Disentangling Vehicle Technology \& Self-Selection Effects on Household Alternative Fuel Vehicle Use -

A Tri-variate Copula Based Endogenous Regime Switching Framework

Presenter:

Behram Wali,
Graduate Research Assistant, University of Tennessee, Knoxville

Mentors/Authors:

Behram Wali, Ph.D.
Asad J. Khattak, Ph.D.
David L. Greene, Ph.D.
Numan Ahmad

2018 National Household Travel Survey Workshop, National Academy of Sciences
 August 8 ${ }^{\text {th }}, 2018$

Travel Behavior

"Zones don't travel; people travel!" Slogan, Travel Demand
Forecasting Project, 1972

Conceptual Framework

Conceptual Framework

Emerging Transportation Paths (SECAV)

Owned Automated	
Does Not Meet City Goals Owned Conventional	
Ownership Model	Shared Model
1.0 Internal Combustion Engine/Pedal Power	1.0 Shared Vehicles
2.0 Electric Vehicles	2.0 Electric Shared Vehicles
3.0 Electric Driverless Vehicles	3.0 Shared, Electric, Connected, Automated Vehicles (SECAV)

Bigger Picture - The Green Mobility of Future

Greene, Khattak, \& Wali (2017)

Advancement of fuel tech - Trends in the U.S.

Advancement of fuel tech - Trends in the U.S.

Advancement of fuel tech - Global Trends

Key Questions

- Mechanisms/factors leading to households purchasing AFVs (plug-in electric /plug-in hybrid vehicles)?
- Vehicle use patterns of AFV households, compared to nonAFV counterparts?

Key Questions

- Mechanisms/factors leading to households purchasing AFVs (plug-in electric /plug-in hybrid vehicles)?
- Vehicle use patterns of AFV households, compared to nonAFV counterparts?
- Role of "self-selection" \& "true" vehicle technology effects?

Developing Intuition

Orange Line: Mean Daily Distance by AFV HH
Green Line: Mean Daily Distance by Non-AFV HH

Developing Intuition

Feature of the Data (example)

- Avg. AFV Distance $=4$ log-miles
- Avg. Non-AFV Distance $=3.58$ log-miles

Question: Can we conclude that AFV Households travel more?

Orange Line: Mean Daily Distance by AFV HH
Green Line: Mean Daily Distance by Non-AFV HH

Having counterfactuals?

Feature of the Data (example)

- Avg. AFV Distance $=17.63$ log-miles
- Avg. Non-AFV Distance $=17.16$ log-miles

We could have concluded if we had countermeasures...

Methodological Challenges

- Observational Data (AFV/Non-AFV Households)
- Defining characteristic: Not randomized
- Self-selection bias (Khatak \& Rodriguez, 2005; Fan \& Khattak, 2009)
- Endogeneity bias (Bhat, 1997; Bhat \& Koppelman, 1993; Bhat \& Eluru, 2009)

Methodological Challenges

- Observational Data (AFV/Non-AFV Households)
- Defining characteristic: Not randomized
- Self-selection bias (Khattak \& Rodriguez, 2005; Fan \& Khattak, 2009)
- Endogeneity bias (Bhat, 1997; Bhat \& Koppelman, 1993; Bhat \& Eluru, 2009)

Quantify the true "causal effect" when the selection into being an AFV vs Non-AFV HH is presumably endogenous?

Empirical Context

- 2017 National Household Travel Survey

National Household Travel Survey

Understanding How People Get from Place to Place

Empirical Context

National Household Travel Survey

Understanding How People Get from Place to Place

- 2017 National Household Travel Survey

For Each Person:

- Age
- Sex
- Driver status
- Worker status
- Annual miles

Daily Travel Data:

- Origin and destination
- Time trip started and ended
- Distance
- Means of transportation:

1. vehicle type
2. if household vehicle, which one
3. if transit, wait time
4. if transit, access and egress mode*

For Each Vehicle:

- Make

Detailed purpose

- Number of passengers on trip
- Most recent trip for non-travelers (date)
- Age (year)
- Years owned
- Odometer Reading

Data Structure

"vehpub" File
$\left.\begin{array}{|cccc|}\hline \text { Household ID } & \text { Veh ID } & \text { Fuel Type } & \text { Type } \\ 1 & 1 & \text { G } & \\ 1 & 2 & \mathrm{H} & \mathrm{EV} \\ 1 & 3 & \mathrm{D} & \\ 2 & 1 & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow & \downarrow\end{array}\right)$

