Emerging Datasets Used in Advanced Freight Models

Kaveh Shabani (RSG) Maren Outwater (RSG) Colin Smith (RSG) Jeffrey Purdy (FHWA)

EXECUTIVE SUMMARY

Data is a vital element of a freight model. Limited availability of data on goods movement previously hampered freight models; however, recent sources of new data combined with new methods have allowed freight models to advance. Technological advances associated with collecting business information have been exponential, leading to a massive increase in the amount of data that is generated, stored, and distributed.

New data sources collected from mobile or navigational systems have provided opportunities for calibration and validation of advanced freight models. This poster details the emerging freight data sources utilized by behavioral/agent-based freight models developed in the United States.

1 Types of Data for Behavioral Freight Models

Behavioral supply chain freight models often use the following eight types of model input data:

- ☐ Zone Systems
- Network Systems
- Employment Data
- Economic Data
- □ Transfer Facilities

☐ Freight Surveys

- ☐ Freight Flows
- ☐ GPS Data

Available data for model calibration/validation typically fall into five categories:

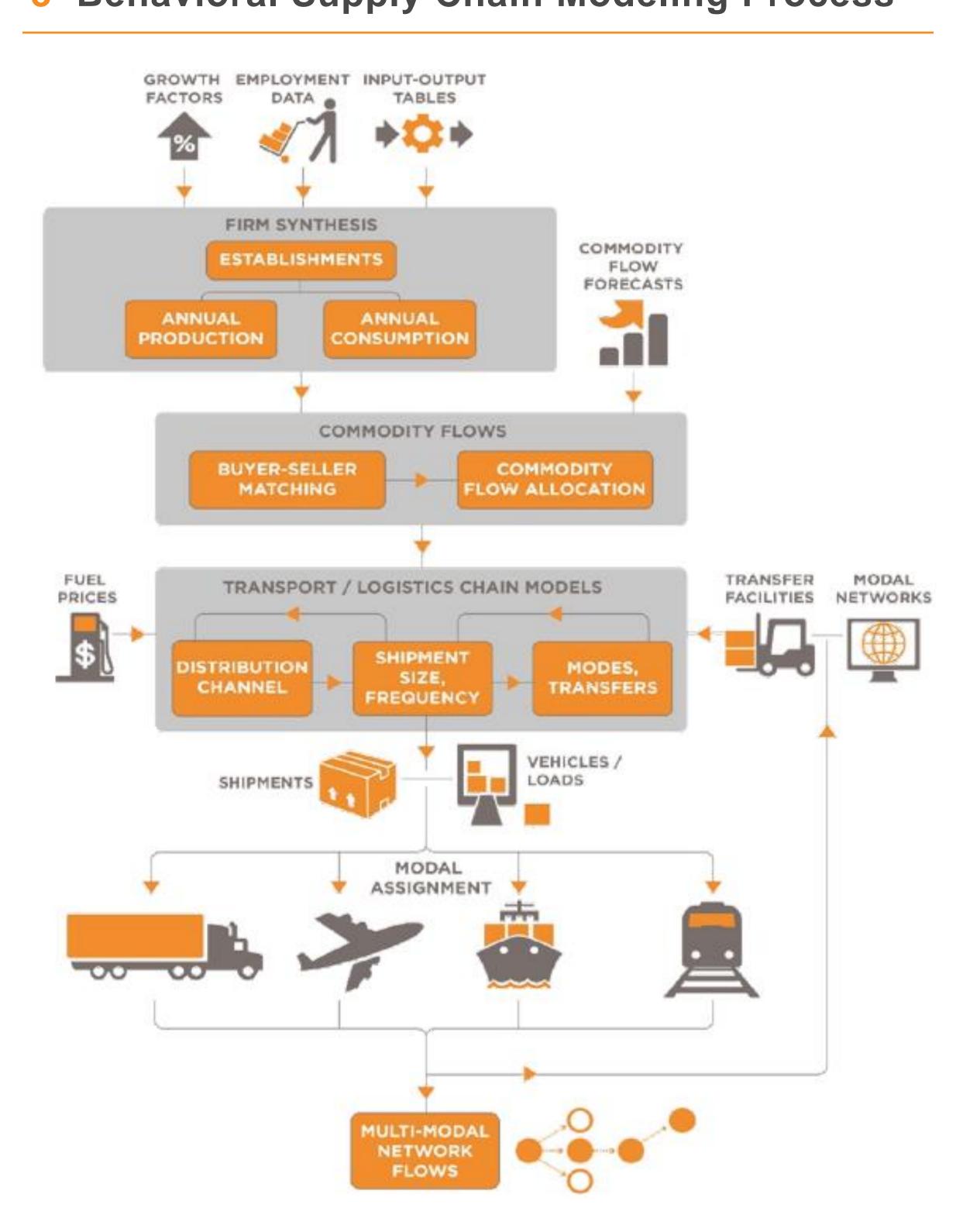
- ☐ Freight Surveys
- ☐ Freight Flow Data
- ☐ Truck GPS Data
- Weight Data
- Modal Volumes

