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ABSTRACT 
 
This research examined the feasibility of applying Time Domain Reflectometry to the task of broken rail detection.  
The key innovation is to regard the track as a two-wire electrical transmission line, and then apply the same 
electrical pulse/echo technique that is commonly used to locate breaks and shorts in electrical cables.  The aim of 
the proposed locomotive-mounted system is to allow each train to independently test the track ahead for broken 
rails and track occupation, up to a given detection range.  This approach is designed to work in conjunction with 
Communication-Based Train Control to replace the present wayside signaling system and eliminate the associated 
per-mile maintenance costs.  A theoretical framework for the proposed test system was developed to explore the 
likely benefits and problems, and a MATHCAD signal path model was developed to estimate the detection range.  
Anticipated problems that were considered included track-shunting structures such as turnouts; interoperability 
with the existing track circuits; RF safety and licensing issues; and the complex mechanical and electrical 
requirements for coupling signals between the train and the track.  The signal path model incorporated factors such 
as the estimated transmission line characteristics of railroad tracks with wood or concrete ties and wet or dry 
ballast conditions; initial pulse characteristics; signal coupling losses to and from the rail; electrical reflection 
models for various configurations of broken rail or track occupation; and signal processing techniques that could 
be applied to recover highly attenuated echo signals.  To estimate transmission line characteristics, previous 
European research on railroad track electrical properties was extrapolated to the required test frequencies.  
Railroad track was found to have a high attenuation rate because of ballast conductance, and the attenuation rate 
was predicted to increase significantly at the higher frequencies needed for pulse/echo testing.  Even so, the model 
predicted that a range of one mile for wet ballast and two miles for dry ballast could be possible by using 
correlation processing to enhance the echo signals, and a variety of initial pulse characteristics to cover different 
segments of the required search range for various track conditions.  The given range might be suitable for some 
train categories but not for others, depending on the full-service braking distance for each category of train.  It is 
recommended that field measurements be made of the track attenuation rate over a broad range of frequencies for 
various U.S. track conditions.  The aim would be to validate and fine-tune the model, and then reassess the 
predicted detection range compared to the safe stopping distance of each category of train. 
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EXECUTIVE SUMMARY 
 
Railroads presently use a wayside system of track circuits and signal lights to detect broken rails and manage 
traffic separation.  Communications-Based Train Control (CBTC) is an alternative method of traffic regulation that 
does not require track circuits, but CBTC alone can not provide broken rail detection.  A cost-effective alternative 
for detecting broken rails would allow railroads that adopt CBTC to eliminate track circuit-based signaling and the 
associated per-mile maintenance costs.  Therefore, the Committees for Railroad Track Structure System Design 
and Rail Transit System Design have each released Research Problem Statements calling for alternative methods 
of broken rail detection.  This research examined Time Domain Reflectometry (TDR) as the basis for a 
locomotive-mounted broken rail detection system that would avoid introducing any new per-mile costs. 

TDR works on the principle that when an electrical signal traveling along a transmission line encounters a 
deviation from the characteristic impedance, some (or all) of the signal will be reflected according to the degree of 
impedance mismatch.  This principal is employed in instruments that are used to locate faults in transmission lines 
such as underground telephone cables.  If a cable is damaged, there is nearly always an associated local change in 
the transmission line impedance.  To locate the damage, a TDR instrument is connected to one end of the cable, 
electrical pulses are sent into the cable, and any signals reflected back to the instrument are detected and displayed.  
These echo signals have a time delay that is proportional to the distance to the fault, and the shape of the echo 
identifies the type of reflector.  Specifically, an open-circuit will reflect the original pulse shape while a short-
circuit will reflect an inverted pulse shape.  The detection range of a TDR instrument can be many miles, and is 
mostly determined by the shape and energy of the initial transmitted pulse, the rate of signal attenuation along the 
cable (to the reflector and back), and the sensitivity of the receiver.  To summarize, a TDR instrument connected to 
one end of a transmission line can determine the type and location of any significant impedance variation along the 
cable, including open or short circuits, by transmitting an electrical pulse and then measuring the time delay and 
the shape of any returning echo. 

