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About the speaker…

Father: peripatetic 

Army helicopter 

pilot

Mother: marriage 

and family 

therapist

Daughter: 

specialist in travel 

behavior analysis



About the speaker… (2)

 Math major



About the speaker… (2)

 Math major

 Entire career (since 

1970s) devoted to the 

design, adminis-

tration, and analy-

sis of surveys 

measuring travel-

related attitudes 

and behavior



About the speaker… (2)

 Math major

 Entire career (since 1970s) devoted to the design, 

administration, and analysis of surveys 

measuring travel-related attitudes and 

behavior

 Have been teaching a course on survey-

based research methods for most of my 28-

year faculty career

 Compulsive about survey design details



About the speaker… (3)

 Have I peaked???

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=

rja&uact=8&ved=2ahUKEwj2gLmCpdncAhXKnuAKHY8FAi4QjRx6BAgBEAU&url=

https%3A%2F%2Fnsmb.com%2Farticles%2F2017-kona-hei-hei%2F&psig=

AOvVaw2nyHd5c62UmA2qwhQT5Da8&ust=1533674539304990



About the speaker… (3)

 Have I peaked???

 Even now, it’s rare to find a course on survey 

methods in graduate transportation programs

– Common in psychology or sociology

– In transportation, you may find a course on “data 

acquisition methods”

 Will survey design have disappeared entirely 

from such courses within 5 years?

– Replaced by “Using Machine Learning Methods to 

Analyze Big Data”?



Get with the times!

 In an era of

– GPS traces

– Transit smart cards

– Clickstreams

– RFID chips and scanner data

– Twitter feeds and other social media posts

– Remote sensing

– Targeted marketing and credit reporting data 

– and more

 … who needs old-fashioned surveys???



Why do we still need surveys?

Three reasons:

 There’s not always a Big Data source for 

what we need to know

 The Big Datasets we do have are incomplete

 Big Data is even more valuable when used 

in conjunction with survey data!



1. There’s not always a Big Data 

source for what we need to know

 Interviews about 

– Procurement

– Priority-setting

– Intra-household 

decision-making

– Activity rescheduling

– Other decision 

processes

 Focus groups on

– Unmet needs, latent 

demand

– Prospective policy impacts

– Product/service design

 Charrettes on

– Land use/transportation 

system changes

a.  Qualitative research



1. There’s not a Big Data

source for … (2)

b.  Reliably identifying and measuring 

small/specialized populations

 Infrastructure performance managers at 

State DOTs

 Municipal traffic engineers

 Recent immigrants

 Single parents



1. There’s not a Big Data 

source for… (3)

c.  Hypothetical choices

 Impacts of currently unavailable 

technologies on travel, residential/job 

location

 Behavioral impacts of proposed new 

policies

 Removal of constraints

 Behavioral intentions



2.  Even when we have 

Big Data sources…

 The data are far from perfect

– Take GPS traces (please!*):

» Broken trips

» Urban canyons:

– Signal blockage

– Multi-path interference

» Poor within-building performance

» Dead batteries

» Forgotten phones

» etc…

*With a nod to Henny Youngman



2.  Even when we have 

Big Data sources… (2)

 The data are far from perfect  

 Vital context is missing:

– Often even standard demographics are unknown

– Want to apply aggregate statistics for the 

associated geographical unit?

– Beware the ecological fallacy*!

* Relationships at the aggregate level can be very different than –

even the reverse of – those at the disaggregate level.



2.  Even when we have 

Big Data sources… (3)

 The data are far from perfect  

 Vital context is missing:

– Often even standard demographics are unknown

– Understanding the “why” of human behavior 

generally requires measuring the unobservable, 

including 

» Constraints

» Motivations (values)

» Intentions

» Personality

» Lifestyle

» Attitudes



2.  Even when we have 

Big Data sources… (4)

 The data are far from perfect  

 Vital context is missing

 Representativeness is (more) dubious

– “Since our sample is so large, 

representativeness is not a concern”

– 1936 Literary Digest poll predicted a Landon 

over Roosevelt landslide:  N = 2.3 million…

– Some exclusions are obvious, others less so



2.  Even when we have 

Big Data sources… (5)

 The data are far from perfect  

 Vital context is missing

 Representativeness is (more) dubious

 Correlation doesn’t equal causality



Wait – isn’t causality passé?

 “But today, data is so readily available and 

computers are so fast and powerful that experts … 

have stopped trying to figure out why something 

– say, crime – happens.  Instead they look at 

crimes and notice what events or behaviors seem to 

precede them… [T]he tricky work of turning 

information into knowledge has shifted from 

causation to correlation.” 

– Fareed Zakaria, Time, 7/8/2013



So why does causality matter?

