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1 EXECUTIVE SUMMARY 

An excavator unintentionally hits a buried utility every 60 seconds in the United States, causing billions of dollars in 

damage each year. Most of these accidents occur along public rights-of-way (ROWs). Typically, these accidents 

occur either because excavator operators do not know where utilities are buried (inaccurate or missing utility 

location data) or because they cannot perceive where the utilities are relative to the digging excavator (inaccurate 

spatial perception). This IDEA project addressed these problems by exploring new methods to communicate utility 

location data to equipment operators during excavation. The research created and evaluated two key capabilities: (1) 

persistent visualization of assets buried in an excavator’s vicinity using a georeferenced augmented reality (AR) 

approach; and (2) real-time monitoring of an excavator’s proximity to underground utilities using a graphical 

emulation approach. These unique capabilities can allow an excavator operator to be visually aware of buried assets 

in a machine’s vicinity and provide a real-time quantitative measure of a machine’s distance to nearby obstructions, 

offering the potential to significantly reduce the occurrence of buried utility strikes in ROW excavation.  

 

In this report, the results of the project are described in two stages. First, a graphics algorithm was designed to place 

virtual entities in an augmented scene given an excavator’s geographical position and orientation. The algorithm’s 

accuracy was validated in static scenarios of inspection of underground utilities. Stabilization approaches were 

designed to reduce the jittering response of orientation tracking data, caused by the electronic compass that is 

vulnerable to vibrations and magnetic interference. The convention of marking underground utilities was studied and 

an Augmented Reality visualization system compatible with diverse geospatial data formats was designed. 

Visualization methods that obstruct the ground view, while rendering utilities underneath, were also implemented. A 

“first-person” operator-view Augmented Reality visualization system was subsequently designed and evaluated 

using known subsurface utility geospatial data records. 

 

The second stage of the project focused on practical implementation of these algorithms on excavators in the field. 

Prior technologies in place to determine the pose of an articulated excavator were investigated, and the limitations in 

current methods were analyzed. The pose of an articulated machine includes the position and orientation of not only 

the machine base (e.g., tracks or wheels), but also each of its major articulated components (e.g., stick and bucket). 

A computer vision-based solution using a network of cameras and markers was designed to enable such a capability 

for articulated machines. A planar marker is magnetically mounted on the stick (dipper) of an excavator. Another 

marker is fixed on the job site whose 3D pose is pre-surveyed in a project coordinate frame. Then a cluster of at least 

two cameras respectively observing and tracking the two markers simultaneously forms a camera-marker network 

and transfers the excavator's pose into the desired project frame, based on a pre-calibration of the relative poses 

between each pair of cameras. Through extensive sets of uncertainty analyses and field experiments, this approach 

was shown to be able to achieve centimeter level tracking accuracy within 10 meters with only two ordinary 

cameras and a few markers. A working prototype was tested on several active construction sites with positive 

feedback from excavator operators confirming the solution's effectiveness. 
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In addition to promising research results, the project identified several avenues for future work aimed at facilitating 

large-scale deployment of the technology in the field. Improving the accuracy and the footprint of the technology 

components were identified as key areas of focus for future development efforts. The system accuracy has a quasi-

linear relationship to the marker size. While the current marker size is practical for daily transportation and 

installation, any desired shrinkage in marker size can be compensated for by longer focal length lenses or optimized 

stereo marker designs. A network of multiple base markers, whose relative transformation to each other are pre-

calibrated with bundle adjustment, may also be necessary in projects with large horizontal or linear expanses. The 

footprint of such networks can possibly cover entire sites so that the base camera can pick one base marker within its 

working radius from any location. 

 

2 IDEA PRODUCT 

The IDEA product developed in this project is capable of using AR visualization and emulated graphical monitoring 

to estimate an excavator’s proximity to “invisible” buried utilities in real-time while the machine is digging. The 

technology can allow an excavator operator to be visually aware of buried underground utilities and other assets in a 

machine’s vicinity, and can offer quantitative feedback of the machine’s distance to obstructions in the vicinity, 

thereby preventing accidental utility strikes and improving productivity (Figure 1).  

 

 

                 
Figure 1. Augmented reality visualization of geospatial utility data: 

Precise grade-control (above) and utility avoidance (below). 

 

The technical success of this product was contingent on the development of two main features: (1) Tracking the 

position of the digging excavator’s implement (bucket) for high-precision grade-control; and (2) Tracking the 
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position of the cabin-mounted AR video-feed camera for visualizing buried utilities in operator-view AR and 

proximity monitoring for utility strike warnings. The core disruptive innovation in the solution is the computer-

vision-based motion-tracking platform technology that is used to track a working excavator’s motion in a local 

coordinate system in order to register buried utility locations for persistent AR visualization. The developed motion-

tracking system uses visual markers, calibrated camera networks, and computer-vision algorithms to accurately track 

the position of key excavator components relative to a local coordinate system defined by a benchmark visual 

marker.   

 

Accidents involving excavator hits to utilities are a long-standing and significant societal problem that leads to an 

unacceptable number of fatalities, injuries, property damage, and other costs each year (Sterling et al. 2009; Spurgin 

et al. 2009). Inadvertent utility strikes disrupt life and commerce, and pose physical danger to workers, bystanders, 

and the general public. The explored innovations thus have the potential to transform excavator operation from a 

skill-based to a knowledge-based process so that future accidents are prevented. 

 

3 CONCEPT AND INNOVATION 

An excavator unintentionally hits a buried utility every 60 seconds in the United States, causing hundreds of 

fatalities, thousands of injuries, and billions of dollars in property damage and environmental pollution each year 

(Spurgin et al. 2009). Most of these accidents occur along public rights-of-way (ROWs) such as roadways and 

sidewalks. Typically, these accidents occur either because excavator operators do not know where utilities are buried 

or because they cannot perceive where the utilities are located relative to the digging excavator (Anspach 2011). 

Inaccurate, incomplete, or missing utility location information is often cited as a cause of incidents involving 

excavators striking buried utilities (Sterling et al. 2009; Patel et al. 2010; Anspach 2011). However, despite 

advances in geophysical locating technologies, and independent of the care with which known utility locations are 

marked on the ground, there are some fundamental challenges that make it very difficult for excavator operators to 

be spatially aware of their surroundings while digging. The state of practice has two critical limitations when 

considered from an excavator operator’s perspective:  

• Lack of persistent visual guidance  

• Inability to gauge proximity of excavator to buried assets. 