The key innovation of this research is to apply the same test method to the task of broken rail detection by 
treating the two rails and track bed as an open two-wire transmission line.  The concept is that the lead locomotive 
of every train would be equipped with a TDR-based system to search the track ahead for open circuits caused by 
broken rails.  In addition, a track occupation would also be detectable as a short circuit reflector, and be 
distinguishable from a broken rail by the inverted shape of the echo.  Thus, with little dependence on external 
equipment, the proposed system would identify any broken rail or track occupation within the TDR detection 
range, calculate the distance ahead, and generate appropriate displays and warning alarms for the train crew. 

The main objective of TRB IDEA contract HSR-38 was to determine if the concept was technically 
feasible, and if further research might be warranted.  This was accomplished by determining the theoretical 
detection range and exploring the possible problems, advantages and disadvantages of the proposed system. 

To be viable, the proposed system would need to provide a detection range greater than the stopping 
distance of the train, preferably using a “full service” rather than an emergency brake application.  Therefore, the 
first major research task was to create a MATHCAD model for predicting the TDR detection range.  The model 
included possible initial pulse characteristics, the total signal path attenuation, possible receiver characteristics, and 
the benefits of signal correlation methods such as those used in RADAR systems to recover and identify very low-
level received signals.  The railroad track attenuation rate, relative to test pulse frequency, was estimated by 
consultant Dr. John Hill by extrapolating from previously published research, and included the effect of various 
track conditions such as rail weight, tie type (concrete or wood) and ballast conductance (wet and dry).  Options 
were included in the signal path portion of the model to allow for the calculated reflection coefficient for either a 
track occupation or a broken rail, as well as coupling models for transferring the electrical signals between the 
train and the track.  The completed mathematical model estimated detection range for broken rails and track 
occupation for various track conditions and for given parameters such as the pulse frequency, pulse duration, 
transmitter power, test repetition rate, signal correlation period, and train speed. 

The second major research task was to consider the anticipated problems of implementing a locomotive-
mounted TDR system.  Some problems related to the fact that railroad track is an inconsistent transmission line.  
The high attenuation rate is very dependent on the track bed conductance, which varies with location and season.  
This conductance also contributes to a complex transmission line impedance that causes the attenuation rate to be 
frequency-dependant.  The electrical effects of track structures such as rail joints, bridges and turnouts were also 
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considered.  Another problem was devising a method of coupling signals to and from the track that would not be 
affected by the local electrical shunt of the train itself.  Finally, factors were considered that might reduce range by 
limiting the maximum allowable initial pulse energy.  These included the RF radiation hazard, FCC licensing 
requirements, practicality and cost of high-power transmitters, and interactions with the existing track circuits. 

The third major task was to determine the potential advantages and disadvantages of the proposed system.  
For this task, a system overview was developed that included the possible system/subsystem component layout as 
well as the expected functional requirements of the key subsystems.  The purpose of the system description was to 
provide insight into how a final system might be implemented; help anticipate other potential problems; suggest 
how information might be presented to the train crew; and identify possible advantages and disadvantages 
compared to existing track circuits as well as other suggested methods of broken rail detection. 

The resulting MATHCAD model predicted a detection range of approximately 1 to 2 miles depending on 
the track conditions such as ballast moisture content.  Since the track attenuation rate increases with frequency, 
low-frequency pulses are necessary to achieve the maximum range.  On the other hand, the pulse frequency can 
not be too low since the duration of the initial pulse has to be limited to avoid overlap between the trailing edge of 
the generated pulse and the leading edge of the returning echo.  Rather than a single compromise frequency, it was 
found that a spread of pulse frequencies from 50 kHz to 500 kHz might be necessary to cover different segments 
of the range, i.e., lower frequencies for long range reflectors and higher frequencies for nearby reflectors.  To 
achieve maximum range, a transmit power of 10 kW at 50 kHz for up to 60 uS was considered (approximately a 
1000 V peak rail-to-rail signal), but the relationship between power and range was found to be logarithmic such 
that a 100 W pulse (100 V) would achieve 90% of the 10 kW pulse range, and a 1 W pulse (10 V) would achieve 
80% of this range.  This suggests that transmitter power could be reduced to meet safety and compatibility 
requirements without a dramatic loss of range.  It should be noted that the MATHCAD models were based on 
extrapolations from track measurements performed at much lower frequencies, and it is recommended that field 
tests be performed to confirm the predicted track transmission line properties.  This is important because the 
predicted range may or may not be suitable based on the braking distance for each category of train (freight, 
heavy-haulage, light rail, passenger, etc.).  Field tests would determine if the actual detection range is equal to, 
more than or less than predicted, and allow an assessment of how useful this range would be for each type of train. 