2 Emerging Data Sources

Acquiring the data and finding the resources required to support a behavioral supply chain model is often challenging, given the privacy and confidentiality issues surrounding supply chain data. Advanced freight travel demand modeling in the U.S. often use publicly available data sources along with emerging/big data to model freight movements. Emerging/big data often require some level of effort to process and clean before it is available for use.

CFS PUM

This is the first public-use microdata that BTS and Census released in 2015. It includes approximately 4.5 million individual shipments reported by business establishments captured from the 2012 CFS.


Truck GPS Data

It typically includes data on travel time, origin-destination, and time of travel. Passively collected GPS data offer a partial solution to the challenge of collecting data on commercial vehicles. Private vendors (e.g., ATRI, Streetlight) offer large samples of GPS data. Also, private vendors (e.g. EROADS, INRIX) provide additional attributes on commercial vehicle travel, such as truck type, commodity or industry group, and weight.

2 Primary Data Sources and Modeling Needs

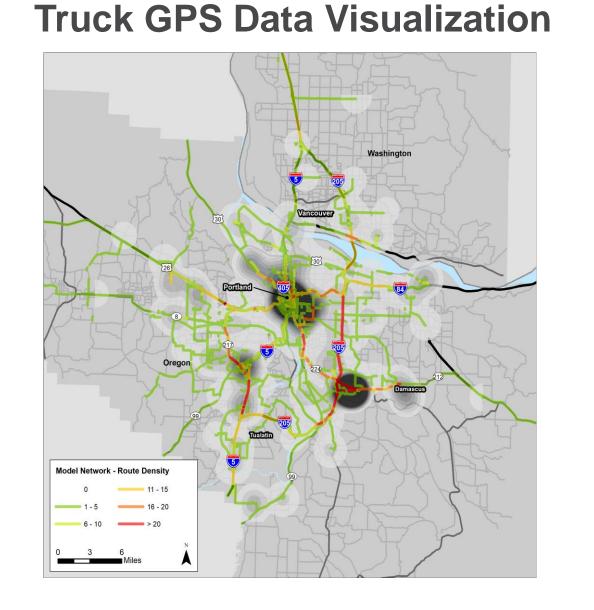
There are multiple data sources used by agencies to estimate, calibrate, validate and forecast a freight modeling system. Primary data sources used for behavioral supply chain freight models are summarized below including details on each data. The first table does not include observed data (e.g., truck counts, Weigh-in-Motion [WIM] data) or local survey data available from local agencies.