Data Structure

Data Structure

Sub_Master File

Data Structure

Sub_Master File

$$
=\quad \text { Analysis File }
$$

Definitions Used in this Study

Non Plug-in Hybrid Household

Household having "atleast" one non plug-in hybrid vehicle

Plug-in Hybrid/Electric Veh Household

Definitions Used in this Study

Non Plug-in Hybrid Household

Household having "atleast" one non plug-in hybrid vehicle

Plug-in Hybrid/Electric Veh Household
Household having "at-
least" one plug-in
hybrid/electric vehicle

Households that may own "both" non plug-in hybrid and plug-in hybrid not considered.

Methodological Approach

- Avoiding "loss of consistency in a greed to gain efficiency"
- A Tri-variate Discrete-Continuous Endogenous Regime Switching Framework

Methodological Approach

Methodological Approach

Methodological Approach

Mathematical Exposition

- Selection Equation:

$$
S_{i}=\left\{\begin{array}{l}
0 \text { if } S_{i}^{*}=z_{i}^{\prime} \gamma+\varepsilon_{s i} \leq 0 \\
1 \text { if } S_{i}^{*}=z_{i}^{\prime} \gamma+\varepsilon_{s i}>0
\end{array}\right.
$$

- Endogenous switching model: Two outcomes

$$
\begin{array}{cc}
y_{1 i}=x_{1 i}^{\prime} \beta_{1}+\varepsilon_{1 i} & \text { if } S_{i}=1 \\
y_{0 i}=x_{0 i}^{\prime} \beta_{0}+\varepsilon_{0 i} & \text { if } S_{i}=0
\end{array}
$$

- Potential dependencies:
- $\left(\varepsilon_{s i}, \varepsilon_{1 i}\right)$ AND $\left(\varepsilon_{s i}, \varepsilon_{0 i}\right)$

Copula Approach

$$
\aleph(x, y)=C_{\theta}(\{A(x), B(y)\}
$$

- Stochastic dependence governed by copula:
- Different marginal distributions

Copula Families \& Marginal Distributions

Table 1. Copula functions

Copula name	$C\left(u_{1}, u_{2} ; \theta\right)$
Product	$u_{1} u_{2}$
Gaussian	$\Phi_{2}\left\{\Phi^{-1}\left(u_{1}\right), \Phi^{-1}\left(u_{2}\right) ; \theta\right\}$
FGM	$u_{1} u_{2}\left\{1+\theta\left(1-u_{1}\right)\left(1-u_{2}\right)\right\}$
Plackett	$\frac{r-\sqrt{r^{2}-4 u_{1} u_{2} \theta(\theta-1)}}{2(\theta-1)}$

Archimedean family
$\varphi(t)$

AMH	$u_{1} u_{2}\left\{1-\theta\left(1-u_{1}\right)\left(1-u_{2}\right)\right\}^{-1}$	$\log \left\{\frac{1-\theta(1-t)}{t}\right\}$
Clayton	$\left(u_{1}^{-\theta}+u_{2}^{-\theta}-1\right)^{-1 / \theta}$	$\theta^{-1}\left(t^{-\theta}-1\right)$
Frank	$-\theta^{-1} \log \left\{1+\frac{\left(e^{-\theta u_{1}}-1\right)\left(e^{-\theta u_{2}}-1\right)}{\left(e^{-\theta}-1\right)}\right\}$	$-\log \left(\frac{e^{-\theta t}-1}{e^{-\theta}-1}\right)$
Gumbel	$\exp \left[-\left\{\left(-\log u_{1}\right)^{\theta}+\left(-\log u_{2}\right)^{\theta}\right\}^{1 / \theta}\right]$	$\{-\log (t)\}^{\theta}$
Joe	$1-\left\{\left(\widetilde{u}_{1}\right)^{\theta}+\left(\widetilde{u}_{2}\right)^{\theta}-\left(\widetilde{u}_{1} \widetilde{u}_{2}\right)^{\theta}\right\}^{1 / \theta}$	$-\log \left\{1-(1-t)^{\theta}\right\}$

