
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NHTS desire lines (at the district level) 

provide data for only 58.1% of cells
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Big Data desire lines (at the district level) 

provide data for 96.7% of cells



Limitations of Passive Data
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What’s missing?

INFORMATION

• Travel mode

• Activity purpose

• Traveler characteristics

TRAVEL & TRAVELERS

• Geographic coverage

• Seniors & low income populations

• Short activities & trips
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Geographic Coverage Gaps

Attractions
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Demographic Biases
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Duration Bias
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Understanding Data Fusion
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Motivation and Elements

Other data sources – especially smartphone survey data 

– have what passive data lacks

Surveys
Passive 

LBS
Counts Census Marketing

Demographics (Who?) ✓ ✓ ✓

Locations (Where?) ✓ ✓ ✓

Purpose (Why?) ✓ ✓

Mode (How?) ✓ ✓

Time (When?) ✓ ✓ ✓



18

Aggregate OD Data by 

Market Segment

The End Goal – Three Options for Privacy

Anonymized 

Diary Data

Synthetic 

Diary Data

1

2

3
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Aggregate OD data eliminates most privacy 

issues but presents dimensionality limitations.

• Multidimensional matrix

• Easier for ODT only

• Substantial limitation on 

the dimensionality of the 

data

• Difficult to support ABMs

• Eliminates most – but not 

all – privacy issues and 

remaining issues are 

difficult

Aggregate OD Data 

by Market Segment

Anonymized 

Diary Data

Synthetic 

Diary Data
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Anonymized diary data is easy to understand 

but difficult to guarantee privacy.

• Limited aggregation in 

multiple dimensions 

/addition of noise

• Advantage: real data, 

easy to understand/explain

• Disadvantage: difficult to 

guarantee 100% privacy

Aggregate OD Data 

by Market Segment

Anonymized 

Diary Data

Synthetic 

Diary Data
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Synthetic diary data has no privacy concerns but is 

difficult to verify how well raw data is reproduced.

• Modeled data that 

reproduces certain aspects 

of raw data

• Model and data entangled

• Advantage: No privacy 

concerns

• Disadvantage: Important & 

difficult to verify how well 

raw data is reproduced

Aggregate OD Data 

by Market Segment

Anonymized 

Diary Data

Synthetic 

Diary Data



EXAMPLE APPLICATION

Chattanooga
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Chattanooga Daysim

DESTINATION DISTRICT O-D SHADOW PRICING 

CONVERGENCE SUMMARY 

ITERATION
ABSOLUTE 

ERROR

MEAN 

ABSOLUTE 

% ERROR

WEIGHTED 

MEAN 

ABSOLUTE % 

ERROR

RMSE

1 516,595 23.3% 22.2% 37.1%

2 421,404 20.6% 19.1% 30.7%

… … … … …

24 59,962 11.8% 8.3% 10.5%

• Daysim ABM as a data fusion engine

• Shadow pricing: Used 40 district 

scheme with LEHD and AirSage data
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Synthetic Diaries/ODs Replicate Data

1 2 3 4 5 6 7 8 9 10 11 12

1 0.5% 0.2% -0.1% 0.0% 0.0% -0.1% -0.2% -0.1% 0.0% 0.0% -0.1% -0.2% 0.0%

2 0.3% 0.0% 0.2% 0.0% 0.1% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% -0.1% 0.7%

3 -0.1% 0.1% 0.0% -0.1% -0.2% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% -0.1% -0.1%

4 0.0% 0.1% -0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.4%

5 0.1% 0.1% -0.1% 0.0% 0.2% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5%

