Trucks and the Port of Virginia: Understanding Freight Patterns with Big Data

Presented to TRB Innovations in Freight Data Workshop Tuesday April 9, 1:00pm

> Joanathan McIntosh StreetLight Data joan.mcintosh@streetlightdata.com

Robert B. Case, PhD, PE Hampton Roads Transportation Planning Organization rcase@hrtpo.org

Agenda

- I. Introduction
 - Rob w/ HRTPO
- II. Using ATRI data via R
 - Rob w/ HRTPO
- III. Big data resources and analytics for trucks
 - Joanathan w/
 StreetLight Data
- IV. Using StreetLight Data
 - Rob w/ HRTPO
- V. Q&A

Purpose

To measure highway gateway usage by port trucks

- Inform highway
 project
 prioritization
- Inform current highway studies
- Support funding applications

Data sources

Initial: American Transportation Research Inst. (ATRI)
 Not-for-profit conducting trucking industry research

• Final: StreetLight Data

II. Using ATRI data via R

ATRI Data

- Time period:
- Trucks:
- Location records:
 Typical ping rate:

Sep 2014 23,291 unique trucks 7.5m pings once per minute

- Processing:
 - Initial:
 - Final:

Microsoft Access R (language)

Port Truck Pings, Sep 2014

Ports

Gateways

Between latitudes 36.8695 and 36.8791, and between longitudes -76.3616 and -76.3475

Identifying Trucks Visiting a Port

Programming R to find trucks in a box

> POV	truckPings\$	in168window<	-POVtruckF	°ings\$x≻(-7	6.2575) & P	OVtruckPing	s\$x<(-7)	6.1724) & H	OVtruckE	?ings\$y	>(36.5515) &	POVtru	ckPings\$y<(36.	.6766)	
> obj	ects()														
[1]	"ATRIdata"		"NII	truckdates		"NITtru	ckdates:	in64window'	"NII	truckd	atesinHBIIwi	.ndow"	"NITtruckPings	3"	
[6]	"NITtruckPin	ngsin64windo	w" "NII	truckPings	inHBIIwindo	w" "NITtru	ckPings:	inHBwindow'	' "NIT	[truckP	ingsinTBwind	low"	"NITwindowPing	js"	
[11]	"POVtruckda	tes"	"POV	/truckdates	in10window"	"POVtru	ckdates:	in13_32wind	low" "POV	/truckd	atesin17Cwir	ldow"	"POVtruckdates	sin17Gwindow"	
[16]	"POVtruckda	tesin460wind	ow" "POV	/truckdates	in58window"	"POVtru	ckdates:	in64window'	"POV	/truckd	atesinCBBTwi	.ndow"	"POVtruckPings	3"	
[21] "POVtruckPingsin10window" "POVtruckPings:			in13_32wind	_32window" "POVtruckPingsin17Cwindow"			" "POV	"POVtruckPingsin17Gwindow"			"POVtruckPingsin460window"				
[26]	"POVtruckPi	ngsin58windo	w" "POV	/truckPings	in64window"	"POVtru	ckPings:	inCBBTwindo	w" "POV	Window	sPings"		"temp"		
> POV	'truckPingsi	n168window<-	subset (POV	/truckPings	, subset=PO	VtruckPints	\$in168w:	indow)							
Error	in eval(e,	x, parent.f	rame()) :	object 'PO	VtruckPints	' not found									
> POV	truckPingsi	n168window<-	subset (POV	/truckPings	, subset=PO	VtruckPings	\$in168w:	indow)							
> hea	d (POVtruckP	ingsin168win	dow)												
		truckdat	e	x y	truckid	readdate	speed l	heading inh	IITwindow	/ inNNM	Twindow inVI	Gwindow	inPOVwindows	truckdate.Freq	inTBwindow
50741	9 242055191	02014-09-1	6 -76.2419	3 36.56797	2420551910	2014-09-16	39	NW	FALSE	2	FALSE	FALSE	FALSE	10	FALSE
50742	1 242055191	02014-09-1	6 -76.2323	2 36.56478	2420551910	2014-09-16	41	NW	FALSE	2	FALSE	FALSE	FALSE	10	FALSE
50743	0 242055191	02014-09-1	6 -76.2037	0 36.60767	2420551910	2014-09-16	40	S	FALSE	2	FALSE	FALSE	FALSE	10	FALSE
50743	8 242055191	02014-09-1	6 -76.2562	9 36.56184	2420551910	2014-09-16	30	NE	FALSE	2	FALSE	FALSE	FALSE	10	FALSE
50744	7 242055191	02014-09-1	6 -76.2159	9 36.63286	2420551910	2014-09-16	56	N	FALSE	2	FALSE	FALSE	FALSE	10	FALSE
50745	2 242055191	02014-09-1	6 -76.1995	5 36.56737	2420551910	2014-09-16	54	S	FALSE	2	FALSE	FALSE	FALSE	10	FALSE
	in13_32wi	ndow in58win	dow in460w	/indow in10	window in64	window in17	Gwindow	inCBBTwind	low in170	Window	in168window	T			
50741	.9 F.	ALSE FA	LSE	FALSE	FALSE	FALSE	FALSE	FAI	.SE	FALSE	TRUE				
50742	1 F	ALSE FA	LSE	FALSE	FALSE	FALSE	FALSE	FAI	.SE	FALSE	TRUE				
50743	0 F	ALSE FA	LSE	FALSE	FALSE	FALSE	FALSE	FAI	.SE	FALSE	TRUE				
50743	8 F.	ALSE FA	LSE	FALSE	FALSE	FALSE	FALSE	FAI	.SE	FALSE	TRUE				
50744	7 F.	ALSE FA	LSE	FALSE	FALSE	FALSE	FALSE	FAI	SE	FALSE	TRUE				
50745	2 F.	ALSE FA	LSE	FALSE	FALSE	FALSE	FALSE	FAI	SE	FALSE	TRUE				
> tem	p<-data.fra	me(x=POVtruc	kPingsin16	8window\$x,	y=POVtruck	Pingsin168w	indow\$y)							