[^0]
Copula Families \& Marginal Distributions

Table 1. Copula functions

Copula name	$C\left(u_{1}, u_{2} ; \theta\right)$	
Product	$u_{1} u_{2}$	
Gaussian	$\Phi_{2}\left\{\Phi^{-1}\left(u_{1}\right), \Phi^{-1}\left(u_{2}\right) ; \theta\right\}$	
FGM	$u_{1} u_{2}\left\{1+\theta\left(1-u_{1}\right)\left(1-u_{2}\right)\right\}$	
Plackett	$\frac{r-\sqrt{r^{2}-4 u_{1} u_{2} \theta(\theta-1)}}{2(\theta-1)}$	
		$\varphi(t)$
Archimedean family	$\log \left\{\frac{1-\theta(1-t)}{t}\right\}$	
AMH	$u_{1} u_{2}\left\{1-\theta\left(1-u_{1}\right)\left(1-u_{2}\right)\right\}^{-1}$	$\theta^{-1}\left(t^{-\theta}-1\right)$
Clayton	$\left(u_{1}^{-\theta}+u_{2}^{-\theta}-1\right)^{-1 / \theta}$	$-\log \left(\frac{e^{-\theta t}-1}{e^{-\theta}-1}\right)$
Frank	$-\theta^{-1} \log \left\{1+\frac{\left(e^{-\theta u_{1}}-1\right)\left(e^{-\theta u_{2}}-1\right)}{\left(e^{-\theta}-1\right)}\right\}$	
Gumbel	$\exp \left[-\left\{\left(-\log u_{1}\right)^{\theta}+\left(-\log u_{2}\right)^{\theta}\right\}^{1 / \theta}\right]$	$\{-\log (t)\}^{\theta}$
Joe	$1-\left\{\left(\widetilde{u}_{1}\right)^{\theta}+\left(\widetilde{u}_{2}\right)^{\theta}-\left(\widetilde{u}_{1} \widetilde{u}_{2}\right)^{\theta}\right\}^{1 / \theta}$	$-\log \left\{1-(1-t)^{\theta}\right\}$

Marginal Distributions

	Probit	Logit	Student's t
Fs	Y	Y	$N A$
Fo $_{0}$	Y	Y	Y
F $_{1}$	Y	Y	Y

Flexibility:
63 Unique Model Specifications

Illustration

Source: Wali, Greene, Khattak, \& Liu (2018)

Illustration

Results - Key Distributions

Results - Key Distributions

- $\mathrm{N}=5231$ households
- $\mathrm{N}=839$ PHEV/EV households
- $N=4,389$ Non-plug in hybrid households
- 79 households removed that owned both

	Variables	Not Plug-in Hybrid Vehicles ($\mathrm{N}=4389$)			Plug-in Hybrid/Electric ($\mathrm{N}=\mathbf{8 4 2 \text {) }}$		
tatistics		Mean	SD	Min/Max	Mean	SD	Min/Max
	Daily HH Distance (Log-form)	3.61	1.12	-1.93/6.93	3.57	1.10	-3.86/6.47
	Household Distance	63.71	78.01	0.14/1024.53	59.27	73.15	0.021/651.68
	HH Total Trip Travel Time	133.65	106.25	2/1093	134.18	101.13	2/739

Descriptive

	Variables	Not Plug-in Hybrid Vehicles ($\mathrm{N}=4389$)			Plug-in Hybrid/Electric ($\mathrm{N}=\mathbf{8 4 2 \text {) }}$		
TתTSES		Mean	SD	Min/Max	Mean	SD	Min/Max
	Daily HH Distance (Log-form)	3.61	1.12	-1.93/6.93	3.57	1.10	-3.86/6.47
	Household Distance	63.71	78.01	0.14/1024.53	59.27	73.15	0.021/651.68
	HH Total Trip Travel Time	133.65	106.25	2/1093	134.18	101.13	2/739
	Household Income						
	Less than \$10,000	0.01	0.09	0/1	0.01	0.08	0/1
	\$10,000 to \$14,999	0.01	0.09	0/1	0.00	0.06	0/1
	\$15,000 to \$24,999	0.03	0.16	0/1	0.02	0.12	0/1
	\$25,000 to \$34,999	0.04	0.20	0/1	0.02	0.13	0/1
	\$35,000 to \$49,999	0.07	0.26	0/1	0.04	0.20	0/1
	\$50,000 to \$74,999	0.15	0.36	0/1	0.09	0.29	0/1
	\$75,000 to \$99,999	0.17	0.38	0/1	0.11	0.31	0/1
	\$100,000 to \$124,999	0.15	0.36	0/1	0.16	0.36	0/1
	\$125,000 to \$149,999	0.10	0.30	0/1	0.10	0.30	0/1
	\$150,000 to \$199,999	0.11	0.31	0/1	0.15	0.36	0/1
	\$200,000 or more	0.13	0.34	0/1	0.28	0.45	0/1

