PORT ASSET MANAGEMENT: THE ROLE OF PORT AUTHORITIES AND MARINE TERMINAL OPERATORS – A SYSTEMATIC APPROACH

SOTIRIOS THEOFANIS
MARIA BOILE
TREFOR WILLIAMS
ALI MAHER

CENTER FOR ADVANCED INFRASTRUCTURE & TRANSPORTATION (CAIT)

7th National Conference on Transportation Asset Management

November 6-8, 2007
New Orleans, Louisiana
WHY ASSET MANAGEMENT IN PORTS?

• need to address the exploding global trade and the associated port congestion problem
• need to increase port productivity and maximize the use of port infrastructure
• new forms of ownership and financing port investment necessitating reliable port asset valuation
• scarcity of resources pertinent to investment in port infrastructure development
• need for more effective port infrastructure, superstructure and equipment condition monitoring and maintenance
• unprecedented price premiums experienced in some of the latest sales of port businesses and the need to recover the port infrastructure investments
FUNCTIONS OF PORT AUTHORITY

• The policy making and planning function
• The land developer and landlord function
• The regulatory, supervisory and monitoring function
• The promotion function
• The commercial function
PORT MANAGEMENT TYPOLOGY

• The Landlord Port

Port Authority (PA):
- Owns the basic infrastructure, land, access and protection works
- Leases land to port operators, normally through long-term concession
- Retains all regulatory functions

• The Tool Port

PA:
- Owns the infrastructure, the superstructure and major equipment
- Rents the above to operators
- Retains all regulatory functions

• The Operating (Service) Port

PA:
- Owns and operates every port asset
- Provides all commercial services (nautical-technical and cargo handling) to vessels and cargo
- Fulfills all regulatory functions
MANAGEMENT TYPOLOGY & DIVISION OF RESPONSIBILITIES

<table>
<thead>
<tr>
<th>PORT ELEMENT</th>
<th>LANDLORD PORT</th>
<th>TOOL PORT</th>
<th>OPERATING (SERVICE) PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
</tr>
<tr>
<td>Superstructure</td>
<td>T</td>
<td>PA</td>
<td>PA</td>
</tr>
<tr>
<td>Utilities</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
</tr>
<tr>
<td>Major Equipment</td>
<td>T</td>
<td>PA</td>
<td>PA</td>
</tr>
<tr>
<td>Secondary Equipment</td>
<td>T</td>
<td>T</td>
<td>PA</td>
</tr>
</tbody>
</table>

PA: Port Authority, T: Tenant (port operator/stevedore)
AM INTERPRETATIONS

- A next-generation infrastructure management system,
- A way to bring private-sector thinking into public-sector decisions,
- An economics-based approach to investment planning and decision-making,
- A comprehensive program of facility maintenance or maintenance contracting,
- A management philosophy to secure the future life of transportation infrastructure, and
- A way of combining pavement, bridge, safety, and other maintenance management systems to yield more effective information.

Source: *Transportation Asset Management Guide*
CAN THESE PRINCIPLES APPLY IN PORTS? – POTENTIAL AREAS OF AM APPLICATIONS FOR PA IN LANDLORD PORTS

THE PORT INDUSTRY IS AN ASSET INTENSIVE INDUSTRY

Potential Areas of Application:
• Infrastructure Development and Monitoring
• Property Management
• Maintenance Management
• Utility Management
• Data Integration
PORT ASSET MANAGEMENT: A CONCEPTUAL APPROACH

INFRstructure Development

PROPERTY MANAGEMENT

MAINTENANCE MANAGEMENT

UTILITY MANAGEMENT

DATA INTEGRATION

INFRstructure MONITORING – LIFE CYCLE APPROACH

PA

Center for Advanced Infrastructure and Transportation
WHY FORMAL AM PROCESS WAS NOT ADOPTED SO FAR WIDELY BY PORT AUTHORITIES?

