RFID Technology Evolution, Applications, and Trends

TRB Research Initiatives in RFID Richard Doering, TransCore October 17, 2006

Washington DC

Outline

- RFID Technologies & Evolution
- Current Application Areas
- Trends

RFID Typical Practical Goals

- No battery or long battery life years
 Aftermarket Automotive or other uses
- Secure ID number storage & reading
 - → Factory programmed and locked
 - **↗** Vs. Authentication of tag and/or reader
- Small scratch-pad read-write memory for systems where back end communications cannot be assured. Read-only is often viable.
- Tag Communications correlated to item/vehicle
 Intagged item/vehicle identification
- FCC Regulatory Approval & Frequency Rules

Typical Transportation Requirements

- Accurately Read vehicle Toll Tag
 - 7 < 5 in 10,000 misses = >99.95% success rate
 - **↗** <1 incorrect number in 10,000,000 transactions
 - Avoid shadowing, cross-lane reads, out of sequence reads, duplicate transactions
- Lane Controller verifies Tag Status and lights Traffic Signal or tag light – Account OK or Low?
- Do not stop! Safety First.
- Replenish tag/account elsewhere/automatically

History of RFID – See Shrouds of Time by Dr Jeremy Landt, AIM Pub

IFF Radar 1939

- Harry Stockman, "Communication by Means of Reflected Power", Proceedings of the IRE, pp1196-1204, October 1948.
- Article Surveillance 1 bit 1960's
- Lab & Commercial interest 1970's
- Animal ID 1970's
- Automatic Vehicle ID AVI

 - ↗ Lincoln Tunnel 1973 three other technologies
- Rail 1980's-Long Island RR & AAR Test Track
- Trucking Arizona & HELP project late 1980's

Recent Timeline

Technologies used for RFID communication

- Radar Modulated Backscatter- CW
 - ↗ Unsynchronized Tag Response
- Pulse/Field Trigger LF or UHF RF or IR
- Addressed Data Modulation Commands

 Tag response – MB, FSK, AM, OFDM, BPSK, QPSK, QAM

↗ Some Frequency Doubling Systems LF & UHF

- Swept Frequency or Frequency Hopping
 Often for Higher Power Unlicensed Operation
- ◆ UWB Ultra Wideband 5.8 to 7.2 GHz
- Horizontal or Circular Polarization

Technologies used for RFID Circuits

SAW – Surface Acoustic Wave

- CMOS UHF RF powered- IF only
 - Passive or semi-active battery assist Single Chip

Low Frequency Inductive powered

- ↗ With UHF communication
- Full active receiver and transmitter

 - 7 TDMA
- Complex integrated circuits for 802.11a-like OFDM – powered by vehicle

General - Modulated Backscatter

- MB technique is the basis of many toll & supply chain systems in US and Europe (5.8 DSRC).
- CW transmitter
- Tag often operates over many frequencies
- Transponder (tag) provides identification via modulation of backscatter reflection
 - RF interrogation field powers the microwatts needed for tag operation
- Antenna Keyed In and Out of Circuit at data rate
- Homodyne Receiver in Reader
 Transmitted signal mixed with reflected signal to immediately convert to base band IF signal

Typical Technology Development

- Basic Techniques demonstrated
- Commercialized early application
- Standards de-facto or Standards Org
- Higher Data Communication Speed
 Multi-protocol readers
- More memory
- Read-Write on the fly
- Display or Lights Feedback
- Authentication

RFID - Components

RFID Challenges

- Antenna Coverage Volume
- Polarization / Orientation of tag
- Minimizing metal / conductive shielding
- Poor Mounting causing Failed Writes or Reads
- Minimal Time in Antenna Pattern
- Achieving useful Data Rates in error-prone RF
- RF Interference
- Null Zones or Long Range Reflections
- RF Power Levels sufficient but not too high to properly locate tag, match to sensed vehicle
- Tag power consumption Battery Life

RFID Applications

- Item ID: Retail, Conveyor line, Process Control
 Trac communication a hometaristics (contents)
 - → Tag carrying item characteristics / contents
- Item Location and Surveillance
- Container Door Security, Alarm, Temp. and ID
- Building or Border Access Control
- Vehicle Access Control or Toll Collection
- Smart Card Payment
- Location Signposts Rail or Buses, AVL
- Traffic Management Weigh Station Bypass
- Safety Communications
- Information Download or Upload

Harold the Tagged Animal ~1976

Toll and Traffic Management

- Cash free, card-free, and hands-free operation for patrons
- High accuracy Revenue collection transactions
- High reliability, Traffic throughput and congestion avoidance
- Harsh environments -External and extremes

Tag Capabilities – Generalized

Read-Only Rail Standard

- ↗ 120 bit, 13 ms.+read, 20/40 KHz, Sub-bit encoding for effective data rate ~9600 baud
- **7** Band: 902-904, 909.75 to 921.75MHz
- **7** 80 mph

Read-Write Toll

- ↗ 128 to 256 bits, Triggered Read 500 Kbaud
- **⊅** 100+ mph
- Reader or Controller determines what to write to specific tag before it exits antenna zone

AEM Automatic Equipment Monitoring

Rolling Stock/Container Readers

Single Chip Sticker Tag – Used in Supply Chain and Toll Collection

- Single Integrated Circuit High Performance UHF Frequency ◆ Beam Powered – No Battery Read/ Write capable ♦ Beam powered – No Battery Requires proper commands to cause
 - tag to respond via backscatter

Unusual Tags & Applications

- Waterproof External /License Plate / Pavement
- ◆ High Temperature Thaw Shed
 - Bullet Proof slot antenna
- Modem Tag
 - Tire ID
- Sensor Tag
- Tamper Resistant Tag
- Display Tag
- Smart Card
- Runner ID & Timing
- Multi-band operation around World