Descriptive Statistics

Descriptive Statistics

Variables	Not Plug-in Hybrid Vehicles ($\mathrm{N}=\mathbf{4 3 8 9}$)			Plug-in Hybrid/Electric ($\mathrm{N}=842$)		
	Mean	SD	Min/Max	Mean	SD	Min/Max
Daily HH Distance (Log-form)	3.61	1.12	-1.93/6.93	3.57	1.10	-3.86/6.47
Household Distance	63.71	78.01	0.14/1024.53	59.27	73.15	0.021/651.68
HH Total Trip Travel Time	133.65	106.25	2/1093	134.18	101.13	2/739
Household Income						
Less than \$10,000	0.01	0.09	0/1	0.01	0.08	0/1
\$10,000 to \$14,999	0.01	0.09	0/1	0.00	0.06	0/1
\$15,000 to \$24,999	0.03	0.16	0/1	0.02	0.12	0/1
\$25,000 to \$34,999	0.04	0.20	0/1	0.02	0.13	0/1
\$35,000 to \$49,999	0.07	0.26	0/1	0.04	0.20	0/1
\$50,000 to \$74,999	0.15	0.36	0/1	0.09	0.29	0/1
\$75,000 to \$99,999	0.17	0.38	0/1	0.11	0.31	0/1
\$100,000 to \$124,999	0.15	0.36	0/1	0.16	0.36	0/1
\$125,000 to \$149,999	0.10	0.30	0/1	0.10	0.30	0/1
\$150,000 to \$199,999	0.11	0.31	0/1	0.15	0.36	0/1
\$200,000 or more	0.13	0.34	0/1	0.28	0.45	0/1
Housing Status						
Own house	0.87	0.34	0/1	0.91	0.29	0/1
Rent	0.13	0.33	0/1	0.09	0.28	0/1
Number of employed members	1.27	0.93	0/6	1.36	0.89	0/5
Number of vehicles	2.35	1.10	1/10	2.68	1.24	1/12
Count of HH trips on travel day	9.52	6.06	1/60	10.19	6.51	2/42