> vempx-data.irame(x-roveruckringsini68window\$x, y=POvtruckringsin168 > write.csv(temp,file="POVtruckPingsin168window.csv",row.names=FALSE)

Identifying trucks using a gateway

III. Big Data Resources and Analytics for Trucks

STREETLIGHT DATA PROPRIETARY AND CONFIDENTIAL | 13

Put Big Data to Work with **StreetLight Data** We simplify data-driven infrastructure and policy planning by providing the best Big Data resources and software together.

What Big Data are we working with?

Mobile device data from ~23% of US and Canadian adults and ~12% of commercial truck trips.

Video shows a subset from Oct 8th, 2017 in San Bernardino, California.

STREETLIGHT DATA PROPRIETARY AND CONFIDENTIAL | 15

StreetLight InSight® turns Big Data into actionable transportation analytics on demand

STREETLIGHT DATA PROPRIETARY AND CONFIDENTIAL

We offer the best combination of data resources for understanding travel behavior

CONTEXTUAL DATA

Road Network Maps

Parcel Data

American Community

Surveys

LOCATIONAL BIG DATA

Navigation-GPS Data

- Segments commercial trucks
- 28B+ data points/month

Location-Based Services Data

- Large sample size
- 32B+ data points/month

Our Navigation-GPS Data is Recommended for Commercial Truck Studies

Our Analytics for Commercial Trucks

Commercial Trip Metrics	Commercial Tour Metrics					
 For Trips Touching 1 Zone, Going between an origin/destination Select link (origin/middle/destination) Zone activity (relative) 	 For Tours Touching 1 Zone Going between a "final" O/D or "intermediary" O/D pairs With stops in a set of zones: O/D1/D2/D3 					
volume of trips)	Average total tour time/distance and distribution of total tour times/distances					
Average Values for Travel	# of trips/stops per tour					
Time, Speed and Distance	Distribution of trip/stop duration per tour					
Distributions of Travel Time, Speed, and Distance						

