

Implementing Freight Fluidity in Texas

Bill Eisele March 2019

Innovations in Freight Data Workshop, April 2019
Transportation Research Board

What is Freight Fluidity?

From end-to-end of a supply chain, the measurement of

Methodology

Three key parts to a fluidity analysis:

- Framework Development, based on initial data collection
- 2. Economic Assessment, of state and region
- 3. Performance Measurement, application of performance measures in relation to supply chain corridors or routes

Step 1: Framework Development

- Provided a foundation and roadmap for the fluidity analysis
- Considered several questions
 - What is "freight fluidity" and what does it mean for Texas?
 - What are specific freight fluidity performance measures?
 - What data are available to support the measures?
 - What are possible calculation procedures for the measures?
 - How can freight fluidity be communicated and used to support freight investment decisions in Texas?
- <u>Set a vision</u> for what TxDOT was trying to measure with fluidity, what data were needed, the best analysis options, and how the information would be used to communicate with decision-makers/leadership and the public

Step 2: Economic Analysis for Texas

Identify economic opportunity
and related supply chains
needed to grow economic
development

Understand the role of the statewide region for supply chains

<u>activity</u>: general economy, transportation and supply chain Identify available and required data sources & features for regional supply chain assessment

Step 3: Apply Performance Measures to Key Supply Chain Routes

- Perform bottleneck analysis on desired supply chain routes.
 - TxDOT chose Houston, I-35, Dallas/Fort Worth and El Paso.
- Connect findings to current and potential economic activity.
 - What ways would investment improve bottlenecks and current and potential supply chains?
 - Shorten them?
 - Efficiencies?
 - Attract new business?

Step 3: Sub-Steps to Apply Performance Measures

This Step has four activities:

- Consult the Urban Mobility Scorecard (UMS) to know the rankings of the selected areas for congestion nationally.
- 2. Review the Texas 100 Most Congested Roadways List (Texas 100)
- 3. Use tools like contour maps, heat maps and travel time
- 4. <u>Calculate freight fluidity measures</u> (identify and measure bottlenecks)

Step 3, Sub-step 1:Consult UMS

- Findings drawn from traffic speed data on 1.3 million miles of urban streets and highways
- Highway performance data from the Federal Highway Administration
- Comprehensive analysis of traffic conditions in 471 urban areas across the United States, including 33 in Texas.

Sub-Step 1: Consult UMS for Dallas-Fort Worth Area

Freight Fluidity Example

Macro-level analysis

53 hours/year in delay per auto commuter

(11th in US, 2nd in Texas)

\$702 million in total truck congestion cost

(7th in US)

187 million person-hours of delay

(7th in US)

\$4.2 billion in wasted time and fuel

(7th in US)

Step 3, Sub-step 2: Use The Texas 100/Texas 50 Lists

• Identify the most problematic segments in the area base on the lists. Lists are yearly bottleneck rankings
Table 1. Problematic Segments Identified in the Texas 100 Most Congested Roadways List

		Top 100 Most Congested for Commuters			
	#24: I-35W (SH 183 to I-30), 3.37 miles				
	420K annual person-hours delay per mile	1.4M annual person-hours delay	\$29.5M annual congestion cost (\$8.8M/mile)		
#28: I-35W (US 287 to SH 183), 6.39 miles					
	404K hours delay per mile	2.6M hours delay	\$52.9M cost (\$8.3M/mile)		
	#88: I-35W (Alliance Gateway/SH 170 to US 287), 5.09 miles				
	184K hours delay per mile	935K hours delay	\$19.1M cost (\$3.7M/mile)		
	Top 50 Most Congested Freight Bottlenecks				
	#13: I-35W (SH 183 to I-30), 3.37 miles				
1	31K hours annual truck delay per mile	106K annual hours of truck delay	\$5.4M annual truck congestion cost (\$1.6M/mile)		
#23: I-35W (US 287 to SH 183), 6.39 miles					
	26K hours per mile	165K hours of delay	\$8.5M cost (\$1.3M/mile)		
	#55: I-35W (Alliance Gateway/SH 170 to US 287), 5.09 miles				
7 Ti	12K hours delay per mile	62K hours of delay	\$3.1M cost (\$0.6M/mile)		
	Most Congested	Under Construction			

• Use contour maps, travel-time traces and other tools to visualize the analysis.

I-35W from SH 183 to I-30 (3.37 miles)

#24 All-Traffic - #13 Freight

Congestion	Passenger	Truck
Annual delay per mile (hours)	420,000	31,000
Annual delay: person/truck hours	1,400,000	106,000
Annual congestion cost	\$29,500,000	\$5,400,000

Use Contour Map to identify corridor delays

(note the short distance from Alliance to **Alliance Airport** the contour on southbound I-35W) Weekday 5 PM Travel Time Contour from Alliance Airport 1171 Lewisville Flower Mound

Hypothetical Scenario

Step 3, Sub-Step 3: Visualize Data (Travel Time Traces)

– Weekday Travel Time · · · · · Weekday 95th Percentile TT – Weekend Travel Time · · · · · Weekday 95th Percentile TT

Identify solution:

Suggest benefit potential by addressing problems along the 3.37-mile segment of I-35W between SH 183 and I-30.

Step 4: Performance Measures for Freight Fluidity

- Apply measures of travel time, travel time reliability and costs to the routes/corridors identified.
- Use cross-checks of Texas 100 and Texas
 50 bottleneck lists.

Advantages Of The Freight Fluidity Approach

Focuses on improvements that can also create and attract jobs

Aids in improving the Texas economy by improving local freight infrastructure

Freight Fluidity Analysis Is A Useful Tool, But Not The Only Tool

Other Factors Must Be Considered

- Current or planned construction in the area
- Event venues nearby
- Factors unique to the area
- Other considerations
- Project Planning, Modeling

Contact Information

Bill Eisele

Texas A&M Transportation Institute

979-317-2461 (This is New!)

b-eisele@tti.tamu.edu

(And find me on LinkedIn)