To couple signals to and from the track, an inductive coupling method was proposed that would 
incorporate the leading axle shunt as part of the coupling circuit.  This solution would require a coil or a pair of 
coils, one for each rail, held above the rails at a reasonably constant height and alignment.  To achieve this, two 
possible mechanical approaches are suggested: using the leading axle as a reference by attaching the coil support 
to the traction motor or axle bearings; or a gauge reference guide wheel system similar to those used by some track 
maintenance vehicles.  In either case, considerable safety and mechanical design issues would need to be resolved. 

Based on MATHCAD modeling, the TDR method was predicted to have many of the  same shortcomings 
as the present track circuit method, i.e., partial breaks, breaks under compression and breaks on tie plates would 
not be detected if there was no significant loss of electrical continuity.  It was also found that due to the increased 
resistance at each joint, the detection range on tracks with properly bonded joints (every 39 ft) would be reduced, 
but only slightly (about 1% to 2%) compared to CWR.  Insulated Joints (IJs) would behave like broken rails and 
limit the test range, but it may be possible to add bypass filters tuned to the TDR frequency to continue testing past 
the IJ.  Turnouts and other track structures that shunt the track would also limit test range unless modified.  Two 
methods are suggested for transferring the initial pulse and returning echo signals past a turnout.  A passive 
approach would use IJs to electrically isolate the shunt and cables with electrical relays to provide electrical 
continuity to match the track alignment.  The alternative would use an active repeater system with coils to receive 
and retransmit signals around the shunt so that no IJs would be needed. 

This report details the possible advantages of a TDR-based system.  As an adjunct to CBTC, the proposed 
locomotive-mounted system could allow for the elimination of track circuits.  Other advantages could include 
providing continuous, real-time monitoring of the track ahead directly to the train crew without depending on 
external equipment, signals or communications systems that might delay critical warning information.  
Locomotive mounting would provide a local power source and a well-controlled operating environment plus the 
added security and safety of not relying on exposed wayside equipment.  In support of CBTC, the proposed system 
could provide a backup for collision-avoidance in the event of a CBTC error or communications failure, and also 
detect unexpected track occupations such as isolated freight cars. 
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1.  INTRODUCTION 
 
1.1 PROBLEM STATEMENT 
 
The Transportation Research Board (TRB) has identified the need for an alternative method of broken rail 
detection to help encourage the adoption of Communications-Based Train Control (CBTC).  This need is described 
in the Committee Research Problem Statements of the Committee on Railroad Track Structure System Design 
(A2M01) (1), and the Committee on Rail Transit System Design (A2M04) (2).  To summarize, many railroads 
employ track circuit-based signaling systems that display track status information to train drivers, and provide two 
important safety functions: a primary function of avoiding collisions and providing basic traffic flow regulation by 
warning of other traffic ahead in the next few blocks of track; and a secondary function of avoiding derailments by 
warning of broken rails ahead in the next few blocks.  As U.S. railroads improve operating efficiency and cope 
with increased traffic density and diversification on major rail corridors, the fixed block boundaries and limited 
vocabulary (go, prepare to stop, stop) of the present signaling system have become major limitations.  
Communications-Based Train Control is a proposed solution that would use data communications channels to 
connect each train to a centralized traffic control facility.  GPS speed and location data would be gathered from 
each train.  All traffic would be continuously analyzed and individual target speeds would be assigned to each train 
to maintain safe separation, optimize traffic flow, and minimize the need for heavy braking or acceleration. 
 As a replacement for the primary function of the present signaling system, CBTC is expected to improve 
railroad efficiency by providing flexible and precise traffic control, but CBTC is not able to provide the secondary 
function of broken rail detection.  If a cost-effective method to cover this deficiency were available, railroads that 
implement CBTC would have the option of removing track circuit-based signaling altogether to eliminate a 
significant component of per-mile maintenance costs and simplify the railroad infrastructure.  Therefore, the TRB 
is seeking a viable method of broken rail detection that could work in conjunction with CBTC to provide a 
complete replacement for the present signaling system; thus providing additional financial incentive and safety 
reassurance to railroads that are considering changing over to CBTC. 
 Clearly, any viable alternative must be more cost-effective than retaining the present signaling system for 
the sole purpose of detecting broken rails.  Maintenance costs per-mile may not be significantly reduced if the 
alternative method requires new wayside infrastructure that introduces a new set of maintenance problems and 
costs.  Similarly, the replacement method should avoid adding to the cost of normal track maintenance tasks.  If 
any of the common track maintenance operations such as ballast, tie or rail replacement, track realignment, or 
repairing rail defects become more difficult, or if track maintenance equipment has to be modified, the overall 
financial incentive is reduced.  This implies that the replacement broken rail detection system should be highly 
compatible with existing track construction and maintenance procedures.  Finally, any replacement system must be 
at least as accurate and reliable at identifying broken rails as the present method. 
 
