Data Mining of Report Databases: Adverse Drug Reactions vs. Automobile Safety Defects

William DuMouchel
Oracle Health Sciences

Committee for a Study of Electronic Vehicle Controls and Unintended Acceleration

Public Session—15 November 2010
Spontaneous Report Database

- Collection of reports without a designed surveillance system
- Problems arise among a population of millions of users, some of whose reports filter back to a common authority
- Numerator-only analysis problem
 - Event counts without good measure of exposure for the different product categories
 - Variable problem reporting rates across product categories
- Data may have severe quality issues
 - Missing fields, incorrect coding, duplicate reports, etc.
- FDA AERS— >3M reports of drug adverse events (AEs)
 - About 5,000 generic drugs, 10,000 AE codes, over 40 report years
Searching for Associations

- No denominator to help measure absolute measure of risk
- Define measures of association or correlation among product categories and problem types
- Extremely helpful to have structured vocabularies
 - Products (drugs, vehicle characteristics)
 - Problems (adverse events, accidents or safety issues)
 - Reports often come in with free text narratives only
- Focused analysis vs screening for associations
 - Pre-specified problems with hypothesized causal mechanisms
 - Search for unanticipated relationships or product-problem associations
 - Statistical issues of multiple comparisons
Objectives and Limitations of Analyses of Spontaneous Reports

- Explore for Drug-Event Associations
 - Estimate a Measure of Association for every Combination
 - How Can a Rate Be Defined without a Denominator?
 - Matching External Sales or Prescription Counts Not Feasible
 - Construct Internal Denominators from Independence Model
 - Screening Objective – All Findings Require Follow-up

- Severe Limitations of Data Reliability
 - No Research Protocol
 - Adverse Event Report Rates Vary from Year to Year
 - Report Rates Vary by Drug and by ADR Type
 - No Certainty that a Reported Reaction Was Causal
Two Data Cleaning Issues

Drug Name Standardization
- The AERS Database has over 300,000 “verbatim” drug names
 - Generic and Trade names
 - Misspellings
 - Dose included with drug name
- Now reduced to about 3000 ingredient names
 - Years of effort!

Duplicate Detection
- Same ADR Event often reported multiple times
 - By different manufacturers or other reporters
 - Follow-up reports not properly linked to earlier reports
- 3 Million reports have had about 200,000 duplicates removed
 - Undetected duplicates can severely bias estimated drug-event associations
Spontaneous Reports 2 x 2 Analyses

For every D_iE_j pair = (Drug of Interest, Event of Interest)

- Use the database to tabulate a 2 x 2 table of report counts
- Compute an expected or baseline count e from (a, b, c, d)
 - Based on assumption of no association between Drug and Event
 - $e = \frac{b(a + c)}{(b + d)}$ [Proportional Reporting Ratio method]
 - $e = \frac{bc}{d}$ [Reporting Odds Ratio method]
 - $e = \frac{(a + b)(a + c)}{(a+b+c+d)}$ [Relative Report Rate: MGPS method]
 - This method works best when adjusting for trend or demographic covariates in computation of e

- $\frac{n}{e} = \text{Measure of Disproportionality for this Drug and Event}$

<table>
<thead>
<tr>
<th></th>
<th>Reports With Drug i</th>
<th>Reports W/O Drug i</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reports With Event j</td>
<td>$n_{ij} = a$</td>
<td>b</td>
<td>$a + b$</td>
</tr>
<tr>
<td>Reports W/O Event j</td>
<td>c</td>
<td>d</td>
<td>$c + d$</td>
</tr>
<tr>
<td>Total</td>
<td>$a + c$</td>
<td>$b + d$</td>
<td>$a + b + c + d$</td>
</tr>
</tbody>
</table>
Disproportionality Analyses

- Although the idea of computing n/e ratios for all or some drug-event combinations is simple, its widespread use is very recent
 - Computer and database advances enabled ease of use and evaluation

- Biostatisticians were uncomfortable with performing formal analyses on tabulations of spontaneous reports
 - Unknown reporting mechanism can lead to reporting biases
 - Frequent noncausal associations with indications and comorbidities
 - All large values of n/e require follow-up for medical validity

- Small values of n and/or e require statistical sophistication
 - PRR requires threshold values of n and 2 x 2 table chi-squared value
 - Bayesian statistical methods produce “shrinkage” values of n/e
 - Help avoid the “multiple comparisons” fallacy
 - US FDA, UK MHRA and WHO UMC have each adopted Bayesian disproportionality methods
Adjusting for Patient Covariates

- Drug-Event Associations Can Be Induced by Confounders
 - Drugs predominately taken by one age group
 - Events predominately experienced by that age group
 - Example: Childhood vaccines and SIDS

- Stratification As an Adjustment Method
 - Divide the database into age-gender-report year strata
 - Compute the baseline expected values \(e \) for each stratum
 - Add the \(e \)’s across strata to compare to the total \(n \)
 - Mantel-Haentzel adjustment of 2x2 tables

- Other Potential Variables to Adjust For
 - Country of origin of the report
 - Role of reporter (consumer, manufacturer, health care provider, …)
Combined Analysis of Drug-Event Counts in a Database

- Large Two-Way Table with Possibly Millions of Cells
 - One Column for each Drug, One Row for each Event
 - Rows and Columns May Have Thousands of Categories
 - Most Cells Are Empty, even though N is very Large

- “Bayesian Data Mining in Large Frequency Tables”
 - Develops and Illustrates Bayesian Estimation Method “GPS”

 - References above paper and applies to tire and fire related crashes
 - Does NOT implement the recommended Bayesian methodology
 - Used alternative P-Value method that was not recommended
Association Measures of Rare Events