 
3.1 LACK OF PERSISTENT VISUAL GUIDANCE 

While the practice of marking utility locations on the ground helps in initial excavation planning, there is a basic 

practical limitation: The surface markings (paint, stakes, flags, etc.) are the first things to be destroyed or dislocated 

when excavation begins and the top soil or surface is scraped. This makes it challenging for an excavator operator to 

maintain spatial orientation (Figure 2), who must then rely on memory and judgment to recollect expected utility 

locations as excavation proceeds. Seemingly innocuous events such as returning from lunch or stopping to help 

another crew can prove detrimental because the operator must now recall the marked locations before continuing to 
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dig. Thus, excavator operators and field supervisors have no persistent visual clues that can help them be spatially 

aware of the underground space surrounding an excavator’s digging implement. 

 

 
 

Figure 2. Excavator operators’ perspective. 

 

3.2 INABILITY TO GAUGE PROXIMITY OF DIGGING IMPLEMENT TO BURIED ASSETS 

Another significant limitation is that an operator has no practical means of knowing the distance of an excavator’s 

digging implement (e.g., bucket) to the nearest buried obstructions until they are exposed. Excavation guidelines in 

most states require buried utilities to be hand-exposed prior to using power equipment (MDS 2009). Failure to 

follow the hand-exposure guidelines, which happens often out of ignorance or as a conscious decision, means that 

the first estimate of proximity an operator receives is when the digging implement actually “touches” a buried 

utility. It is easy to understand why this first “touch” can often actually be a “strike.”  

 

Field locators and markers typically mark only the horizontal location of utilities on the ground, and often do not 

include any depth or other attribute information that may possibly help operators better perceive their location in 

three dimensions (MDS 2009). A possible justification for this practice is that locators believe that there are 

“standard” depths where each utility type is typically buried. Second, even if depth information is marked on the 

ground along with a utility’s horizontal location, the markings are destroyed early in the excavation process, placing 
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the burden of remembering a utility’s expected depth and orientation on the operator. Thus, without any visual cues 

or quantitative feedback, operators find it very challenging to gauge the evolving distance between a digging 

machine and any unexposed utilities buried in the vicinity. 

 

3.3 AUGMENTED REALITY VISUALIZATION OF GEOSPATIAL UTILITY DATA 

This IDEA project explored a new technical approach that uses AR visualization of subsurface utility geospatial data 

to enable knowledge-based excavator control. In AR, computer-generated images are superimposed over a user’s 

view of the real world. By presenting contextual information in AR, it is possible to enhance or augment the user’s 

view beyond the normal experience, thus being of possible assistance in the performance of several engineering 

tasks. The key challenge for AR visualization is registration of superimposed graphics onto the real background, 

such that the two provide an illusion of co-existence (Azuma et al. 2001). In this case, it means that as an excavator 

digs, the superimposed geospatial data graphics must stay “fixed” to their intended ground locations to continuously 

help orient the operator. The specific innovations necessary to implement this concept include algorithms to 

accurately track the arbitrary motion of a working excavator, and register superimposed geospatial data graphics into 

the excavator operator’s view for improved spatial awareness of the machine’s surroundings (Figure 3). 

 

 

Figure 3. Technical approach for visualizing geospatial data in operator-view augmented reality. 

 

4 INVESTIGATION 

The overall design and development in this project was pursued in two inter-related stages: 

1. Graphical registration techniques to visualize buried utility geospatial data in operator-perspective AR. 

2. Real-time methods to track the pose of an articulated excavator relative to known utility locations. 

 

4.1 GEOMETRIC REGISTRATION OF GEOSPATIAL UTILITY DATA 

This design and development stage addressed the computational details of geometric registration of geospatial utility 

data for 3D visualization. The registration process of augmented reality is very similar to the computer graphics 

transformation process: (1) positioning the viewing volume of a user’s eyes in the world coordinate system; (2) 

positioning objects in the world coordinate system; (3) determining the shape of the viewing volume; and (4) 
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converting objects from the world coordinate system to the eye coordinate system. However, unlike computer 

graphics where parameters needed for step 1 through 3 are coded or manipulated by the user, augmented reality 

rigidly enforces these steps according to the 6 degrees of freedom measured by tracking devices and the lens 

parameters of the used camera. Table 1 lists the developed registration process, parameters, and measuring devices. 

 

 

Table 1. The Four Steps of the Developed Registration Process 

 

Step Task Illustration Parameters and Device 

Viewing 

Position the viewing 

volume of a user’s eyes 

in the world 

 

Attitude of the camera 

(electronic compass) 

Modeling 
Position the objects in 

the world 

 

Location of the world origin 

(RTK GPS) 

Creating 

Viewing 

Frustum 

Decide the shape of the 

viewing volume 

 

Lens and aspect ratio of 

camera (camera) 

Projection 
Project the objects onto 

the image plane 

 

Perspective Projection 

Matrix 

 

Step 1—Viewing:  The origin of the world coordinate system coincides with that of the eye coordinate system, 

which is the user’s geographical location (Figure 4). The world coordinate system uses a right-handed system with 

the Y-axis pointing in the direction of the true north, the X-axis pointing to the east, and the Z-axis pointing upward. 

The eye coordinate system complies with the OpenSceneGraph (OSG) default coordinate system, using a right-

handed system with the Z-axis as the up vector, and the Y-axis departing from the eye. 

  



7 

 

 

 

 

 
 

Figure 4. Definition of the world coordinate system. 

 
Yaw, pitch, and roll—all measured by an orientation sensor—are used to describe the relative orientation between 

the world and eye coordinate systems (Figure 5). There are six possibilities of rotating sequences (i.e., xyz, xzy, zxy, 

zyx, yzx, and yxz), and zxy is picked to construct the transformation matrix between the two coordinate systems.  

 

Suppose the eye and world coordinate systems coincide at the beginning; the user’s head rotates around the Z-axis 

by yaw angle Ψ є (˗180, 180] to get the new axes, X’ and Y’. Since the rotation is clockwise under the right-handed 

system, the rotation matrix is Rz(-Ψ). Secondly, the head rotates around the X’-axis by pitch angle θ є [-90, +90] to 

get the new axes, Y’’ and Z’, with counter-clockwise rotation of Rx’(θ). Finally, the head rotates around the Y’’-axis 

by roll angle 𝜑 є (-180, 180] with a counter-clockwise rotation of Ry’’(𝜑) to reach the final attitude. 

  

 
 

Figure 5. Relative orientation between world and eye coordinates as yaw, pitch, and roll. 

 

Converting the virtual object from the world coordinate to the eye coordinate is an inverse process of rotating from 

the world coordinate system to the eye coordinate system, therefore the rotating matrix is written as: Rz(Ψ) Rx’(-θ) 

Ry’’(-𝜑) or Rz(yaw) Rx’(-pitch) Ry’’(-roll) (Equation 2). Since OSG provides quaternion, a simple and robust way to 

express rotation, the rotation matrix is further constructed as quaternion by specifying the rotation axis and angles. 