 
1.2 PROPOSED SOLUTION 
 
This report describes an electromagnetic pulse/echo method that was devised in consideration of the above 
requirements.  The key innovation is to view the track structure as a two-wire parallel transmission line, and then 
apply a technique known as Time Domain Reflectometry (TDR).  The principle of TDR is that if a signal is 
traveling along a transmission line and it encounters a deviation from the characteristic impedance, some of the 
signal is reflected (100% in the case of a complete open or short circuit).  TDR-based transmission line analyzers 
are often used to locate damage and circuit failures in transmission lines such as power and communication cables.  
A test pulse is injected into the transmission line, and any reflected signals are then measured and analyzed.  The 
type and degree of circuit interruption is estimated from the phase and amplitude of the reflected signal, and the 
pulse-echo time delay is used to calculate the distance to the reflector.  A relevant feature of TDR cable testers is 
that testing is performed from one end of the cable with the transmitter and receiver contained in a single unit at 
the same location.  If the same TDR principle can be successfully applied to broken rail detection, this might allow 
a fully self-contained broken rail detection system to be placed on the lead locomotive of each train, thus reducing 
the dependence on wayside infrastructure. 
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Since detection would be based on the same principle that is used by existing track circuits (i.e., detecting 
differences in electrical properties between normal rails and broken rails), the proposed system should be 
compatible with existing railroad construction.  Apart from the modifications to track-shunting structures such as 
turnouts and diamond crossings (detailed in this section), no changes in track design, construction methods, 
maintenance equipment or rail repair procedures would be needed.  This is important because the benefits of 
eliminating the present signaling system would be reduced if new equipment was added along the track that 
required any significant amount of maintenance, or if other aspects of track maintenance became more difficult or 
expensive.  Although new equipment is being proposed, these costs would be per-train rather than per-mile, and 
far fewer systems would be required than the present number of track circuit controllers.  Furthermore, any 
maintenance that might be required could be centralized and performed at existing locomotive workshops by the 
same technicians that service other locomotive control systems and future CBTC systems.  To summarize, the 
proposed method addresses the specific problem described in the Committee Research Problem Statements, in a 
way that might lead to significant cost savings without compromising on present performance. 
 Beyond meeting these basic requirements, the proposed method may offer specific new advantages.  Some 
of these advantages arise from placing the system in the locomotive.  For example, reliability should be improved 
because the locomotive would provide dependable power and better protection from environmental extremes than 
the present wayside equipment boxes.  Also, warning messages would be directly available to the crew so that 
immediate action could be taken, rather than depending on external visual or radio communications that might 
have some risk of delaying or losing the message.  Other advantages would arise from knowing the exact distance 
to the reflector rather than just to within a signaling block.  Knowing the available stopping distance could 
encourage the optimum safe driver response, and pinpointing the break location could also reduce track repair 
time.  Finally, track occupation detection was not a requirement of the Committee Research Problem Statements 
since CBTC is intended to provide the replacement for this function of track circuits.  However, the ability of the 
proposed method to detect and determine the distance to a track occupation would provide useful additional 
benefits.  This could provide a backup in the case of a CBTC system failure, and protect against unusual track 
occupations such as isolated or runaway freight cars that would not be registered by the CBTC system. 
 Track structures that shunt the track such as turnouts and diamond crossings would truncate the test range 
until the train passed beyond the structure.  To overcome this limitation, two methods were devised to allow the 
initial outgoing pulse and the returning echo signals to bypass these structures.  One method would be to use 
cables to continue the electrical path around the shunt with IJs on each rail to electrically isolate the structure itself.  
In the case of turnouts, electrical switches operated by the track switching mechanism could be used to match the 
electrical continuity of the rails to the mechanical alignment of the track so that the train would “see” past the 
turnout onto the correct track.  For diamond crossings, cables crossing under the tracks could provide the proper 
electrical continuity of each pair of rails.  In this case, it might be useful to electrically link the two tracks so that a 
train approaching or across the intersection would shunt all four rails to indicate an occupation of both tracks. 