6 -0.1% -0.1% 0.1% -0.1% 0.1% 0.0% 0.1% -0.1% 0.1% 0.0% 0.0% 0.0% 0.0%

7 0.0% 0.0% 0.2% 0.1% 0.1% 0.0% 0.2% 0.0% 0.1% 0.0% 0.0% 0.1% 0.7%

8 0.0% 0.1% 0.1% 0.1% 0.0% -0.1% 0.1% 0.0% -0.2% 0.0% 0.0% 0.0% 0.2%

9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.3% 0.0% 0.0% 0.0% 0.2%

10 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.3%

11 0.0% 0.0% 0.0% -0.1% 0.0% 0.0% -0.1% 0.0% 0.0% 0.1% -0.1% -0.3% -0.5%

12 -0.2% -0.3% -0.1% -0.2% 0.0% -0.1% -0.2% -0.1% -0.1% 0.0% -0.3% -0.7% -2.4%

Grand Total 0.5% 0.2% 0.2% -0.2% 0.4% -0.3% 0.4% 0.1% 0.3% 0.3% -0.5% -1.3% 0.0%

Origin 

SuperDistrict

Destination Super District Grand 

Total

TOTAL DAYSIM TRIP TABLE VS. AIRSAGE

• Very good agreement – 10.5% RMSE

• All cells within +/- 1%

• All residence/work Super Districts within +/-2.5%
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Chattanooga Takeaways

• Successfully created synthetic disaggregate data via 

fusion of AirSage and travel survey data in 2016

• Chattanooga Daysim produces synthetic trip-list 

– with OD patterns from AirSage 

– and traveler characteristics, travel modes, and activity 

purposes from survey 

• First synthetic travel data from passive & survey data

• Great if limited to aggregate passive data 

(e.g., if GDRP in US)

• More/better is possible, especially with disaggregate 

methods



EXAMPLE APPLICATION

Charleston
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Cross-Validation: Trip Rates

Internal Non-Truck Trips Person Trip Rate

NHTS Add-on 8.8

Passive Data (Initial Data) 17.1

Passive Data (Expanded Data) 9.5
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Cross-Validation: Trip Lengths

Data
Average Trip Length

w/ Intrazonals w/o Intrazonals

NHTS 6.6 7.3

Initial AirSage 7.1 10.3

Expanded AirSage 5.7 8.4
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Data Expansion 

(Passive OD – Count Fusion)

• Expansion to traffic counts (519 stations) 

• Expansion by vehicle class 

(Auto, Single-Unit Truck, Multi-Unit Truck)

• Expansion process steps

– Fratar at external stations

– Iterative Screenline Fitting (ISF) 

 only for all classes together

– Constrained ODME

 Factors constrained 0.5 to 3.0 
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Destination Choice 

(Survey – Passive OD Fusion) 

• Estimated destination choice models 

– with and without constants in the utility function

𝑈 =෍𝛼 +෍𝛽𝑥 + 𝜀

– from NHTS, Passive Data, and both (simultaneously)

• Composite MLE with genetic algorithm for simultaneous 

estimation (with embedded shadow-pricing for constants)

– Destination choice models with constraints / agglomeration 

effects are not GEV or guaranteed to be globally convex
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Destination Choice 

(Survey – Passive OD Fusion) 

• Models without constants estimated

– NHTS given equal weight as AirSage (generous)

– Models using AirSage yield better fit, different sensitivity 

• Embedded shadow-pricing causing oscillation, working 

on algorithm to estimate models with constants
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Charleston Takeaways

• NHTS trip rates may be slightly low 

• NHTS helpful in identifying coverage issues in AirSage

• AirSage helpful in identifying special generators

• Count-based expansion of AirSage may not fully 

correct duration (short trip) bias

• Successfully estimated spatial models simultaneously

from NHTS and AirSage data using maximum 

composite likelihood estimation

• Use of AirSage data significantly improves spatial 

models

• Important to investigate sensitivities for forecasting



Final Thoughts
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rMove has what Passive Data lacks

• rMove trace data 

as labeled 

training set for AI

• Imputation of

– Missing trips

– Mode

– Purpose
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Questions on Data Fusion for NextGen NHTS

PRIVACY

• How will privacy be protected? 

• What will be the data product(s) produced by data fusion?

FORECASTING / CONSISTENCY

• How will data fusion and forecasting models be related?  

• Will there be consistent assumptions? 

TRANSPARENCY

• What methods will be used?  

• Will they be documented?

VALIDATION

• How will the fusion be validated?  

• What error statistics or other measures will be reported? 
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Summary

• Data fusion is attractive given the limitations of both survey 

and passive data

• There are different privacy protection strategies and data 

fusion methodologies

• Aggregate passive data has been successfully fused with 

disaggregate survey data to produce disaggregate 

synthetic data 

• Data fusion produces better forecasting models

• Fusion using disaggregate passive data may be even more 

promising
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