Descriptive

 Statistics| Variables | Not Plug-in Hybrid Vehicles ($\mathrm{N}=4389$) | | | Plug-in Hybrid/Electric ($\mathrm{N}=842$) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Mean | SD | Min/Max | Mean | SD | Min/Max |
| Daily HH Distance (Log-form) | 3.61 | 1.12 | -1.93/6.93 | 3.57 | 1.10 | -3.86/6.47 |
| Household Distance | 63.71 | 78.01 | 0.14/1024.53 | 59.27 | 73.15 | 0.021/651.68 |
| HH Total Trip Travel Time | 133.65 | 106.25 | 2/1093 | 134.18 | 101.13 | 2/739 |
| Household Income | | | | | | |
| Less than \$10,000 | 0.01 | 0.09 | 0/1 | 0.01 | 0.08 | 0/1 |
| \$10,000 to \$14,999 | 0.01 | 0.09 | 0/1 | 0.00 | 0.06 | 0/1 |
| \$15,000 to \$24,999 | 0.03 | 0.16 | 0/1 | 0.02 | 0.12 | 0/1 |
| \$25,000 to \$34,999 | 0.04 | 0.20 | 0/1 | 0.02 | 0.13 | 0/1 |
| \$35,000 to \$49,999 | 0.07 | 0.26 | 0/1 | 0.04 | 0.20 | 0/1 |
| \$50,000 to \$74,999 | 0.15 | 0.36 | 0/1 | 0.09 | 0.29 | 0/1 |
| \$75,000 to \$99,999 | 0.17 | 0.38 | 0/1 | 0.11 | 0.31 | 0/1 |
| \$100,000 to \$124,999 | 0.15 | 0.36 | 0/1 | 0.16 | 0.36 | 0/1 |
| \$125,000 to \$149,999 | 0.10 | 0.30 | 0/1 | 0.10 | 0.30 | 0/1 |
| \$150,000 to \$199,999 | 0.11 | 0.31 | 0/1 | 0.15 | 0.36 | 0/1 |
| \$200,000 or more | 0.13 | 0.34 | 0/1 | 0.28 | 0.45 | 0/1 |
| Housing Status | | | | | | |
| Own house | 0.87 | 0.34 | 0/1 | 0.91 | 0.29 | 0/1 |
| Rent | 0.13 | 0.33 | 0/1 | 0.09 | 0.28 | 0/1 |
| Number of employed members | 1.27 | 0.93 | 0/6 | 1.36 | 0.89 | 0/5 |
| Number of vehicles | 2.35 | 1.10 | 1/10 | 2.68 | 1.24 | 1/12 |
| Count of HH trips on travel day | 9.52 | 6.06 | 1/60 | 10.19 | 6.51 | 2/42 |
| Life cycle classification of HH | | | | | | |
| 2+ adults, retired, no children | 0.28 | 0.45 | 0/1 | 0.24 | 0.43 | 0/1 |
| Daily bike use | 0.02 | 0.13 | 0/1 | 0.03 | 0.17 | 0/1 |
| Daily bus use | 0.01 | 0.11 | 0/1 | 0.01 | 0.08 | 0/1 |
| Daily smartphone use to access internet | 0.81 | 0.40 | 0/1 | 0.88 | 0.33 | 0/1 |
| Daily internet use | 0.96 | 0.18 | 0/1 | 0.99 | 0.11 | 0/1 |
| Travel is NOT a financial burden | 0.09 | 0.28 | 0/1 | 0.16 | 0.36 | 0/1 |

Model Selection (ICOMP)

	Marginal Distributions							
Copula Specification	Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Type 7	
Hybrid Copulas								
Product	19810.87	19726.34	19727.63	19570.75	19735.08	19727.36	19733.52	
Gaussian	$\mathbf{1 9 8 2 0 . 2}$	19734.93	19736.18	19565.34	19743.81	19734.89	19741.29	
FGM	19782.04	19733.04	19734.2	19559.4	19741.61	19729.17	19735.43	
Plackett	19741.8	19735.41	19736.6	$\mathbf{1 9 5 5 1 . 2}$	19736.73	19728.42	19727.42	
Archimedian Copulas								
Ali-Mikhael-Haq	19788.04	19733.01	19734.24	19560.87	19741.67	19730.62	19736.82	
Clayton	19827.99	19743.47	---	19574.73	---	---	--	
Frank	---	--	19736.27	19554.91	19742.05	19726.63	19731.09	
Gumbel	19786.98	19736.97	19738.08	19563.35	19735.63	19742.95	19739.46	
Joe	19788.28	19716.21	19717.3	19551.72	19722.83	19723.36	19727.82	

Model Selection (ICOMP)

	Marginal Distributions						
Copula Specification	Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Type 7
Hybrid Copulas							
Product	19810.87	19726.34	19727.63	19570.75	19735.08	19727.36	19733.52
Gaussian	$\mathbf{1 9 8 2 0 . 2}$	19734.93	19736.18	19565.34	19743.81	19734.89	19741.29
FGM	19782.04	19733.04	19734.2	19559.4	19741.61	19729.17	19735.43
Plackett	19741.8	19735.41	19736.6	19551.2	19736.73	19728.42	19727.42
Archimedian Copulas							
Ali-Mikhael-Haq	19788.04	19733.01	19734.24	19560.87	19741.67	19730.62	19736.82
Clayton	19827.99	19743.47	---	19574.73	---	---	---
Frank	---	---	19736.27	19554.91	19742.05	19726.63	19731.09
Gumbel	19786.98	19736.97	19738.08	19563.35	19735.63	19742.95	19739.46
Joe	19788.28	19716.21	19717.3	19551.72	19722.83	19723.36	19727.82

Model Selection (ICOMP)