An alternative method would avoid the need for any IJs by using fixed inductive coils on each track 
connected to the shunting structure.  The operating principle would be the same as the locomotive coupling coils 
that operate near the shunt caused by the leading axle, except that these coils would be permanently fixed to the 
inside base of the rail.  The main disadvantage of this method is that an active system would be required at each 
turnout to receive and re-transmit the signals around the shunt.  Even so, the additional “per-turnout” costs and 
maintenance requirements may still be justifiable if this allows the elimination of “per-mile” track circuit costs. 
 
 
1.3 POTENTIAL BENIFITS 
 

• Locomotive-Mounted 
Since TDR is based on detecting and measuring reflected signals, the signal source and receiver can be at 
the same location.  This could allow a system to be operated from the lead locomotive of a moving train.  
Resulting benefits would include: reduced wayside infrastructure; centralized installation and 
maintenance; warning information directly available to the train crew without depending on external 
communications or displays; equipment located in a cleaner, regulated and secure environment; and fewer 
systems required (i.e., railroads generally have fewer trains than blocks of track). 
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• Measures Distance to Reflector 
The pulse-echo time delay would be proportional to the distance to the reflector, so the exact location 
could be provided rather than just “somewhere in the signal block”.  This might allow increased traffic 
density by overcoming the present “two block” spacing limitation, and could also reduce repair delays. 

 
• Comparable Detection Performance and Reasonable Compatibility with Existing Track Construction  

Some proposed alternatives for broken rail detection would require major changes in track construction 
and maintenance procedures.  Some alternatives could be overly sensitive to normal track components 
such as welds.  The proposed TDR method would identify broken rails by detecting the local change in 
electrical conductivity, i.e., the same underlying principle as track circuits.  This similarity is expected to 
provide comparable accuracy in identifying broken rails.  Common track features such as welds, boltholes 
and properly bonded joints should not produce false-positive indications or significantly limit the test 
range, and the proposed system should be compatible with existing track designs and construction 
methods, defect repair procedures, track maintenance procedures, and track maintenance equipment. 

 
• Protection Beyond Turnouts and Other Track-Shunting Structures 

By incorporating the modifications to turnouts and other track-shunting structures that are suggested in 
this report, the proposed system could provide additional reassurance to the train crew that the turnout was 
correctly aligned, and that the track up to and beyond the turnout was intact and unoccupied.  For a train 
approaching the turnout, a broken rail or track occupation ahead on the selected track would be detected 
while the state of the unselected track (e.g., a siding occupied by a waiting train) would be properly 
ignored.  A turnout set against an approaching train would be identified appropriately as a broken rail that 
would signal the train crew to stop before the turnout. 
 

• Detects Track Occupation 
Track shunts would also cause a reflection, but with a signal phase distinguishable from broken rails, so 
any track occupation ahead could also be located and identified.  This would provide redundancy for 
avoiding collisions with other CBTC registered traffic.  More significantly, this would provide protection 
against unusual track occupations such as isolated freight cars that would be “invisible” to CBTC. 

 
 
1.4 ANTICIPATED PROBLEMS 
 

• Detection Range 
The ideal detection range would provide adequate time for the train to safely stop using, at most, a “full 
service” brake application, plus an allowance for crew reaction time.  Factors affecting braking distance 
include the train speed, weight and braking system, track conditions such as grade and rail surface 
conditions, and additional considerations such as passenger safety.  A detection range of two miles was 
thought to be a reasonable initial benchmark.  For certain conditions, such as a heavy-haulage train on a 
steep downgrade, a greater range may be required. 

 
• Coupling Signals To and From the Track 

TDR cable testers operate using a direct connection to the end of the transmission line cable to be tested.  
In this application, a direct connection would not be suitable because the train itself represents a short 
circuit across the track.  An inductive coupling coil method is proposed to solve this problem, but it may 
be difficult to provide sufficient coupling efficiency, especially considering the mechanical clearances 
required for grade crossings, turnouts, etc., and the need to maintain consistent coil alignment with both 
rails while the train is moving. 