• “Business as usual” attitude
• Diverse and fragmented activities
• Main operating function is “outsourced” to tenants (mainly terminal operators)
• AM is considered merely as a maintenance management issue or an asset inventory issue
• Asset inventory is considered as an administrative issue
• Investment is considered, in many cases, as a budget issue
• Ageing infrastructure problems were not so evident (e.g. corrosion of marine structures)
• Environmental pressures were not so evident
PA – TENANTS CONCESSION ARRANGEMENTS

• Concession contracts merely are limited to set throughput performance targets
• Normally, there is no reference at all for the infrastructure condition. Infrastructure degradation is considered as usual “wear and tear’ issue
• Normally, there are no reporting obligations of the tenants for the condition of the infrastructure
• Concession fees possibly do not cover a life cycle management approach
• Business premiums, attributed to port infrastructure, are not reflected
THE ROLE OF TENANTS (PORT OPERATORS)

Perspectives of the Tenants role:

• BUSINESS PERSPECTIVE

• CONTRACTUAL PERSPECTIVE

• PUBLIC DOMAIN PERSPECTIVE

Tenants, in most cases, apply asset management for their property (mainly cargo handling equipment)
GOVERNANCE OF AM IN PORT AUTHORITIES

Two Approaches:
1. Establish an independent Unit for AM, or
2. Establish a formal intra organization Task Force

IN ANY CASE PUT THE ISSUE ON THE PRIORITY AGENDA OF THE EXECUTIVE DIRECTOR
INTEGRATING AM SYSTEM & EMS IN PORTS

AMS & EMS

DIAGNOSTIC PHASE

AMS
EMS

PLANNING PHASE

AMS
EMS

IMPLEMENTATION PHASE

AMS & EMS

MONITORING PHASE

Center for Advanced Infrastructure and Transportation
PORT ENVIRONMENTAL REVIEW SYSTEM (PERS) SELF DIAGNOSTIC TOOL

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>PERS</th>
<th>EMAS</th>
<th>ISO</th>
<th>SWOT</th>
<th>Ans(%)</th>
<th>Yes(%)</th>
<th>Partial(%)</th>
<th>No(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Has an Initial Environmental Review been conducted?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>93.8%</td>
<td>50.0%</td>
<td>60.0%</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Do you have an Environmental Policy?</td>
<td>YES</td>
<td>S</td>
<td></td>
<td></td>
<td>96.9%</td>
<td>61.3%</td>
<td>38.7%</td>
<td></td>
</tr>
<tr>
<td>1.31</td>
<td>Is the Policy signed by Chief Executive / Senior Management?</td>
<td>YES</td>
<td>S</td>
<td></td>
<td></td>
<td>59.4%</td>
<td>78.0%</td>
<td>21.1%</td>
<td></td>
</tr>
<tr>
<td>1.32</td>
<td>Is the Policy communicated to all relevant interest groups?</td>
<td>YES</td>
<td>S</td>
<td></td>
<td></td>
<td>58.3%</td>
<td>88.3%</td>
<td>11.1%</td>
<td></td>
</tr>
<tr>
<td>1.33</td>
<td>Communicated to all employees*</td>
<td>YES</td>
<td>S</td>
<td></td>
<td></td>
<td>58.3%</td>
<td>88.3%</td>
<td>11.1%</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Does the Policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.41</td>
<td>Specify Objectives</td>
<td>YES</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>86.3%</td>
<td>18.7%</td>
<td></td>
</tr>
<tr>
<td>1.42</td>
<td>Publish an Environmental annual report?</td>
<td>YES</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>33.3%</td>
<td>16.7%</td>
<td></td>
</tr>
<tr>
<td>1.43</td>
<td>Continual improvement?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>55.3%</td>
<td>84.1%</td>
<td>5.6%</td>
<td></td>
</tr>
<tr>
<td>1.44</td>
<td>Train employees on environmental issues?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>55.3%</td>
<td>77.1%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td>Introduce an Environmental Management System?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>53.1%</td>
<td>41.2%</td>
<td>5.6%</td>
<td></td>
</tr>
<tr>
<td>1.46</td>
<td>Reduce resource consumption?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>50.0%</td>
<td>81.1%</td>
<td>18.8%</td>
<td></td>
</tr>
<tr>
<td>1.47</td>
<td>Improve environmental standards beyond those required under legislation?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>61.1%</td>
<td>33.3%</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Does the Environmental Policy refer to the following issues?</td>
<td>YES</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>88.3%</td>
<td>11.1%</td>
<td></td>
</tr>
<tr>
<td>1.51</td>
<td>Implementation of the ESPD Code of Practice?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>38.3%</td>
<td>61.7%</td>
<td></td>
</tr>
<tr>
<td>1.52</td>
<td>Operations carried out in the port?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>58.3%</td>
<td>77.5%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td>1.53</td>
<td>Substances involved in port operations?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>66.7%</td>
<td>33.3%</td>
<td></td>
</tr>
<tr>
<td>1.54</td>
<td>Emissions / effluents generated by port activities?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>61.1%</td>
<td>33.3%</td>
<td></td>
</tr>
<tr>
<td>1.55</td>
<td>Wastes produced in the port?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>88.3%</td>
<td>11.1%</td>
<td></td>
</tr>
<tr>
<td>1.56</td>
<td>Cargo loaded / unloaded?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>83.3%</td>
<td>16.7%</td>
<td></td>
</tr>
<tr>
<td>1.57</td>
<td>Premises and land?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>72.2%</td>
<td>27.8%</td>
<td></td>
</tr>
<tr>
<td>1.58</td>
<td>Investment and expansion plans?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>72.2%</td>
<td>22.2%</td>
<td></td>
</tr>
<tr>
<td>1.59</td>
<td>Energy use and energy conservation?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>66.7%</td>
<td>33.3%</td>
<td></td>
</tr>
<tr>
<td>1.61</td>
<td>Public relations?</td>
<td>NO</td>
<td>O</td>
<td>()</td>
<td></td>
<td>56.3%</td>
<td>72.2%</td>
<td>27.8%</td>
<td></td>
</tr>
</tbody>
</table>