Behavioral Supply Chain Modeling Process

Truck GPS Data and Freight Surveys

Several states and regional transportation agencies have conducted freight surveys and have used the results to estimate model parameters for behavioral supply chain freight models. The following types of surveys have been used in advanced freight models:

- The Ohio statewide survey (2004)
- Five regional surveys conducted in Texas (2001–2006)
- The Maricopa Association of Governments (MAG) regional survey (2016)
- The Portland Metro regional survey (2016)

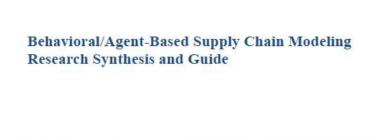

Truck surveys is an emerging data source used in advanced freight models development. See sample screenshots of the truck survey (rMove) done in Portland, OR and used in developing its freight model.

Primary Data Sources by Modeling Needs and Availability

Data Source	Spatial	Temporal	Modes	Model Inputs	Model Estimation	Model Calibration	Model Validation
CBP	County	Annual	N/A	✓	✓	✓	✓
BEA IO Accounts	National	Annual	N/A	✓	✓	-	-
FAF	FAF Zone	Annual	All Modes	✓	✓	✓	✓
Transearch	County	Annual	All Modes	✓	✓	✓	✓
T-100	Airport	Annual	Air	-	_	✓	✓
VIUS	State	2002	Truck	✓	✓	_	_
CFS	CFS Area	Every five years	All Modes	-	✓	✓	✓
ATRI	Truck O-D	Daily	Truck	-	_	✓	✓

Supply Chain Behavioral Freight Forecasting Models and Emerging Data Sources

Model	Region	Context	Inputs	Data Used for Estimation	Data Used for Calibration/Validation
Chicago	Chicago Metro	Freight	CBP, CFS	BEA IO, CFS PUM, FAME	CFS, FAME, FAF, VIUS, Counts
Florida	State of Florida	Freight	CBP, FAF, InfoGroup	BEA IO, CFS, FAME, Survey	ATRI, T-100, PIERS, WIM, Transearch, FAF, Counts
Baltimore/Maryland	Baltimore	Freight and Services	CBP, FAF	BEA IO, FAME, Surveys	ATRI, CFS, FAME, FAF, VIUS, Counts
Portland	Portland Metro	Freight and Services	CBP, FAF, USDA	BEA IO, INRIX, EROAD, FAME, Surveys	CFS, FAME, FAF, VIUS, Surveys, Counts
Phoenix	Phoenix	Freight and Services	CBP, IMPLAN, FAF, Transearch, CFS	BEA IO, CFS PUM,NETS, ATRI, Streetlight, Survey	FAF, Transearch, NETS, InfoGroup, Counts
Oregon	State of Oregon	Integrated Model	USACE, T-100, Waybill	BEA IO, CFS, FAF	FAF, Counts, HERE, Survey, CFS
Wisconsin	State of Wisconsin	Freight and Services	CBP, FAF	ATRI, FAME	Transearch, Counts



Truck survey (rMove)

●●○○○ Verizon 令 8:25 PM 	••○○○ Verizon ? 8:25 PM	●●●○○ Verizon 令 9:24 AM		
5:47 PM-6:08 PM Show map	5:47 PM-6:08 PM Show map	naily Survey		
What was the primary activity of this trip you made for work?	What primary type of off-site commercial service(s) did you provide at your destination?	What type of vehicle(s) did you use to make your trips for work on Mar 30?		
Provide services		Please select all that apply.		
Pick up material or equipment	Agriculture, forestry, fishing or hunting support services	Car, small van, truck (< 8,500 lbs.)		
Drop off material or equipment	Mining, quarrying, oil or gas extraction services	Single-unit truck (>= 8,500 lbs.)		
Drop off and pick up material or equipment	Utility services	Multi-unit truck		
Pick up/Drop off material or	Construction or building services	Other		
equipment AND provide service(s)	Transportation or storage services			
Previous Next	Previous Next	Previous Next		

Publication

FHWA recently published "Behavioral/Agent-Based Supply Chain Modeling Research Synthesis and Guide" report. This report and guide evaluates recent advancements in behavioral freight models and supports the broader application of these methods to forecast future freight flows. Public agencies interested in developing these models can use this synthesis to assess the feasibility and practicality of developing similar models for their own regions based on the experiences of other agencies.