The procedure is explained as follows, and its associated equations are listed in sequence from Equation 3 to 5: 
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rotating around the Y’’-axis by –𝜑 degree, then rotating around the X’-axis by –θ degree, and finally rotating around 

the Z-axis by Ψ degree. 

  

[
𝑋𝑒
𝑌𝑒
𝑍𝑒

] = [
𝑐𝑜𝑠𝛹 𝑠𝑖𝑛(−𝛹) 0
𝑠𝑖𝑛 𝛹 𝑐𝑜𝑠𝛹 0
0 0 1

] ∗ [
1 0 0
0 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
0 𝑠𝑖𝑛(−𝜃) 𝑐𝑜𝑠𝜃

] ∗ [
𝑐𝑜𝑠𝜑 0 𝑠𝑖𝑛(−𝜑)
0 1 0

𝑠𝑖𝑛 𝜑 0 𝑐𝑜𝑠𝜑
] ∗ [

𝑋𝑤
𝑌𝑤
𝑍𝑤

] Eq. 1 

Pe = Rz(Ψ) ∗ Rx’(−θ) ∗ Ry’’(−φ) ∗ 𝑃𝑤 Eq. 2 

𝑍 − 𝑎𝑥𝑖𝑠 =  [
0
0
1
]  Eq. 3 

𝑋′ − 𝑎𝑥𝑖𝑠 =  [
𝑐𝑜𝑠𝛹 𝑠𝑖𝑛𝛹 0

𝑠𝑖𝑛(−𝛹) 𝑐𝑜𝑠𝛹 0
0 0 1

] ∗ [
1
0
0
] = [

𝑐𝑜𝑠𝛹
−𝑠𝑖𝑛𝛹

0
] 

 

Eq. 4 

𝑌′′ − 𝑎𝑥𝑖𝑠 =  [

1 0 0
0 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛(−𝜃)

0 𝑠𝑖𝑛 𝜃 cos(𝜃)
] ∗ [

𝑐𝑜𝑠𝛹 𝑠𝑖𝑛𝛹 0
sin(−𝛹) 𝑐𝑜𝑠𝛹 0

0 0 1
] ∗ [

0
1
0
] = [

𝑠𝑖𝑛(𝛹)
𝑐𝑜𝑠𝜃𝑐𝑜𝑠
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛹

𝛹] Eq. 5 

Step 2 – Modeling:  The definition of the object coordinate system is determined by the drawing software. The 

origin is fixed to a pivot point on the object with user-specified geographical location. The geographical location of 

the world coordinate origin is also given by the GPS measurement; the 3D vector between the object and world 

coordinate origins can thus be calculated. The methods to calculate the distance between geographical coordinates 

were originally introduced by Vincenty (1975), and Behzadan and Kamat (2007) proposed a reference point concept 

to calculate the 3D vector between two geographical locations. This research adopts the same algorithm to place a 

virtual object in the world coordinate system using the calculated 3D vector. After that, any further translation, 

rotation, and scaling operations that are needed are applied on the object.  

 

Step 3 and 4 – Viewing Frustum and Projection:  The real world is perceived through the perspective projection 

by the human eye and the web camera. Four parameters are needed to construct a perspective projection matrix: 

horizontal angle of view, horizontal and vertical aspect ratio, and NEAR plane and FAR plane. All of them together 

form a viewing frustum and decide the amount of virtual content shown in the augmented space (Figure 6).  
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Figure 6  The viewing frustum defines the virtual visible content. 

 

 

Virtual objects outside of the viewing frustum are either cropped or clipped. It must be noted that although it is not 

envisioned as a practical visualization aid for an excavator operator, a hard hat-mounted setup shares similar 

visualization principles which dominates the content included in the viewing volume. This setup was used for 

algorithm testing and experimentation only. The equipment mounted in the hard hat setup included a camera and a 

head mounted display in place of a screen monitor.   

 

The NEAR and FAR planes do not affect how the virtual object appears on the projection plane.  However, to 

maintain a high precision z-buffer, the principle is to keep the NEAR plane as far as possible, and the FAR plane as 

close as possible. The horizontal and vertical angle of view directly influence the magnification of the projected 

image and are affected by the focal length and aspect ratio of the camera. In order to ensure consistent perspective 

projection between the real and virtual camera, both of them need to share the same angle of view.  

 

4.1.1 Resolving the Latency Problem in Orientation Sensors 

Due to the latency induced by an orientation sensor, correct static registration does not guarantee that the user can 

see the same correct and stable augmented image when in motion. This section addresses the cause and solution for 

the dynamic misregistration problem. Dynamic magnetic distortion generally impacts an orientation sensor in 

motion, and the noise magnification depends on the acceleration of the module. Usually the faster the acceleration 

is, the higher the noise is (Figure 7). Among the three degrees of freedom, heading is the most sensitive to the noise. 
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Figure 7. Data show that the noise in the raw data increases as the motion accelerates. 

  

Except the high frequency vibration noise, other types of noise can be removed by a FIR Gaussian filter. A compass 

module comes with 5 options for filtering: 32, 16, 8, 4, and 0 tap filter. The higher the number is, the more stable the 

output, but the longer the expected latency. Consider the case of selecting a 32 tap filter (Figure 8). When it is time 

to send out estimated data at time instant A, the module adds a new sample A to the end of the queue with the first 

one being dropped, and applies a Gaussian filter to the queue. However, the filtered result actually reflects the 

estimated value at time instant (A–15). Since the module samples at approximately 30–32 Hz, it induces a 0.5 

second delay for a 32 tap filter; a 0.25 second delay for 16 tap filter, and so on. This is called filter-induced latency, 

and it applies to both PULL and PUSH mode. A 0 tap filter implies no filtering, but significant jittering. 

 

 
Figure 8. Filter-induced latency when a 32 tap Gaussian filter is used. 

 

In order to avoid the filter-induced latency, the Gaussian FIR filter is moved from the hardware to the software, but 

with only half window size applied. For example, if a complete Gaussian window is used, it is not until time instant 
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A+15 that the estimated value can be available for time instant A. However, half window replicates the past data 

from time instant A-15 to time instant A as the future data from time instant A+1 to A+16, and generates an 

estimated value for time instant A (Figure 9). 

   

 
Figure 9. Half-window filter latency (each notch on the X-axis represents 30 ms). 