Source: Palantzas, Wooldridge, Naniopoulos, Theofanis and Boile, 2006

Center for Advanced Infrastructure and Transportation
BEST PRACTICE: PANYNJ Utility Management System (1/11)
Port Elizabeth Newark UMS Database

Source: Danko, R. “PANYNJ UMS”, Presentation to NJ Common Ground Alliance Meeting, CAIT, October 3rd, 2007

Center for Advanced Infrastructure and Transportation
BEST PRACTICE: PANYNJ Utility Management System (2/11)

EWR UMS Database

Source: Danko, R. “PANYNJ UMS”, Presentation to NJ Common Ground Alliance Meeting, CAIT, October 3rd, 2007

Center for Advanced Infrastructure and Transportation
BEST PRACTICE: PANYNJ Utility Management System (3/11)
Conceptual System Steps

Data Collection -> Mapping

Data Maintenance -> Data Loading

Data Loading -> Data Distribution

Center for Advanced Infrastructure and Transportation
BEST PRACTICE: PANYNJ Utility Management System (4/11)
Utility Mapping Concept Design

Source: Danko, R. “PANYNJ UMS”, Presentation to NJ Common Ground Alliance Meeting, CAIT, October 3rd, 2007

Center for Advanced Infrastructure and Transportation
BEST PRACTICE: PANYNJ Utility Management System (5/11)
Utility Mapping Process (1/2)

1. UMS
 - Orthophoto
 - Base map
 + Electric, Comm
 + gas, fuel, water, TDEC, Sewer, Storm
 - Historical file conversion
 - Preparation of Verification Drawings

2. CSG
 - Field verification of historical information
 - As-Built Survey
 - Draft Survey Drawings
 - CSG Team Field Verifies/Field Surveys information
 - CSG stores drawing on CSG Server
 - UMS team adds attributes to CSG Verified drawing
 - UMS team publishes drawing to UMS Viewer

3. UMS
 - AutoCAD
 - Enter of Attributes
 - Publish to Viewer

Source: Danko, R. “PANYNJ UMS”, Presentation to NJ Common Ground Alliance Meeting, CAIT, October 3rd, 2007