 We’re hardwired to ask, “Why?”

 It’s our best hope of predicting “outcomes” 

when “inputs” change

vs vs                vs

(not to mention                  )

 because knowing the “why?” improves our 

understanding of the “what will happen if?”

X Y X YX Y

X Y

Z

X Y

W Z



A tale of two causal models

 “Whenever the dog tries to attack you, you 

give him a treat to get him to stop?”  “Yes, 

and it works every time!”

 Human’s model:

– give treat  attack stops

 Poodle’s model:

– attack human  receive treat

Reader’s Digest, May 2012, p. 188



A tale of two causal models (2)

 Human

– Model: give treat 

attack stops

– Policy implication:  

keep giving treats

 Poodle

– Model: attack human 

 receive treat

– Policy implication:  

keep attacking

Neither view of reality achieves the socially-optimal         

outcome…

 There’s no substitute for domain knowledge…



http://tylervigen.com/spurious-correlations

If correlation is all 

you look at…



3. Big Data can enrich survey data

 We’ve previously considered some 

advantages afforded by survey data 

– Measurement of specialized populations

– Measurement of important, but unobserved, 

variables (constraints, motivations, etc.)

– Greater representativeness

– Greater illumination of “why?”

 Let’s now consider some advantages 

offered by Big Data

Also see Varian (2014)



3. Big Data can enrich 

survey data (2)

 Some Big Data advantages for causal models

– Improved matching

– More cases around a regression discontinuity

– Ability to analyze population segments

» Assuming you can identify those segments, you’re 

likely to have a lot of cases in them

– Ability to “experiment” on a large scale, in 

“ecologically valid settings”

– Ability to track dynamics
Grimmer 2015; also see Varian 2014



TOMNET (a Tier 1 UTC):  

Teaching Old Models (and 

Modelers) New Tricks

regional

travel behavior

modeling

TOMNET



TOMNET (2)

 If you’d told me a few years ago that I’d be 

embracing machine learning, and using it 

to pursue a decades-long dream of bringing 

attitudinal information into regional 

models…  

I’d have said …

But just look at me now!

http://beyondwords.life/wp-content/uploads/

2017/07/shutterstock_344995025-1080x700.jpg



Here’s what we’re working on

Adapted from Fig. 1 (p. 2) of van der Putten et al. (2002).  See Malokin et al. (2018).

GDOT survey data

Donor (source)

N = 3,000

Original 

Common

Variables 

(CVs):
-- Socio-economic &

demographic traits

-- Commute length

-- Etc.

CVsATTs
augmented

CVs 

Augmented

CVs:
-- Land use traits

-- Targeted mktg

data

NHTS (GA subsample)

Recipient (target)

N = 8,000

CVsB
E

H

augmented

CVs

Virtual survey

Fused data

N = 8,000

CVs ATTsB
E

H augmented

CVs

ATTD = fD (CVD , augCVD) + D

ATTR = fD (CVR , augCVR)



In conclusion,

may I suggest …



Enough with the data strut 

and swagger, already!

DAT
A

DAT
A

http://www.funnybeing.com/wp-content/uploads/

2017/03/I-Dont-Mean-To-Brag-600x600.jpg

’



Enough already! (2)

 We’ve seen that each of these approaches can

– do things the other one can’t; and

– make the other one better

 Discarding either one deprives planning/ 

policymaking of the insights made possible 

by the “other” kind of data, and by both kinds 

of data working in harmony



Enough already! (3)

 So instead of arguing about why we don’t need 

this kind, or how the other kind can’t be trusted, 

let’s

– have them both in our arsenal, using each singly –

and both together – as appropriate

– consider both perspectives, and how each can 

improve the other, e.g.,

» Consider causality, representativeness when using Big Data

» Integrate “Big Data methods” into survey data analysis

» Combine survey data and passive data collection – like 

NextGen NHTS…



“Looking at things in 

multiple ways creates a 

richer and more true 

understanding of the 

world” 
– Susan Handy (2013) 

(speaking on the power of combining 

qualitative and quantitative methods)



Enough already! (4)

 Yes, that means I advise transportation students 

nowadays to take courses in machine 

learning…

 … while not forsaking the classics of survey 

design and causal modeling

 IT’S NOT AN EITHER-OR PROPOSITION…



Enough already! (4)

 Yes, that means I advise transportation students 

nowadays to take courses in machine 

learning…

 … while not forsaking the classics of survey 

design and causal modeling

 IT’S NOT AN EITHER-OR PROPOSITION…

 Let’s make this the start of a beautiful 

friendship!
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Thank you!

Questions?

patmokh@gatech.edu

http://ce.gatech.edu/people/faculty/6251/overview

http://ce.gatech.edu/people/faculty/6251/overview

