Truck Activity Pattern Classification Using Anonymous Mobile Sensor Data

TRB Innovations in Freight Data Workshop

Taslima Akter Doctoral Candidate, Department of Civil Engineering University of Arkansas

Advisor: Dr. Sarah Hernandez Assistant Professor, Department of Civil Engineering University of Arkansas

Problem Statement

- Truck GPS data, a valuable source of freight movement
- Large data stream, how to deduce insights
- Does not contain industry type
- Difficult to use in commodity based freight forecasts

Research Question

Can <u>truck activity patterns</u> by <u>industry type</u> be discerned from truck GPS data while maintaining anonymity?

Applications

Activity Profiles for Activity Based Models (ABM)

Commodity-based Freight Travel Demand Models

Methods "Teaser"

Industry Classification Eight industry groups classified by activity pattern

Agriculture/Livestock Oil and Gas/ Quarry Consumer Products Machinery Equipment/ Chemicals Pass-through

Support Activity Based Models for Freight using GPS Data to derive **activity patterns** Support Commodity-based Freight Travel Demand Models using GPS Data to derive **industry classification**

Outline

- 1. Background and Motivations
 - A. Commodity Based Freight Models
 - **B.** Activity Based Freight Models
- 2. Activity Pattern Classification Method and Application
- 3. Industry Classification Method and Application
- 4. Future Research

Overview of Commodity Based Models

Generation		Total Tons	Commodity Group	Commodity Name
			1	Agriculture
			2	Mining
			3	Coal
Distribution		Tons by OD	4	Nonmetallic Minerals
		,	5	Food
			6	Consumer Manufacturing
	_	\downarrow	7	Non-Durable Manufacturing
Mode Split		OD Tons by	8	Lumber
		→ Mode	9	Durable Manufacturing
		1110010	10	Paper
		•	11	Chemicals
Network		Route	12	Petroleum
Assignment		Assignment by	13	Clay, Concrete, Glass
issignment		Mode	14	Primary Metal
			15	Secondary & Misc. Mixed

Source: Arkansas Statewide Travel Demand Model, 2015

Overview of Activity Based Models

Comparison of Different Models

	Four-Step Model	Activity Based Model		
Advantages	 Predicts the 	 A disaggregated model 		
	aggregated flows	Predicts the detailed flows considering:		
	between zones	 Behavioral aspects 		
	 Historically popular 	 Individual operational decisions 		
	models	 Interactions between supply chain 		
	 Ease of development 	components		
Limitations	 Aggregation may 	 Lack of available data 		
	limit prediction	 Lots of agents increase the complexity of 		
	accuracy	the model		

Activity Profile Generation for Passenger Vehicle

"ABM system represents a person's choice of activities and associated travel as an activity pattern overarching a set of tours."

Source: Bowman and Ben-Akiva, 2001

Features

- Socio-demographic attributes
- Household data
- Vehicle data
- Land use data
- Travel events
- Travel behavior
- Time of day
- Mode choice

Data Source

- Regional planning studies
- Census data
- Surveys (e.g., household survey, travel survey, activity diaries, GPS-based travel survey, etc.)
- Social media (e.g., Twitter)

¹, ²Source: Recker, 2001; Allahviranloo and Recker, 2013; Hasan and Ukkusuri, 2014; Chung and Shalaby, 2005

Activity Profile Generation for Freight

¹ Feature Extraction

²Data Source

- Shipper characteristics
- Receiver characteristics
- Supply-chain components (e.g., shipment size, commodity type, etc.)
- Business establishments and firms
- Mode choice (i.e., road, rail, water, air, and pipeline)

- Business establishment data
- Surveys (e.g., commercial travel survey, vehicle survey, origin destination survey, etc.)
- Commercial fleet GPS data

^{1, 2}Source: De Jong and Ben-Akiva, 2007; Roorda, Cavalcante, McCabe, and Kwan, 2010; Jing and Ben-Akiva, 2018

Activity Pattern Profile Example

 Tie activity patterns to industry of truck, to use as input for freight travel demand models

 Reduce the number of unique "agents" in ABM to be representative of activity patterns for each industry

Activity Pattern Classification

Stops and Paths from a Large GPS Data

National truck GPS sample 2 week period, 82,000 trucks Stops based on speed, duration, and geographical coverage Complete, fully-connected links comprising the truck path

Feature Extraction for Daily Activity Patterns

Number of Stops/ Trips

K-Means Clustering

Model Performance: Activity Patterns

Model Performance: Activity Patterns

Industry Classification Model

Feature Extraction for Industry Classification

Total Number of Stops Near Each Grouped NAICS Code within a 2,000 Feet Buffer

Data Description: Business Layers

Agriculture

Livestock

Commercial Food Product

Oil/Gas Well

Department Stores

...and more

Data Description: Buffer Around Business Layers

Construction of Buildings	Dinstruction of Buildings		
SW/FlatrockAvo	Business Location	Probability	
	Livestock Farm	0	
	Wholesale Trade	1	
Services to Buildings and Dwellings	Restaurant	1	
Real Estate Leasing El Vaquero Mexican 700 feet			
Apartments Restaurants and other Eating Places			
Walmart Regional DC 6094			
Water Supply Tankor Standpiperibution Center 6094	Construction	1	
	Machinery	0	
Walmart DC7842	SW Greensprings Rd	20	

ARKANSAS.

Data Description: Groundtruth Process

Stop Location

Satellite Image Layer & Business Layer

Consumer Products

Linking Predicted Industry Class to Commodity

Source: Arkansas Statewide Travel Demand Model, 2015

Linking Activity Patterns to Industry

Model Performance: Industry Classification

- Random Forest Machine Learning model implemented
- 3000 samples, ~80/20 training/testing

Industry Type	ROC Area	Correctly Classified Instances (%)
Consumer Products	0.91	87
Agriculture/Livestock	0.95	81
Pass-through	0.99	75
Oil and Gas/ Quarry	0.93	73
Machinery Equipment/ Chemicals	0.94	40
Weighted Average	0.93	78

False Positive Rate

Industry Classes on Road Links

Future Work

Different methods for feature extraction

- Principal Component Analysis
- Correlation-Based Method
- Info-Gain Ratio Method
- Wrapper Method

More '*groundtruth*' data to develop the supervised learning model

Application programming interface (API) of Google satellite image to get more accurate location of the activity

Questions?

Thank You

Taslima Akter

PhD Candidate Department of Civil Engineering University of Arkansas Phone: 419-418-1368 Email: takter@uark.edu

Sarah Hernandez, PhD

Assistant Professor Department of Civil Engineering, University of Arkansas Email: sarahvh@uark.edu