Center for Advanced Infrastructure and Transportation
BEST PRACTICE: PANYNJ Utility Management System (6/11)
Utility Mapping Process (2/2)

Source: Danko, R. “PANYNJ UMS”, Presentation to NJ Common Ground Alliance Meeting, CAIT, October 3rd, 2007

Center for Advanced Infrastructure and Transportation
BEST PRACTICE: PANYNJ Utility Management System (7/11)

Utility Mapping - Data Loading Process

1. Identify sources of information
 - Label each feature
 - Prepare dwg for Verification
 - Collect Attribute values

2. Field verify features shown on UMS Drawing
 - Draft Verified features onto verification drawing
 - Store dwg on CSG Server
 - Provide copy of dwg to UMS

3. Enter drawing information from verified drawing into UMS
 - Enter Attributes collected in steps 1 and 2 into UMS
 - Publish drawings and attributes to viewer

Source: Danko, R. “PANYNJ UMS”, Presentation to NJ Common Ground Alliance Meeting, CAIT, October 3rd, 2007

Center for Advanced Infrastructure and Transportation
BEST PRACTICE: PANYNJ Utility Management System (8/11)
Utility Mapping – Data Maintenance Process

1. UMS Request for Survey
 • Traditional Request for Survey
 • Construction Inspection initiated Survey request

2. CSG does field survey
 • Drafts surveyed features
 • Delivers dwg to requestor
 • Updates Utility Base Map
 • Stores dwg on CSG Server
 • Provides copy of dwg to UMS

3. Enter new drawing information from surveyed drawings into UMS
 • Collect Attributes/enter into UMS
 • Re-publish drawings and attributes to viewer

Source: Danko, R. “PANYNJ UMS”, Presentation to NJ Common Ground Alliance Meeting, CAIT, October 3rd, 2007
BEST PRACTICE: PANYNJ Utility Management System (9/11)
Utility Mapping - Data Access Approach

Method 1:
Design contacts CSG person at facility

Method 2:
Design uses UMS tools to request a drawing

Source: Danko, R. “PANYNJ UMS”, Presentation to NJ Common Ground Alliance Meeting, CAIT, October 3rd, 2007

Center for Advanced Infrastructure and Transportation
BEST PRACTICE: PANYNJ Utility Management System (10/11)

Utility Mapping – Accuracy Assignment - ASCE Standard quality level

Level A: Precise horizontal and vertical location of utilities obtained by actual exposure, “as-Built” (Test Holes/Test Pits) (PA Code EXSV)

Level B: Approximate horizontal Information obtained through application of appropriate surface geophysical methods (e.g. toning) (PA Code EXTN, OSTN)

Level C: Horizontal information obtained by surveying and plotting visible above-ground features (PA Code EXUV, OSUV)

Level D: Horizontal information derived from existing records or oral recollections (PA Code EXUV, OSUV)

“Standard Guidelines for the Collection and Depiction of Existing Subsurface Utility Data” American Society of Civil Engineers, July 24, 2001

Source: Danko, R. “PANYNJ UMS”, Presentation to NJ Common Ground Alliance Meeting, CAIT, October 3rd, 2007

Center for Advanced Infrastructure and Transportation
BEST PRACTICE: PANYNJ Utility Management System (11/11)
Utility Management System Unit

Source: Danko, R. “PANYNJ UMS”, Presentation to NJ Common Ground Alliance Meeting, CAIT, October 3rd, 2007
CONCLUSIONS

• AM is gradually adopted by the port industry as an integrated strategy for this asset intensive industry
• Port management typology, PA mission and specific conditions of each port influence vastly AM goals, structure and implementation.
• Integrating AM system with EMS can provide synergies, save resources and lead the PA into sustainable development strategy
• Best practices from other sectors of the transportation industry can be exploited
• Given the latest developments in port operations and the involvement of the infrastructure investors, the issue of the concession arrangements should be reconsidered in view of adopting a life cycle approach for port infrastructure management and financing