 
• Compatibility With Track Circuits 

Although the proposed system was designed with the idea of working with CBTC to eventually replace 
signals and track circuits, both systems would likely have to coexist for some time.  Compatibility would 
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depend on the transmit pulse power, duration and frequency required to achieve an adequate detection 
range.  The proposed system would operate at higher frequencies than most track circuits, so in theory it 
could be possible to use passive filtering to isolate the systems.  At higher pulse power, the breakdown 
voltage and overload voltage of track circuit controller inputs would need to be considered.  Existing track 
circuits that use Insulated Joints (IJs) to define each block would limit the detection range unless each IJ 
was bypassed with a tuned circuit to allow the test pulse or echo signals to continue past the IJs. 

 
• Electrical Characteristics of Broken Rails and Bolted Joints 

Like track circuits, the proposed method depends on measuring a change in rail conductivity to detect a 
broken rail.  Therefore, many of the same limitations apply.  In particular, a significant loss of electrical 
continuity would be required, so partial breaks, breaks on tie plates, and breaks under compression might 
not be detected.  For similar reasons, bolted joints would still require bond wires to ensure a good 
electrical connection; otherwise they could generate a false broken rail indication which would truncate 
the test range.  On jointed track with bond wires (every 39 ft), the detection range was predicted to be 
slightly reduced (1% to 2% less than CWR) due to the cumulative transmission loss at each bond wire. 
 

• Modifications to Turnouts and Diamond Crossings 
The general aim of the proposed system is to reduce wayside infrastructure and the associated “per-mile” 
costs.  However, track-shunting structures such as turnouts and diamond crossings would need 
modifications and/or additional equipment to prevent the track shunt from limiting the test range. 

 
• Train Crew and Rail Worker RF Safety, and FCC Licensing Requirements 

The transmit power required to achieve an adequate range may present problems with RF radiation 
exposure limits and FCC licensing requirements.  Fortunately, the very long wavelengths of the RF 
frequencies that are being considered means that the RF energy is not readily absorbed by objects the size 
of human beings.  The licensing requirements have not been thoroughly determined since the exact 
frequencies and transmitter power requirements should first be determined through field-testing (using 
very low-power RF pulses).  If and when the actual track behavior is known, the exact relationship 
between the initial pulse power, the pulse frequency, and the resulting range can be specified. 

 
 
1.5 RESEARCH GOALS 
 

• Determine Theoretical Validity, Model and Predict Transmission Line Behavior, and Predict Range 
Review literature and search US Patents.  Compile and analyze all available rail and track electrical data, 
extrapolate for widest possible range of pulse frequencies and track conditions, and generate a 
mathematical model of transmission line behavior.  Estimate optimum pulse frequency, pulse timing, and 
other basic design parameters and system requirements.  Extend model to include all signal path 
components and requirements.  Estimate range for various track conditions including wet or dry ballast. 

 
• Establish General Design Requirements for a Practical System Implementation  

Develop system design parameters and a general system outline.  For each key component, determine in 
general terms if and how to meet the design requirements.  Attempt to anticipate potential “show 
stoppers” and look for possible solutions.  Examine related technologies such as low-frequency 
atmospheric RADAR and select useful processing methods and device types.  Based on equipment used in 
related fields, determine practical equipment limitations on transmit pulse power and receiver sensitivity.  
Determine if and how a system might be practically implemented at a reasonable cost. 

 
• Determine Potential Advantages and Disadvantages of the Proposed System 

Based on the theoretical model and the system outline from the first two research goals, determine the 
possible advantages and disadvantages of the proposed system compared to existing track circuits and to 
other known alternatives for broken rail detection. 
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2.  IDEA PRODUCT 
 
2.1 TRANSMISSION LINE MODELS AND RANGE PREDICTIONS 
 
The major task of this research was to determine if the idea of applying Time Domain Reflectometry to the task of 
broken rail detection was feasible.  This was accomplished by developing a set of MATHCAD models to estimate 
the behavior of a differential electrical pulse with a given frequency and duration traveling along the railroad track 
and being reflected from a simulated broken rail or track shunt.  The main aim was to predict the detection range to 
determine if the warning distance provided might be adequate.  Ideally, the warning distance should be greater 
than the “full service” braking distance of the train, plus some additional time to allow for crew reaction.  Braking 
distances vary depending on such factors as the type of train (freight, heavy-haulage, passenger, empty, loaded, 
etc.), the train speed, and the track grade.  In discussions with the advisory panel, it was suggested that a two-mile 
detection range was a reasonable initial benchmark, but that a lower range might be adequate for some types of 
train. 
 The most significant factor in determining range is the attenuation rate of a signal traveling along the 
track.  The maximum possible range is determined by the distance at which the initial pulse is so attenuated, 
traveling to the reflector and back, that it can no longer be reliably detected.  Apart from attenuation rate, the other 
factors that must be considered are the initial pulse energy; the signal coupling efficiency to and from the track; the 
reflection coefficient of the target; the sensitivity of the receiver; and the extent to which the received signal can be 
improved by “processing gain”.  Processing gain would be achieved by first correlating the received signal to the 
original pulse, and then correlating these results over thousands of pulse/echo test cycles.  All of these factors were 
incorporated into the MATHCAD models. 

