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Overview

• Commodity Flow 
Survey

• Commissioned by BTS

• Conducted every 5 
years (2012, 2017)

• Respondents provide 
sampling of 
shipments from each 
quarter
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• ITEM G - Other Clarifying Information

"Pulling this information was a huge spend of time and resources.“

"Just glad this is over!!"
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Overview
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Using Machine Learning, can we automate the 
assignment of SCTG codes to shipment records? 

(Yes.)

Overview



• Data
1. Labelled Records (6.4M) from 2017 CFS

• Preprocessing
1. “Throw out” SCTG 40999, 43999

• These are miscellaneous SCTG codes

2. Spell-check, stem, de-duplicate
3. Left with ~400,000 unique training records

• Feature engineering
1. “Bag-of-words” + TF-IDF scores

• Modelling
• Logistic Regression, “elastic net” 

regularization
• Cross-validate, hold out test set, etc.
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Initial Model
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• Initial results: ~50% 
“accuracy”
• What does that mean?
• Let’s call it “recovery”

• Should we use a more 
complex pipeline?

• Aside from 40999, 43999, 
~80 more “other” codes
• Remove these codes, 

recovery jumps to 64%
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Further Investigation



• E.g. 40994
• Sewing and knitting needles 

(includes for machines) 
crochet hooks, hook and eye 
fasteners, safety pins, 
straight pins, buttons, 
buckles and clasps, tubular 
and bifurcated rivets, snap-
fasteners, zippers, and 
similar notions.
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Further Investigation

Image courtesy Wikimedia commons



• Model’s prediction

• 33310
• Nails, screws, bolts, nuts, 

washers, staples except in 
strips, and similar fastening 
articles

• What was the NAICS Code?
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Further Investigation

Image courtesy Wikimedia commons



• Manually validating, about 
50% of items labelled 40994 
by respondents were 
miscoded.

• However, the model was 
getting it right!

• We can see the workflow 
which led to these 
miscodings
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Further Investigation



• Proof-of-concept: ran model on 170,000 unlabeled/invalid records

• 70,000 with probability score above predefined threshold [.5 – 1)
• Determined by coarse inspection

• CFS Analysts validate a sample of 350 unique records

• Also wanted to determine accuracy in the [0 - .5) threshold

• Took sampling of the other 100,000 unlabeled / invalid records.
• Model probability ranges [0 - .5)

• 60 from each range
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Let’s Experiment



Results

• Validation: 89% 
accurate in [.5 -1); 
80% in [.4 - .5)
• “Accuracy” 

definition

• Batch-edits have 
saved ~1000 
hours of manual 
editing time
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Figure: validation accuracy for each 
model probability / confidence range. 
Bars are 95% Bernoulli CI



Applications – Batch Classifier
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Applications – Top Words
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• To move forward, we need 
cleaner training data

• Mechanical Turk
• Start w/ predictions from 

current best model

• Relabel ~15,000 records 
from NAICS index

• Turkers choose among top 
7-10 predictions from 
model
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Future Work



• How do we ensure quality?

• Gateway task
• Label 50 “gold standard” records
• Must be at least 60% accurate on min. 5 records

• “Quadruple-key entry”
• 4 workers label each record
• Take a vote
• Total disagreement? This record needs manual investigation.

• Continuous Validation
• Inter-rater agreement
• Include more gold standard during actual task
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MTurk - Implementation
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Figure caption 
in slide notes.
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Q: How do we reduce suppressions in our current estimates or 
provide more detail for data users?
A: More data

Q: How do we collect data more often than every 5 years?
A: Reduce respondent burden

Q: How do we collect more data AND reduce respondent burden?

Future Work – Bigger Picture
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How the survey process works

Questionnaire 
mailed

Data 
received by 

Census

Extract shipment 
data from ERP/TMS

Sample 
shipments

Find 
SCTG 
codes

Enter data into 
online 

questionnaire

U.S. Census Bureau Survey Respondent
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Respondent Burden

Questionnaire 
mailed

Data 
received by 

Census

Extract shipment 
data from ERP/TMS

Sample 
shipments

Find 
SCTG 
codes

Enter data into 
online 

questionnaire

U.S. Census Bureau Survey Respondent
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How do we collect more data AND reduce 
respondent burden?

Questionnaire 
mailed

Data 
received by 

Census

Extract shipment 
data from ERP/TMS

Sample 
shipments

Find 
SCTG 
codes

Enter data into 
online 

questionnaire

U.S. Census Bureau Survey Respondent
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• More data

• More often

• Higher quality data

• Less respondent burden

• For less money?

Automated transfers of shipment records 
from shippers to Census can provide



We want your input!

• SCTG search/classify tool

• What would you care about 
the most?

• E.g. More Timely?

• E.g. More granular 
geography?

• Spring 2020 CFS Workshop
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Thank you!

• Christian: Christian.L.Moscardi@census.gov

mailto:Christian.L.Moscardi@census.gov