IV. Using StreetLight Data

Entering ports and gateways into StreetLight

Ports (where trips originate)

Gateways (where trips "pass through")

StreetLight- first try: using ports as origins

General Information							
Name: 4 Ports and 12 Gatev	/ays						
Folder: HRTPO- Rob Case	_						
Type: O-D Analysis (GPS D	ata)	=					
Premium Add-On Metrics:	None						
Created Dr. Not available v	*						
Created By. Not available y	±1	- (diffor					
Zones		(unei					
Orteta Zanas Dastination							
Origin zones Desunation	Zones Inp Filters Calibration Zones	Co					
Search		Q					
Zone Name	Pass-through Direction	on E					
Hampton Roads 4 ports -	Polygon Set with 4 Zones.						
NIT	No						
NNMT	No						
Options Standard		\rightarrow					
		A					
Trip Type		_					
Locked to Route		=					
Data Period(s)							
Jul'16, Aug'16, Sep'16, Oct'16, Nov'16, Dec'16, Jan'17, Feb'17, Mar'17, Apr'17, May'17, Jun'17							
Day Types							
Average Day: M-Su Average Weekday: M-F		-					

different) illogical results:

Checking the other end of trips

(due apparently to 5-minute stop parameter)

FIGURE 6 Virginia and North Carolina Trip "Ends" of Trucks from VIG, Jul'16-Jun'17, one dot equals 100 StreetLight Index Trucks Source: HRTPO mapping via ESRI using HRTPO staff programming of StreetLight (port trucks- StreetLight- VIG as origin.mxd)

Destinations vs. Origins- a solution?

- I ran the analyses programming the ports as "origins".
- Programming ports as **origins** captures these trips:
 - Trucks that carry **imports** from the port, going where the imports need to go... (distribution centers?).
 - Trucks that carried **exports** to the port, going... (back to get more exports?)
- Programming ports as **destinations** captures these trips:
 - Trucks that carry **exports** to the port, coming from... (where the exports were produced?)
 - Trucks that will pick up **imports** at the port, coming from... (trucking company?)
- It would be instructive to re-run the analyses programming the ports as "destinations" to see if the "other" end results differ.

That not occurring to me at the time, I looked **beyond the ports** for port-related trips that might not "end" within the region.

second try: using DCs as origins

Local Port-related Distribution Centers

- Canon Virginia
- Liebherr
- High Liner Foods
- Bauer Compressors
- Stihl
- Massimo Zanetti Beverage
- USUI Intl.
- Sumitomo
- Dollar Tree
- Lumber Liquidators
- Haynes Furniture

- Target Stores
- Caspari

•

- Ace Hardware
- J.M. Smucker
- Unilever / Lipton
- Kraft / Planters
- QVC Network
- Intl. Paper
- Cost Plus World
- Safco
- Wal-Mart
- La Tienda

What type of port business do the distribution centers represent?

Checking the other end of trips

Many StreetLight trips from distribution centers ended **outside the region**

Logical location of destinations

Note usage of ESRI

O/D Analysis: DCs & Gateways

Peninsula Distribution Centers

Southside Distribution Centers

Checking the logic of the results

I-64 and US460 serving trips to north and west

US58 serving trips to south

Implementation

- Provide gateway usage to current studies:
 - US 58 Corridor Study
 - Skiffes Creek Connector
 - US 460/58/13 Connector
 - Regional Connectors Study
- Consider gateway usage when scoring projects via HRTPO Prioritization Tool

– "increase access to port facilities" (10 points)

Questions?

Joanathan McIntosh StreetLight Data joan.mcintosh@streetlightdata.com

Robert B. Case, PhD, PE Hampton Roads Transportation Planning Organization rcase@hrtpo.org