Nevertheless, as is shown in the graph chart, half window still causes 4–5 frames of latency on average. Depending 

on the speed of module movement, the faster the speed, the longer latency it presents. The project team addresses 

this kind of latency as half window induced latency. Because the half window Gaussian filter puts more emphasis on 

the current frame, it makes the estimated result more sensitive to noise contained in the current frame, and 

consequently there is more jittering than in the estimated result of the complete window Gaussian filter. Therefore, a 

second half window Gaussian is applied on the first filtered result for smoothing purposes, but this introduces 1–2 

extra frames of latency (Figure 10).  

 

However, this additional latency can be discounted because it does not exceed the original latency—the one between 

the half window Gaussian filter and the complete window Gaussian filter. Therefore, double the additional latency is 

subtracted from the Twice Gaussian filter result, and this makes the estimation closer to the actual data than the half 

window Gaussian filter result. Unfortunately, this approach fails during the transition state, and leads to 

overshooting during change of direction, and during transitions from dynamic to static states. It must be noted that 

acceptable latency is a very subjective quantity that could not be explicitly measured. In Augmented Reality 

applications, the amount of acceptable latency is dependent on a user’s tolerance to motion cues, and this will vary 

from user to user and their reaction to motion cues. 

  



12 

 

 

 

 

4.1.2 Adaptive Latency Compensation Algorithm  

In order to resolve the overshooting problem, the estimated result needs to be forced to the observed data when the 

module comes to a stop. This is possible because the observed data is very stable and close to the actual value when 

the module is static. Large collections of observed value show standard deviation is a good indicator of dynamic and 

static status of the sensor; when the standard deviation is larger than 6, the heading component of the module is in 

motion, otherwise it is in static or on the way to stopping (Figure 11).  

 

Therefore the adaptive algorithm computes the latency compensated value as follows: when the standard deviation is 

no larger than 6, the compensated value is double of the subtraction of the Twice Gaussian filter by the half Window 

Gaussian filter result; otherwise the compensated value is equal to the subtraction of the Twice Gaussian Filter by 

the observed data.   

 

4.1.3 Field Demonstration of Augmented Reality Registration Algorithms 

The robustness of the developed registration algorithms was demonstrated in field experiments. Electricity conduits 

in the vicinity of the G.G. Brown Building at the University of Michigan were exported as KML (Keyhole Modeling 

Language) files from a Geodatabase provided by the DTE Energy Company.  The following procedure interprets 

KML files and builds conduit models (Figure 12): 
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(B) Overshooting Problem 

 

(C) Adaptive latency compensation 

Figure 10. Adaptive latency compensation algorithm (each notch on the X-axis represents 30 ms). 
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Figure 11. Standard deviation indicates the motion pattern (each notch on the X-axis represents 30 ms). 

 

 

 

Figure 12. Conduit loading procedure, conduits overlaid on Google Earth and field experiment results. 

  

(1) Extract the spatial and attribute information of pipelines from the KML file using libkml, a library for 

parsing, generating, and operating in KML (Google 2008). For example, the geographical location of 

pipelines is recorded under the Geometry element as “LineString” (Google 2012). A cursor is thus designed 

to iterate through the KML file, locate “LineString” elements, and extract the geographical locations. 
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(2) Convert consecutive vertices within one “LineString” from the geographical coordinate to the local 

coordinate in order to raise computational efficiency during the registration routine. The first vertex on the 

line string is chosen as the origin of the local coordinate system, and the local coordinates of the remaining 

vertices are determined by calculating the relative 3D vector between the rest of the vertices and the first 

one, using the Vincenty algorithm.  

(3) In order to save storage memory, a unit cylinder is shared by all pipeline segments as primitive geometry 

upon which the transformation matrix is built.  

(4) Scale, rotate, and translate the primitive cylinder to the correct size, attitude, and position. For simplicity, 

the normalized vector between two successive vertices is named as the pipeline vector. First, the primitive 

cylinder is scaled along the X- and Y-axis by the radius of the true pipeline, and then scaled along the Z-

axis by the distance between two successive vertices. Second, the scaled cylinder is rotated along the 

axis—formed by the cross product between vector <0, 0, 1> and the pipeline vector—by the angle of the 

dot product between vector <0, 0, 1> and the pipeline vector. Finally, the center of the rotated pipeline is 

translated to the midpoint between two successive vertices. This step is applied to each pair of two 

successive vertices.  

 

It must be noted that Google Earth is only used for experimentation and demonstration of electric conduit data 

conversion. The underlying algorithms themselves are not tied to the use of Google Earth and are compatible with 

any geospatial data system. Dynamic misregistration continues to be an open research problem and is still under 

investigation. Several efforts are being made: (1) synchronizing the captured image and sensor measurements; and 

(2) optimizing the adaptive latency compensation algorithm with image processing techniques (e.g., optical flow can 

afford more information about the angular speed).  Results obtained from the conducted field experiments to 

evaluate the developed algorithms are shown in the following Figures 13 and 14.  

 

  

  
 

Figure 13. Labeling attribute information and color coding on the underground utilities. 
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Figure 14. X-ray view of the underground utilities. 

 

Dynamic misregistration primarily pertains to the human perception of the AR graphics’ authenticity. Given the 

typical speed of an excavator when it is digging, the project team expects that most human users’ tolerance for 

dynamic misregistration can overcome this issue during visualization.   

 

4.2 REAL-TIME POSE ESTIMATION OF ARTICULATED EXCAVATOR 

The pose of an articulated machine includes the position and orientation of not only the machine base (e.g., tracks or 

wheels), but also each of its major articulated components (e.g., stick and bucket). The ability to automatically 

estimate this pose is a crucial component of improving an operator’s spatial awareness to underground utilities. A 

computer vision-based solution using a network of cameras and markers was developed in this research to enable 

such a capability for articulated machines (Figure 15). 

 

Figure 15. Overview of computer vision-based pose estimation system. 
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Different versions of the proposed articulated machine pose estimation system design are explained first. Then, the 

process to calibrate this system is described. Finally, uncertainty analysis is described for the system with some 

important observations of the relationship between the system configuration and its stability; that is, uncertainty of 

the estimated excavator pose for AR visualization. 

 

The designed computer vision-based articulated machine pose estimation solution relies on a method called marker-

based pose estimation. Generally, marker-based pose estimation firstly finds a set of 2D geometry features (e.g., 

points or lines) on an image captured by a calibrated camera, then establishes correspondences between another set 

of 2D or 3D geometry features on a marker whose pose is known with respect to a certain coordinate frame of 

interest, and finally estimates the pose of the camera in that coordinate system. If 2D-2D correspondences are used, 

the pose is typically estimated by homography decomposition. If 2D-3D, the pose is typically estimated by solving 

the perspective-n-point (PnP) problem. Two typical marker-based pose estimation methods are AprilTag (Olson, 

2011) and KEG (Feng and Kamat 2012) algorithms. 