American DSRC WAVE 5.9 GHz

- Digital Short Range Communication
 - ➤ Wireless Access for Vehicular Environment
- FCC Allocation & Regulations 90.379
 - **7** each 10 MHz channels (combine some to 20 MHz)
 - OFDM-Orthogonal Freq. Division Multiplexing
 - **7** 802.11a − at twice the symbol length/half bandwidth
 - Needed for multi-path ISI (inter symbol interference) minimization
- ◆ IEEE standards for higher layers 802.11p
- Auto Manufacturers researching incorporating into vehicles for Safety Communication

5.9 GHz DSRC APPLICATIONS- 1999 ASTM Committee

ACCESS CONTROL

- PROBE DATA COLLECTION
- TRAFFIC INFORMATION
- TOLL COLLECTION
- GAS (FUEL) PAYMENT
- DRIVE-THRU PAYMENT
 - **7** PARKING PAYMENT

 - ↗ PHARMACY PAYMENT
- IDB DATA TRANSFER
 - **7** DIAGNOSTIC DATA
 - ↗ REPAIR-SERVICE RECORD
 - ↗ VEHICLE COMPUTER PROGRAM UPDATES
 - **↗** MAP and MUSIC DATA UPDATES
- RENTAL CAR PROCESSING

IN-VEHICLE SIGNING

- ↗ WORK ZONE WARNING
- HIGHWAY/RAIL INTERSECTION WARNING
- **7** ROAD CONDITION WARNING

- ROLLOVER WARNING
- MAINLINE SCREENING (WEIGH-STATION CLEARANCE)
- ◆ BORDER CLEARANCE
- UNIQUE CVO FLEET MANAGEMENT
- ON-BOARD SAFETY DATA TRANSFER
- TRUCK TRACTOR-TRAILER SAE DATA BUS INTERFACE
- DRIVER'S DAILY LOG
- ◆ VEHICLE SAFETY INSPECTION
- EMERGENCY VEHICLE SIGNAL PREEMPTION
- TRANSIT VEHICLE SIGNAL PRIORITY
- TRANSIT VEHICLE DATA TRANSFER
- LOCOMOTIVE DATA TRANSFER
- LOCOMOTIVE FUEL MONITORING
- INTERSECTION COLLISION AVOIDANCE
- VEHICLE to VEHICLE DATA TRANSFER
 - ↗ VEHICLE STOPPED or SLOWING WARNING

Ad Hoc Networks

- Peer to Peer Network Tag to Tag
- MANET- Mobile Ad Hoc Networking
- Mesh Communication Network
- Resolve the Hidden Transmitter Problem
 - 5.9 GHz OFDM Range about 600 to 1000 feet typically from roadside to vehicle
- Packet Network relaying
 - ↗ Data more important than location and ID

Reader & Antenna Technology

- High speed applications 100 mph
 Read only or Read-Write
 2W synthesized FCC 30 Watts ERP
 High gain antenna
- Internal electronic attenuator
- Overhead antenna mounting
- Open Road Multiple Lanes with no barriers and lane changing
 - ↗ Lane Center and Lane Edge Antennas

Overhead Antenna Design

towards oncoming traffic

 Match object presence with identification Minimize Null Zones in pattern e.g. from Yagi Panel Antenna preferred Broad Area Coverage Low Gain Antennas ◆ 4X distance or 10 db power "rule" Typical Panel Antenna Focused zone 13 dBi Gain – Horizontal Pattern **7** Front to Side >15 dB rejection → Beam width ~ 35 degree E & H plane Overhead mounting to control range ♦ Match Windshield Angle – 15 degree angle

Frequencies and Power Levels

Typically licensed 912.5 to 919.0 MHz

- → Synthesized 500 KHz steps
- → FCC ITS Radio Service 90.351
- → Band Shared with Federal Government IRAC
- 30-500 Kbits/second data rate, Manchester encoding in reader interrogation commands
- Panel gain antenna pointed down in toll lane
- Feed line, internal and external attenuation results in less than 30 watts ERP
 - **↗** Typically < 1 w ERP at Horizon

RF Spectrum for RFID Readers

- Country Dependent
- FCC Equipment Authorization & ID #
- Some Equipment requires Site Licenses
- Bands Often shared Most used:
 - **7** LF − 66 & 132 KHz
 - ↗ HF 13.56 MHz
 - **7** VHF − 49 MHz
 - ↗ UHF 315, 433, 902-928 MHz, or 2.45 GHz
 - ↗ Microwave 5.8 GHz (Europe) 5.9 GHz US
- Data Bandwidth, Latency, and Number of Readers at site influences Frequency selection

Marketplace Trends

- GPS Location and ID Determination
- Cellular Network for communication
- DSRC 5.9 GHz
- Fuel Tax Replacement
- More highly integrated applications with Vehicle Navigation system
- Satellite Tracking Continuous Visibility
- Simple, Low Cost & Completely separate RFID
- No Display on Tags

Trends in Technology

• Single Chip Tags with Read-Write Operation at Highway Speeds, and multi-mode operation

- Increased Security
- Mutual Authentication for High Value Parking
- Registration Stickers/Plates with RFID- EVR
- Multiple Readers for different bands or Multi-Protocol Readers in same band
- Time Difference of Arrival or Angle of Arrival for Tag/Object Location

Additional Trends in Technology

- Multiple Application integration of processors and GPS receivers
- Higher circuit integration & Lower current
- Integrated with vehicle data bus & Power
- DSRC 802.11p transponders also use 802.11a
- Communication Handoff between Roadside Units

Conclusion

A Variety of Technologies and System Designs Contribute to Fertile Environment for R & D