	Marginal Distributions						
Copula Specification	Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Type 7
Hybrid Copulas							
Product	19810.87	19726.34	19727.63	19570.75	19735.08	19727.36	19733.52
Gaussian	19820.2	19734.93	19736.18	19565.34	19743.81	19734.89	19741.29
FGM	19782.04	19733.04	19734.2	19559.4	19741.61	19729.17	19735.43
Plackett	19741.8	19735.41	19736.6	19551.2	19736.73	19728.42	19727.42
Archimedian Copulas							
Ali-Mikhael-Haq	19788.04	19733.01	19734.24	19560.87	19741.67	19730.62	19736.82
Clayton	19827.99	19743.47	---	19574.73	---	---	---
Frank	---	---	19736.27	19554.91	19742.05	19726.63	19731.09
Gumbel	19786.98	19736.97	19738.08	19563.35	19735.63	19742.95	19739.46
Joe	19788.28	19716.21	19717.3	19551.72	19722.83	19723.36	19727.82

- Red indicates the ICOMP statistic for traditional Gaussion copula model with normal margins
- Green indicates the best-fit Plackett copula model with Type 4 marginal distributions

DIFFERENT MARGINAL DISTRIBUTIONS ARE:

l. normal/normal/normal
2. logistic/logistic/logistic
3. normal/logsitic/logistic
4. normal/t-dist/t-dist
5. normal/logistic/t-dist
6. normal/t-dist/logistic
7. logistic/t-dist/t-dist

Model Selection (ICOMP)

	Type 4 Margins	
Regime 0: Plackett	AIC	ICOMP
Regime 1: Plackett	19551.22	19728.4
Regime 1: Product	19558.02	19728.64
Regime 1: Gaussian	19552.03	19729.21
Regime 1: FGM	19559.91	19737.09
Regime 1: AMH	19559.91	19737.09
Regime 1: Clayton	19560.02	19737.21
Regime 1: Frank	19560.02	19737.2
Regime 1: Gumbel	19554.76	19731.94
Regime 1: Joe	19547.8	19724.98
Regime 1: Plackett		
Regime 1: Plackett	19551.22	19728.4
Regime 0: Product	19564.54	19735.16
Regime 0: Gaussian	19565.02	19742.2
Regime 0: FGM	19550.77	19727.96
Regime 0: AMH	19552.38	19729.57
Regime 0: Clayton	19566.54	19743.72
Regime 0: Frank	19547.87	19725.05
Regime 0: Gumbel	19559.2	19736.38
Regime 0: Joe	19554.54	19731.72

Estimation Results

Variables	Selection Equation (1/0)	
	β	t-stat
Constant	-1.84	-12.96
Household Income		
Less than \$10,000	---	---
\$15,000 to \$24,999	---	---
\$25,000 to \$34,999	---	---
High income (1 if income > 100,000)	0.41	9.40
Housing Status		
Own house	0.14	2.28
Rent	---	---
Life cycle classification of HH		
2+ adults, retired, no children	---	---
Number of employed members	---	---
Count of HH trips on travel day	---	---
Three or more vehicles	---	---
Daily bike use	0.28	2.01
Daily smartphone use to access internet	0.18	3.16
Daily internet use	0.33	2.31
Travel is NOT a financial burden	0.20	3.38
Identification/Copula Parameters		
Copula device	---	
Marginal distribution	Normal/Probit	
Sigma (Regimes Specific)	---	---
Dependence (Regime Specific)	---	---
Kendall Tau	---	---
DOF-t marginal distributions	---	---

Estimation Results

Variables	Selection Equation (1/0)		Regime 0 (Not Plug-inHybrid)	
	-	t-stat	β	t-stat
Constant	-1.84	-12.96	3.04	77.69
Household Income				
Less than \$10,000	---	---	-0.41	-2.37
\$15,000 to \$24,999	---	---	-0.44	-4.51
\$25,000 to \$34,999	---	---	-0.26	-3.26
High income (1 if income > 100,000)	0.41	9.40	---	---
Housing Status				
Own house	0.14	2.28	---	---
Rent	---	---	-0.22	-4.47
Life cycle classification of HH				
2+ adults, retired, no children	---	---	-0.14	-3.97
Number of employed members	---	---		
Count of HH trips on travel day	---	---	0.06	23.50
Three or more vehicles	---	---		
Daily bike use	0.28	2.01	-0.59	-4.79
Daily smartphone use to access internet	0.18	3.16	---	---
Daily internet use	0.33	2.31	---	---
Travel is NOT a financial burden	0.20	3.38	---	---
Identification/Copula Parameters				
Copula device	---		Plackett copula	
Marginal distribution	Normal/Probit		t-distribution	
Sigma (Regimes Specific)	---	---	0.98	43.60
Dependence (Regime Specific)	---	---	0.30	4.14
Kendall Tau	---	---		
DOF-t marginal distributions	---	---		