 

 

Figure 16. Two examples of basic camera marker configuration. 

 

There are two ways of applying marker-based pose estimation for poses of general objects of interest. As shown in 

Figure 16, one way is to install the calibrated camera 1 rigidly on the object of interest (in this case, the cabin of the 
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excavator), and pre-survey the marker 1's pose in the project coordinate frame. The other way is to install the marker 

2 rigidly on the object (in this case, the stick of the excavator), and pre-calibrate the camera 2's pose in the project 

coordinate frame. As long as the camera 2 (or the marker 1) stays static in the project coordinate frame, the pose of 

the excavator's stick (or the cabin) can be estimated in real-time. 

 

However, these basic configurations do not always satisfy application requirements. For example, if only the camera 

1 and the marker 1 are used, the excavator's stick pose cannot be estimated. On the other hand when only the camera 

2 and the marker 2 are used, once the stick leaves the field of view (FOV) of the camera 2, the stick's pose becomes 

unavailable as well. Thus it is necessary to take a camera's FOV into consideration when designing an articulated 

machine pose estimation system. This understanding leads to the camera marker network design proposed. 

 

4.2.1 Camera Marker Network 

A camera marker network is an observation system containing multiple cameras or markers for estimating poses of 

objects embedded in this system. It can be abstracted as a graph with three types of nodes and two types of edges 

(e.g., Figure 17). A node denotes an object pose (i.e., the local coordinate frame of that object), which can be a 

camera, a marker, or the world coordinate frame. An edge denotes the relative relationship between two objects 

connected by this edge, which can be either image point observations for the previously mentioned marker-based 

pose estimation, or a known pose constraint (e.g., through calibration). 

 

 

Figure 17. An example graph of a camera marker network. 

 

Thus, if at least one path exists between any two nodes in such a graph, the relative pose between them can be 

estimated. In addition, any loop in the graph means a constraint of poses that can be used to improve the pose 

estimation. For example, in Figure 17, marker 2's pose in the world frame can be found via a path through camera 3 
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whose own pose in the world frame is pre-calibrated. The marker 2's pose can also be better estimated when 

observed by the rigidly connected camera 1 and 2 whose relative pose is pre-calibrated, since a loop is created. 

 

Applying this concept to articulated machine pose estimation results in numerous possible designs. One of the 

possible camera marker networks is shown in Figure 18, camera 1 observes the benchmark while camera 2 observes 

the stick marker, and the rigid transformation between the two cameras is pre-calibrated. Thus as long as the two 

markers stay inside the two cameras' FOV respectively, the stick's pose in the world frame can be estimated.  

 

It is worth noting that this only illustrates a simple configuration. With more cameras and markers in the network, 

there are more chances of creating loops and thus improving pose estimation, especially considering that 

surveillance cameras are becoming popular in construction job sites whose poses can be pre-calibrated and thus act 

as the camera 3 in Figure 17. 

 

 

Figure 18. Multiple-camera multiple-marker configuration. 
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4.2.2 Experimental Prototypes 

Multiple prototypes have been implemented to realize the above described camera marker network designs. Figure 

19demonstrates one of the early prototypes implementing a single-camera multiple marker configuration. A 

mechanical device driven by a synchronous belt was adopted to map the relative rotation between the excavator 

bucket and the stick to the relative rotation between the stick marker and the rotary marker. This implementation 

enables pose tracking of the excavator bucket. 

 

 

Figure 19. Synchronous belt prototype design. 

 

The prototype functions by means of two markers. The first marker, termed stick marker, is rigidly attached to the 

stick with a known relationship to the bucket’s axis of rotation. The second marker, termed rotary marker, is 

attached at a location removed from the vicinity of the bucket. The rotary marker is constrained with one degree of 

rotational freedom and a known angular relationship to the bucket. If the bucket’s geometry is also known, or 

measured onsite, then all necessary information is available to deduce tooth pose, as shown in Figure 20. 

 

 

Figure 20. Bucket tooth pose calculation in the synchronous belt prototype. 
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Due to the potential interference of the rotary marker and any obstructions during excavation, the above 

synchronous belt prototype was slightly modified and evolved to the current prototype as shown in Figure 21. The 

newer working prototype implements the multiple-camera multiple-marker configuration similar to Figure 19. Two 

cameras are rigidly mounted forming a camera cluster. A cable potentiometer is installed on the bucket’s hydraulic 

cylinder to track the relative motion of the excavator bucket and the stick even if the bucket is deep inside the earth. 

In addition to possessing a cable potentiometer for measuring linear displacement, the device contains a 

microcontroller for signal conversion, a radio for wireless transmission, and a battery for power, all of which are 

mounted inside an enclosure for protection. In the project team's experiments, the battery has been shown to last for 

up to 3 days before it has to be re-charged. No additional signal interference has been observed in the sensor suite 

either. 

 

 

Figure 21. Cable potentiometer prototype. 

 

4.2.3 System Calibration 

Three types of calibration are necessary for an articulated machine pose estimation system implementing the above 

camera marker network design. The first type is intrinsic calibration which determines internal parameters (e.g., 

focal length) of all cameras in the system. This is done using same methods as in (Feng et al. 2014). The second type 

is extrinsic calibration which determines relative poses (e.g., dotted edges in the graph) designed to be calibrated 

before system operation. There are two kinds of such poses: (1) poses of static markers in the world frame, and (2) 

poses between rigidly connected cameras. The first kind of poses can be calibrated by traditional surveying methods 

using a total station. The second kind of poses, however, cannot be directly surveyed physically since a camera 

frame's origin and principal directions usually cannot be found or marked tangibly on that camera.  

 

Thus to calibrate a set of m rigidly connected cameras, a camera marker graph needs to be constructed as denoted in 

Figure 22. A set of n markers' poses need to be surveyed in the world frame. Then when the m cameras observe 

these n calibration markers, the graph is formed to estimate each camera's pose in the world frame and thus their 
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relative poses between each other (i.e., edges with question mark) are calibrated. It is suggested to ensure that 

multiple loops exist in this graph to improve the accuracy of the poses to be calibrated. Such a loop exists as long as 

at least two markers are observed by the same camera simultaneously. It is also worth noting that with enough 

calibration markers, each camera's intrinsic parameters can be further optimized with their extrinsic parameters. 

 

Figure 22. Camera marker graph for extrinsic calibration. 