- Ratios of (Observed count)/(Expected count)
 - Easy to interpret as analogs of relative risk
 - Often too variable when Expected count is small
 - Observed = 3, Expected = 0.01 (300:1 risk ratio)
 - Compare to e.g. Observed = 300, Expected = 10 (30:1 risk ratio)

- Compute statistical significance levels (P-values)
 - Chi-squared of 2x2 tables, Poisson probability of Observed|Expected
 - Focuses too much attention on larger counts in the database
 - P-values themselves are not intuitive nor good for ranking associations

- Bayesian shrinkage estimates of Observed/Expected
 - Need parallel situation having very many things to estimate
 - Get more reliable estimates risk ratios
Bayesian Shrinkage Models

- Statistical validity of searching for extreme differences
 - Most significant adverse event or patient subgroup

- Classical approach to post-hoc interval estimates
 - Maintain centers of CI at observed differences
 - Expand widths of every CI
 - Expansion is greater the more differences you look at
 - If you look at too many, the CI’s are too wide to be useful

- Bayesian approach
 - Requires a prior distribution for differences
 - Can estimate it from the multiple observed differences available
 - Centers of CI’s are “shrunk” toward average or null difference
 - High-variance differences shrink the most
 - Widths of CI’s usually shrink a little too
 - The more you look at, the better you can model the prior dist.
Empirical Bayes Gamma-Poisson Shrinker (GPS Method)

- Estimate $\lambda_{ij} = \mu_{ij}/E_{ij}$, where $N_{ij} \sim \text{Poisson}(\mu_{ij})$
- Assume Superpopulation Model for λ
 - Prior Distribution Is Mixture of 2 Gamma Distributions
 - Estimate the 5-Parameter Prior from All the (N_{ij}, E_{ij}) Pairs
- Posterior Distributions of each λ_{ij} Are Used to Create “Shrinkage” Estimates
 - EBGM = Empirical Bayes Geometric Mean of Posterior Dist.
 - Estimate of μ_{ij}/E_{ij} Has Smaller Variance than N_{ij}/E_{ij}
 - Rank Cells by $\text{EB05}_{ij} = \text{Lower 5\% Point of Posterior Dist.}$
 - More “Interesting” than Ranking Cells Based on “P-Values”
 - Compare $(N = 10, E = 0.1)$ to $(N = 2000, E = 1000)$
Plot of Classical Estimate with Conf. Int. and Bayesian “Shrinkage” Estimates [O]
Comparisons of NSAIDS in AERS

AERS to 3Q03 (Suspect drugs)
Heat Map Profiling Spontaneous Reports for a Drug
Spontaneous Report 2x2 Analyses: Two Biases

- Masking—Inappropriate Comparator Drugs
 - “Other Drugs” often include ones that cause event of interest
 - Estimates for drug of interest will be biased downwards
 - Need simultaneous estimates for all drugs w/ high associations

- Confounding—Bias Due to Polypharmacy
 - Co-prescribed drugs partially inherit each other’s associations
 - Synonymous terms: Signal leakage, Innocent bystander effect
 - GPS, PRR and similar methods don’t account for effect of Drug-Drug associations on Drug-Event associations

- Need a multivariate methodology
Logistic Regression

- Focus on specific events and drugs
 - Occurrence of event or problem in the report is the dependent var.
 - Presence/absence of potential causal factors are primary predictors

- Add covariates to the model as additional predictors
 - Dummy variables for age, gender, report year, etc.

- Add frequent concomitant drugs as more predictors
 - E.g., Drugs corresponding to top 100 Counts for response event

- Fit regression and convert to Odds Ratios and conf. limits
 - Non-overlapping confidence intervals worth investigating
 - Note patterns of agreement across events
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Almenoff, J.S., LaCroix, K.K., Yuen, N.A, Fram, D., DuMouchel, W.</td>
<td>Comparative Performance of Two Quantitative Safety Signalling Methods - Implications for Use in a Pharmacovigilance Department</td>
</tr>
<tr>
<td>2004</td>
<td>Kubota, K., Koide, D., Hirai, T.</td>
<td>Comparison of data mining methodologies using Japanese spontaneous reports</td>
</tr>
<tr>
<td>2005</td>
<td>Rolka, H., Bracy, D., Russell, C., Fram, D., Ball, R.</td>
<td>Using simulation to assess the sensitivity and specificity of a signal detection tool for multidimensional public health surveillance data</td>
</tr>
<tr>
<td>2006</td>
<td>Solomon, R., DuMouchel, W.</td>
<td>Contrast Media and Nephropathy: Findings from Systematic Analysis and Food and Drug Administration Reports of Adverse Effects</td>
</tr>
<tr>
<td>2002</td>
<td>Szarfman, A., Machado, S.G., O’Neill, R.</td>
<td>Use of Screening Algorithms and Computer Systems to Efficiently Signal Higher-Than-Expected Combinations of Drugs and Events in the US FDA’s Spontaneous Reports Database</td>
</tr>
</tbody>
</table>

Some References

Summary

- Spontaneous Report Data Statistical Issues
 - Extensive data cleaning necessary for millions of records
 - Many non causal reasons for associations
 - Poor design compared to clinical trial or cohort data
 - Interpretation of comparator group is difficult
 - Multiple comparison and post-hoc fallacies are endemic

- But Systematic Analyses Can Be Fruitful
 - About the only way to learn about very rare ADRs
 - Hypothesis generation and/or a second data source for comparisons
 - Bayesian approach to multiple comparisons helps assessment
 - Computer tools essential for improved productivity
 - Signal management (structured workflow) enables institutional “memory”