Estimation Results

Variables	Selection Equation (1/0)		Regime 0 (Not Plug-inHybrid)	
	-	t-stat	β	t-stat
Constant	-1.84	-12.96	3.04	77.69
Household Income				
Less than \$10,000	---	---	-0.41	-2.37
\$15,000 to \$24,999	---	---	-0.44	-4.51
\$25,000 to \$34,999	---	---	-0.26	-3.26
High income (1 if income > 100,000)	0.41	9.40	---	---
Housing Status				
Own house	0.14	2.28	---	---
Rent	---	---	-0.22	-4.47
Life cycle classification of HH				
2+ adults, retired, no children	---	---	-0.14	-3.97
Number of employed members	---	---		
Count of HH trips on travel day	---	---	0.06	23.50
Three or more vehicles	---	---		
Daily bike use	0.28	2.01	-0.59	-4.79
Daily smartphone use to access internet	0.18	3.16	---	---
Daily internet use	0.33	2.31	---	---
Travel is NOT a financial burden	0.20	3.38	---	---
Identification/Copula Parameters				
Copula device	---		Plackett copula	
Marginal distribution	Normal/Probit		t-distribution	
Sigma (Regimes Specific)	---	---	0.98	43.60
Dependence (Regime Specific)	---	---	0.30	4.14
Kendall Tau	---	---		
DOF-t marginal distributions	---	---		

Estimation Results

Variables	SelectionEquation (1/0)		Regime 0 (Not Plug-in Hybrid)		Regime 1 (Plug-in Hybrid/Electric)	
	β	t-stat	β	t-stat	β	t-stat
Constant	-1.84	-12.96	3.04	77.69	1.75	11.45
Household Income						
Less than \$10,000	---	---	-0.41	-2.37	---	---
\$15,000 to \$24,999	---	---	-0.44	-4.51	---	---
\$25,000 to \$34,999	---	---	-0.26	-3.26		
High income (1 if income > 100,000)	0.41	9.40	---	---	0.53	5.96
Housing Status						
Own house	0.14	2.28	---	---	---	---
Rent	---	---	-0.22	-4.47	---	---
Life cycle classification of HH						
2+ adults, retired, no children	---	---	-0.14	-3.97	---	---
Number of employed members	---	---			0.14	3.30
Count of HH trips on travel day	---	---	0.06	23.50	0.04	6.86
Three or more vehicles	---	---			0.32	3.50
Daily bike use	0.28	2.01	-0.59	-4.79	-0.29	-1.83
Daily smartphone use to access internet	0.18	3.16	---	---	---	---
Daily internet use	0.33	2.31	---	---	---	---
Travel is NOT a financial burden	0.20	3.38	---	---	---	---
Identification/Copula Parameters						
Copula device	---		Plackett copula		Joe copula	
Marginal distribution	Normal/Probit		t-distribution		t-distribution	
Sigma (Regimes Specific)	---	---	0.98	43.60	0.89	15.05
Dependence (Regime Specific)	---	---	0.30	4.14	1.81	14.57
Kendall Tau	---	---	-0.26		0.31	
DOF-t marginal distributions	---	---	14.93		10.38	