 

The third and final type of calibration involves mapping a relationship between the cable potentiometer output and 

the pose of the excavator’s bucket. The calibration process requires a marker to be attached to the side of the bucket 

for the duration of the calibration process. The system is then calibrated by moving the bucket through its range of 

motion and mapping the potentiometer output to the relative transformation between the stick marker and bucket 

teeth. After the calibration process, the marker is removed from the bucket. The system then functions by measuring 

stick marker pose and cylinder stroke length, and mapping such measurements to bucket tooth pose. The marker on 

the bucket can be calibrated before operation and at off-site locations if desired. Once calibrated, the relationship 

between the bucket rotation and potentiometer extension can be saved to a file. Multiple buckets can be calibrated 

off-site and saved in this manner. 

 

It must be noted that the overall purpose of the calibration is to characterize the change of bucket teeth elevation due 

to the bucket rotation. This information can be relayed to the cable length change of a potentiometer. The whole 

calibration process is automated and the operator only needs to slowly rotate the bucket in a full cycle while the 

camera can cover both markers. The calibration only needs to be done once, and this takes about 5 minutes. Once 

the site benchmark is set up, it maintains the achieved accuracy up to 100 ft. When an excavator is digging around 

utilities and hand digging is involved, 100 ft is a reasonable projected daily progress. However, if an excavator does 

move beyond 100ft, it may be possible to include multiple site benchmarks. The additional benchmarks can likely be 

calibrated relative to the initial using computer vision methods such as structure from motion. However, confirming 

this possibility requires additional research and experimentation.  
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4.2.4 Uncertainty Analysis 

It is not sufficient to only estimate the pose of an articulated machine. The uncertainty of the estimated pose is 

critical for the following reasons. Firstly the uncertainty provides a measure of the confidence level of the estimated 

pose, which is necessary for many downstream applications (e.g., deciding buffer size for collision avoidance). 

Secondly it serves as a tool for evaluating the stability of the pose estimation system under different configurations, 

and thus further guiding to avoid critical configurations that lead to unstable pose estimation. 

 

To perform uncertainty analysis on the proposed camera marker network pose estimation system, the system is 

firstly abstracted as the following state space model: 

 Z = F(X; Y, C) Eq. 6 

where X is the state vector of the network (usually encodes the poses of nodes in the graph), Z is the predicted 

measurement vector containing image coordinates of all the points projected from markers, Y is the known 

parameters (usually contains marker points' local coordinates), C is the calibrated parameters (usually encodes all 

cameras' intrinsic parameters and all calibrated poses), and F is the system's observation function parameterized by 

Y and C; that is, the camera perspective projection function. 

 

For example, for a network of a single camera and a single marker, X is a 6 x 1 vector that encodes the marker's 

orientation and position in the camera frame; Y is a 3n x 1vector containing n marker points' coordinates from 

surveying; C is a vector of the camera intrinsic parameters. If another marker is added to this network, Y should be 

extended with points on the new marker. 

 

4.2.5 Uncertainty Propagation 

No matter how complex such a network is and what method is used to get an initial estimate of X (either PnP or 

homograph decomposition), the optimized state X̂  can be calculated by the following least square optimization; 

that is, bundle adjustment: 

 
ˆ

2
ˆ ˆarg min ( ; , ) 

Z
PX

X Z F X Y C  Eq. 7 

where 
Ẑ

P  is the a priori covariance matrix of the actual measurements Ẑ , typically assumed as 
2
u I  when image 

coordinates are measured with a standard deviation of u . 

To backward propagate the measurement uncertainty 
Ẑ

P  to the uncertainty of the optimized state X̂  requires 

linearization of F around X̂ . Since the error is assumed to come from only the measurements (the uncertainty in 

calibrated parameters C can be included in future work, but is assumed to be negligible in this paper), one can 

directly apply the results in (Hartley and Zisserman 2000) to calculate the uncertainty of the optimized states: 
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where 
ˆ

F

 X

J
X

 is the Jacobian matrix of F evaluated at X̂ . 

 

4.2.6 Uncertainty and Configuration 

Equation (3) not only provides a means of evaluating uncertainty of the optimized pose estimation of a camera 

marker network, but also provides a tool to predict the system stability at any given system configuration X before 

even making any measurements. This is done by evaluating the Jacobian matrix J of F at that X, and then applying 

equation (3)to predict the covariance matrix. It is based on the fact that the aforementioned backward propagation of 

measurement uncertainty does not directly rely on specific measurements. In fact it directly relies on the system 

configuration X around which the linearization is performed. Thus, when evaluating Jacobian matrix J at a 

configuration X, equation (3) yields the theoretically best/smallest pose estimation uncertainty one can expect at that 

configuration, which denotes the system stability at that configuration. 

 

Using this method, some important empirical conclusions on the basic single-camera single-marker system are 

found about relationships between system stability and configuration, based on numerical experiments, which are 

useful for more complex system design and are listed as follows. Similar analysis can be performed to multiple-

camera or multiple-marker system in future work. 

 

(1) The marker's origin/position in the camera frame, 
c

mt , has the largest uncertainty along a direction nearly 

parallel to the camera's line of sight to the marker; that is, 
c

mt  itself. Figure 23 exemplifies this observation 

at two randomly generated poses between the camera and the marker. 

(2) The largest uncertainty of the marker's position in the camera frame increases approximately quadratic to 

the marker's distance to the camera, compared to which the two smallest uncertainty's increases are almost 

negligible. Figure 24 shows a typical example. 

(3) The largest uncertainty of the marker's position in the camera frame increases approximately linear to the 

camera focal length, compared to which the two smallest uncertainty's increases are almost negligible. 

Figure 25 shows a typical example. 
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Figure 23. Largest position error direction. 

 

 

 

Figure 24. Position error vs. marker distance. 
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Figure 25. Position error vs. focal length. 

 

4.2.7 Feasibility Experiments 

Before implementing the pose estimation system prototypes, a set of experiments were performed to test the 

feasibility of marker-based pose estimation in different indoor/outdoor construction environments. In all the 

experiments, AprilTag (Olson 2011) was chosen as the basic marker detection and tracking algorithm. Firstly, the 

outdoor detectability of markers was tested. A marker's detectability is a function of many factors including the 

marker size, the distance between the marker and the camera, included angle between the camera viewing direction 

and the marker plane's normal direction, and also image resolution. Since the distance between the marker and the 

camera is the most critical factor affecting the method's feasibility in real applications, this experiment is performed 

by fixing other factors and then gradually increasing the distance of the marker in front of the camera, until the 

algorithm fails to detect the marker, and recording the distance. Varying other factors and repeating this process 

results in Table 2. One can consult this table to decide how large the marker should be to fit application need. 

Table 2.  Outdoor Detectability of AprilTag 

Max Detectable Distance (m) 
Marker Angle (degree) 

0 45 0 45 

Marker Size (m
2
) 

0.2 x 0.2 6.10 4.88 11.28 8.84 

0.3 x 0.3 8.23 7.01 14.94 11.58 

0.46 x 0.46 13.41 11.28 25.91 21.64 

0.6 x 0.6 19.51 16.46 34.44 30.48 

Image Resolution 640 x 480 1280 x 960 

Focal Length 850 pixels 1731 pixels 

Processing Rate 20 Hz 5 Hz 
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Second, illumination is a critical factor affecting performance of many computer vision algorithms. The AprilTag 

algorithm was thus tested under various illumination conditions to examine its robustness for construction 

applications. Figure 26 shows successful marker detection under different indoor/outdoor lighting conditions. These 

experiments and following extensive prototype tests proved the AprilTag-based marker detection method's 

robustness to illumination changes.  

 

In subsequent outdoor experiments described ahead, the cameras detect markers very well even in overcast weather. 

In fact, most of the time, it is necessary to shrink the aperture of the camera so that the image is not over exposed. 

However, in order to deal with complicated illumination conditions in the outdoor environment, techniques for the 

automatic exposure adjustment in the sun have also been designed. 

 

 

Figure 26. Marker detection vs. illumination. 

 

Finally, for uncertainty propagation, one needs to have a prior estimation of the image measurement noise's standard 

deviation u . This is achieved by collecting multiple images under a static camera marker pose. Repeating this 

process for different poses and collecting corresponding image measurement statistics lead to an image 

measurement covariance matrix uΣ , which can be further relaxed to 
2
u I  to include all the data points. Figure 27 

shows that 0.2u   pixel is reasonable.  
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As previously mentioned, a multiple-camera multiple-marker articulated machine pose estimation prototype has 

been implemented with the application of estimating an excavator's bucket depth in a project frame, which could be 

used for automatic excavation guidance and grade control. 

 

The top row of Figure 28 (a) shows the camera cluster of the prototype in Figure 16, and different experiment 

configurations to test the depth estimate's accuracy. The experiments were set up by observing the two markers in 

the bottom row of Figure 28 (a) using the two cameras in the cluster respectively. Then the depth difference between 

the two markers was estimated using the proposed method, while the ground truth depth difference between the two 

marker centers was measured by a total station with 1 mm accuracy. Figure 28 (b) illustrates the configurations of 

different sets of such experiments, for comprehensive tests of the method's accuracy under several system and 

design variations. The first set varies one of the marker's pitch angle (top row of the figure). The second set varies its 

height (bottom-left). The third set varies its distance to the camera (bottom-middle). And the fourth set varies the 

number of tags used in that marker (bottom-right). 

 

 

Figure 27. Image measurement noise estimation. 
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(a) Setup (b) Different configurations 

Figure 28. Mockup experiment setup. 

Figure 29 shows the absolute depth errors comparing the ground truths with the results from camera marker network 

pose estimation, in the above mentioned different sets of prototype experiments, using the box quartile plot. Note 

that all errors are less than 2.54 cm, even when observed from more than 10 meters away. Further experiments 

showed that the system worked up to 15 meters. 

 

Figure 29. Error vs. configuration. 
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4.2.8 Field Demonstration of Articulated Machine Pose Estimation System 

Another experiment was conducted to characterize the performance of the cable potentiometer prototype. The 

prototype was installed and tested on a Caterpillar 430E IT Backhoe Loader, as shown in Figure 30. The experiment 

involved calibrating the sensor system, placing the backhoe in random poses, using the sensors to estimate bucket 

tooth height, and comparing estimates with ground truth measurements obtained using a total station. The 

experiment’s pass/fail criterion was set at 2.5 cm (1 in.) of absolute error. The operator was provided with a 

graphical user interface that shows the distance between the bucket teeth and the target profile. When the distance is 

less than 1 inch, the color switches from yellow to green. 

 

A total of eight trials were conducted. For each trial, three components of tooth position (x, y, and z, where y 

corresponds to the zenith direction) were measured and compared with ground truth measurements, as shown in 

Figure 31. Of the twenty-four data points collected, only three points exceeded the pass/fail criterion of 2.5 cm (1 

in.) of absolute error. 

 

Figure 30. Calibration of cable potentiometer prototype installed on a backhoe. 
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Though the system’s ability to estimate x-position only marginally met the pass criterion, the system’s performance 

as a whole was deemed satisfactory, especially considering that accuracy along the zenith direction is more 

important in many excavation applications. 

 

Figure 31. Cable potentiometer experimental results. 

 

The cable potentiometer prototype was also tested on an active construction site, as shown in Figure 1 and Figure 

32. The system was used to assist the operator in trenching operations. A computer screen was mounted in the 

operator’s cabin, providing a display of bucket height relative to a desired trench grade specified by the job plans. 

 

 

Figure 32. Cable potentiometer prototype installed on excavator. 
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Shown in Figure 33 is a short section of trench in which the operator conducted a side-by-side comparison of 

traditional grading versus grading guided by the sensor system. The resulting trench depth differences between the 

manual grade and the guided grade (by the prototype) were less than 1 in., which fulfils the need of many ROW 

excavation applications. 

 

 

Figure 33. Comparison of sensor-guided grading versus traditional grading. 

 

In summary, this stage of the project designed a vision-based pose estimation solution for articulated machines using 

a camera marker network. The uncertainty of the network pose estimation was analyzed through backward 

propagation of measurement covariance matrix. Based on this, an efficient approach of evaluating such a pose 

estimation system's uncertainty at any given state is introduced and applied to the basic single-camera single-marker 

system to find some important relationships between system states and corresponding system uncertainty, which is 

useful to guide more complex design. The conducted experiments and a working prototype proved the proposed 

solution's feasibility, robustness, and accuracy for real world ROW excavation applications.  

 

Overall, the project solved two challenges in building a georeferenced augmented reality capability that allows an 

excavator operator to be visually aware of buried assets. The first one is to track the orientation and location of the 

excavator using a cost-effective camera marker network approach. Both simulation and field experimentation 

support the feasibility of the system which can achieve the accuracy of 1 in. within 40 m. In addition to tracking the 

relative distance between the bucket and the buried assets, this can also eliminate the need for grade checkers for 

excavations supporting water mains and storm sewer installations. The second challenge of Augmented Reality 

display is also addressed with accurate tracking of the excavator pose. The open issues of benchmark setup time lead 

to the future research needs of base marker network where a cluster of base markers can be deployed throughout the 

site and pre-calibrated/surveyed. 