Estimation Results

Variables	Selection Equation (1/0)		Regime 0 (Not Plug-in Hybrid)		Regime 1 (Plug-in Hybrid/Electric)	
	β	t-stat	β	t-stat	β	t-stat
Constant	-1.84	-12.96	3.04	77.69	1.75	11.45
Household Income						
Less than \$10,000	---	---	-0.41	-2.37	---	---
\$15,000 to \$24,999	---	---	-0.44	-4.51	---	---
\$25,000 to \$34,999	---	---	-0.26	-3.26		
High income (1 if income > 100,000)	0.41	9.40	---	---	0.53	5.96
Housing Status						
Own house	0.14	2.28	---	---	---	---
Rent	---	---	-0.22	-4.47	---	---
Life cycle classification of HH						
2+ adults, retired, no children	---	---	-0.14	-3.97	---	---
Number of employed members	---	---			0.14	3.30
Count of HH trips on travel day	---	---	0.06	23.50	0.04	6.86
Three or more vehicles	---	---			0.32	3.50
Daily bike use	0.28	2.01	-0.59	-4.79	-0.29	-1.83
Daily smartphone use to access internet	0.18	3.16	---	---	---	---
Daily internet use	0.33	2.31	---	---	---	---
Travel is NOT a financial burden	0.20	3.38	---	---	---	---
Identification/Copula Parameters						
Copula device	---		Plackett copula		Joe copula	
Marginal distribution	Normal/Probit		t-distribution		t-distribution	
Sigma (Regimes Specific)	---	---	0.98	43.60	0.89	15.05
Dependence (Regime Specific)	---	---	0.30	4.14	1.81	14.57
Kendall Tau	---	---	-0.26		0.31	
DOF-t marginal distributions	---	---	14.93		10.38	

Estimation Results

Variables	SelectionEquation (1/0)		Regime 0 (Not Plug-in Hybrid)		Regime 1 (Plug-in Hybrid/Electric)	
	β	t-stat	β	t-stat	β	t-stat
Constant	-1.84	-12.96	3.04	77.69	1.75	11.45
Household Income						
Less than \$10,000	---	---	-0.41	-2.37	---	---
\$15,000 to \$24,999	---	---	-0.44	-4.51	---	---
\$25,000 to \$34,999	---	---	-0.26	-3.26		
High income (1 if income > 100,000)	0.41	9.40	---	---	0.53	5.96
Housing Status						
Own house	0.14	2.28	---	---	---	---
Rent	---	---	-0.22	-4.47	---	---
Life cycle classification of HH						
2+ adults, retired, no children	---	---	-0.14	-3.97	---	---
Number of employed members	---	---			0.14	3.30
Count of HH trips on travel day	---	---	0.06	23.50	0.04	6.86
Three or more vehicles	---	---			0.32	3.50
Daily bike use	0.28	2.01	-0.59	-4.79	-0.29	-1.83
Daily smartphone use to access internet	0.18	3.16	---	---	---	---
Daily internet use	0.33	2.31	---	---	---	---
Travel is NOT a financial burden	0.20	3.38	---	---	---	---
Identification/Copula Parameters						
Copula device	---		Plackett copula		Joe copula	
Marginal distribution	Normal/Probit		t-distribution		t-distribution	
Sigma (Regimes Specific)	---	---	0.98	43.60	0.89	15.05
Dependence (Regime Specific)	---	---	0.30	4.14	1.81	14.57
Kendall Tau	---	---	-0.26		0.31	
DOF-t marginal distributions	---	---	14.93		10.38	

Treatment Effects

Treatment Effects	Trivariate-Joint Normality	Trivariate-Joint Switching	Trivariate-Joint Switching
	Gaussian copulas	Plackett-Joe Copulas	Plackett-Joe Copulas
	Normal margins	Normal margins	Normal/t-distribution/t- distribution
	-0.384	-1.38	

Closure

- Plug-in Hybrid/EV households travel on-average significantly less distance than their counterparts.
- Presence of self-selection effects.
- Standard approaches (if assumptions violated): provide misleading effects.
- Joint estimation of the behavioral system: Better than standard approaches.
- Given joint estimation, not only different marginal distributions, but also dependence structures yield much different effects.
- Future Work:

Analyze households that have both HEVs and PHEVs (Extend methodological framework)
$>$ Link HEV- and PHEV-VMT to each of the vehicle type
$>$ Look into vehicle use of conventional vehicles vis-à-vis AFVs

Thank YOU

Behram Wali

bwali@vols.utk.edu

www.bwali.weebly.com

- Collaborative Sciences Center for

Collaborative Sciences Center for CRUAD SAFETY

(3) ENERGY

卷OAK RIDGE
${ }^{2}$ National Laboratory

[^0]: Notes: For Plackett, $r=1+(\theta-1)\left(u_{1}+u_{2}\right)$. For Joe, $\widetilde{u}_{j}=1-u_{j}$.