 

Traditional 

Grading 

Sensor Guided Grading 
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5 PLANS FOR IMPLEMENTATION  

This IDEA project was conducted in collaboration with multiple industry stakeholders that included the DTE Energy 

Company (Michigan’s largest electricity and gas provider), Miss Dig System (MDS) (Michigan’s One-Call 

excavation safety company), Eagle Excavation (a specialty excavation contractor), and Walbridge (a large general 

contractor). Many of these collaborators are also associated with the Michigan Infrastructure & Transportation 

Association (MITA), which is a statewide construction trade association that consists of nearly 600 Michigan 

companies representing construction disciplines such as road and bridge, sewer and water, utility, railroad, 

excavation, and specialty construction throughout the state of Michigan. The industry collaborators have provided 

the research team with expert guidance on how the developed technology would impact their established member 

markets, and access to their excavators on construction sites for experimentation described in this report. The 

participation of the industry stakeholders has been guiding the knowledge transfer and commercialization process 

for the IDEA products explored in this project. 

 

The products of this IDEA project are being developed further by a Michigan start-up company into a system called 

SmartDig (Figure 34). The SmartDig will assist excavator operators as follows: 

 

1. The excavation solution will present operators with a visualization of excavation job plans, target grade 

profiles, and evolving grade profile in real-time. Persistent visualization of excavator job plans, target grade 

profiles, and evolving grade profile will be achieved through the use of AR technology explored in this 

project, thus rendering them in a spatially intuitive manner. This will allow operators to achieve target 

grades with high precision (within 2 in.) with fewer grade-checkers (75% to 80% less per job site) and 

improved grading productivity (5% to 8% increase per machine). It must be noted that the desired precision 

is a function of excavation type (e.g., water line, sewer) as well as applicable standards. It was found that 1 

to 2 in. is a high standard for water line but a moderate standard for sewers. The operator confirmed the 

accuracy of SmartDig is in line with the requirement of most sewer installs except sanitary sewer, where 

the requirement is less than 1/8 in. (3mm) and this is currently achieved by shooting laser from laser level 

placed inside a manhole. However, SmartDig does not target sanitary sewer at the beginning. Additional 

feedback related to the graphical user interface as well as the display size which should be small enough so 

as not to obstruct the view sight of the operator. 

2. The excavation solution will also present excavator operators with a persistent visualization of known 

utilities buried in their vicinity. Additionally, it will continuously monitor the proximity between the 

excavator’s digging implement and these utilities, and will warn operators when they are about to strike 

these utilities. In the long run, the accidental utility strike warning features of the solution have the potential 

to save millions of dollars in liability and opportunity costs for excavation stakeholders. 

3. The one-time setup to retrofit a machine with the developed technology components takes about 1 hour, 

and the time to set up a benchmark on a daily basis takes about 10 minutes. This time can be recovered 
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through the reduction of halting time of the excavator waiting for grade check results and rework if a target 

profile is not reached. In the future, if a network of bench/base markers can be installed throughout the site 

and pre-calibrated/surveyed, the daily setup of the benchmark can also be saved. The savings in operator 

and grade checkers’ time is estimated at about 1hr/day on average, thus the savings of salary and fringe 

benefits of one operator and one grade checker in total is about $100/day. A crew can be estimated to work 

for about 20 days/month and 9 months/year. The estimated annual saving is thus $18,000 in total. Given the 

cost of SmartDig is estimated to about $20,000, a contractor can recover their investment in about a year. 

 

6 CONCLUSIONS 

This IDEA project was conducted on the premise that ROW excavation safety will improve if equipment operators 

can persistently “see” where they are digging relative to expected utilities, and are objectively aware of the 

uncertainty associated with the utility locations. The exploratory project focused on creating and evaluating two key 

capabilities: (1) Persistent visualization of assets buried in an excavator’s vicinity using a georeferenced augmented 

reality approach; and (2) Real time monitoring of an excavator’s proximity to underground utilities using a graphical 

emulation approach. These capabilities were successfully created and were shown to be feasible in allowing an 

excavator operator to be visually aware of buried assets in a machine’s vicinity, and providing a real time 

quantitative measure of a machine’s distance to vicinal obstructions, significantly reducing the potential of buried 

utility strikes in ROW excavation. Accidents involving excavator hits to utilities are a long-standing and significant 

societal problem that leads to an unacceptable number of fatalities, injuries, property damage, and other costs each 

year (Sterling et al. 2009; Spurgin et al. 2009). Inadvertent utility strikes disrupt life and commerce, and pose 

physical danger to workers, bystanders, and the general public. The explored innovations thus have the potential to 

transform excavator operation from a skill-based to a knowledge-based process so future accidents are prevented.   
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Figure 34. SmartDig: (A) Camera cluster and stick marker; (B) Benchmark with pre-surveyed pose in the project 

reference frame; (C) System calibration; (D) Working prototype of automatic grade control; (E) Comparison to 

manual grade. 
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Although several variations of experimental prototypes were demonstrated with success, a robust system for large-

scale deployment on actual construction sites has some additional technical challenges that need to be overcome. 

Future work is needed to identify the proper implementation of marker-based sensors in excavator pose estimation 

systems. For example, it is still unclear whether it is best to place cameras on an excavator in view of a job site, or 

on a job site in view of an excavator. One potential advantage of the former is the centralization of power, sensors, 

processors, and interface, while a potential advantage of the latter is the possibility of viewing multiple machines 

with the same camera. Also regarding implementation, experiments have indicated that it may be advantageous to 

employ a combination of marker-based sensors and traditional sensors, but the best combination and specific role of 

each sensor type must be further explored. 

 

Another challenge needing to be addressed is camera-marker occlusion. Considering the busy nature of a 

construction site, it is not unreasonable to expect that a person, machine, or object could occasionally block the line 

of sight between a camera and marker. Thus, it may be necessary to evaluate the severity of the concern and address 

it, possibly through the incorporation of redundancies. Similarly, as an excavator moves, it may prove challenging to 

keep markers in the cameras’ field of view. Again, one solution might exist in the use of multiple site-based cameras 

or multiple site-based markers for redundancy. 

 

Lighting conditions may also pose a challenge, as low light levels can lead to marker detection loss. Thus, some 

form of active lighting may prove necessary for nighttime operation, and possibly even during dawn and dusk or in 

poorly lit indoor environments. Lastly, the harsh environment of the typical job site may present challenges for the 

sensor system’s components. Thus, a fully functional system will require additional design efforts to ensure 

electrical and mechanical robustness. 
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