The track electrical parameter data used in the transmission line models was mostly based on previous 
research performed or supervised by Dr. John Hill.  During initial literature searches, Dr. Hill’s work in this field 
was found to represent the most significant and comprehensive analysis of the electrical properties of railroad track 
at various frequencies.  Dr. Hill was contacted to discuss this project and agreed to act as a consultant.  A report 
provided by Dr Hill (3) summarized the results of previous research and provided estimates for electrical 
properties over the frequencies anticipated for the task of broken rail detection.  The following graph depicts the 
estimated round-trip attenuation rate (i.e., to the reflector and back) in decibels per mile for frequencies up to 120 
kHz and for various combinations of ballast condition and tie type. 

 
FIGURE 1  Predicted Round-trip Signal Attenuation (dB/Mile) Versus Frequency (Hz). 
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It should be noted that only limited measurements were available for higher test frequencies, and the extrapolated 
data should be tested and corrected as necessary by field measurements over a broad range of test frequencies.  In 
other words, the range predictions in this research are best estimates based on the available data, and actual 
detection range may be more or less depending on actual track behavior over various frequencies and track 
conditions.  It should also be noted that the measurements used were mostly from European railroads, and that 
typical ballast conditions such as moisture content may vary for the United States, and even from region to region. 

Another key parameter of track behavior is the propagation velocity factor.  This is the speed at which an 
electrical signal of a given frequency travels along the track, relative to the speed of light.  The significance of this 
parameter is that for pulse/echo based systems, the duration of the initial pulse is generally limited so that the 
trailing edge of the outgoing pulse does not overlap with the leading edge of the returning echo, i.e., the transmitter 
and receiver are not operating simultaneously.  Therefore, the maximum possible pulse duration is limited by the 
time required for the initial pulse to travel to and from the nearest possible reflector.  This in turn restricts the 
frequency and number of cycles in the transmit pulse.  Pulse duration is also one of the factors, along with 
transmitter power, that determines the initial pulse energy.  In Dr. Hill’s previous research, it was found that the 
velocity factor of railroad track is typically much lower than most transmission-line cables.  This is basically due 
to the less-than-ideal insulation property of the ballast that emphasizes the series inductance of the rails so that the 
track has a residual inductive component to its impedance.  The low velocity factor is actually a benefit since this 
would permit a longer initial pulse that can employ lower frequencies and have greater energy. 

Many factors were found to interact in the completed MATHCAD models.  For example, greater signal 
correlation time increased the processing gain and therefore extended the range.  On the other hand, increasing the 
correlation time too much meant that a speeding train would move closer to the target during the processing time 
and therefore decrease the effective range.  A correlation time of 4 seconds was found to be a reasonable 
compromise for train speeds up to 80 MPH, and 2 seconds for train speeds up to 160 MPH. 

Another significant interaction was between the pulse frequency and the usable range.  A low pulse 
frequency might extend the maximum detection range by virtue of the reduced attenuation rate at lower 
frequencies, but low pulse frequencies generally increased the pulse duration so that the minimum detection range 
was also increased.  For nearby reflectors, short-duration high-frequency pulses were required but the higher 
attenuation rate limited the maximum range.  Rather than select a single compromise pulse frequency, it was 
determined that a spread of test frequencies would be better to cover both nearby and distant reflectors.  The 
proposed system would step through different pulse configurations searching for a reflector.  The following table 
provides an example set of pulse parameters for covering different range segments with various track conditions. 
 
 
 

Pulse Parameters 1 
 

Range Segment (Miles) for Ballast Moisture/Tie Type 2 
 
Frequency 

 
Power 

 
Duration 

 
Test Rate 

 
Wet/Wood 

 
Wet/Concrete 

 
Dry/Wood 

 
Dry/Concrete 3 

 
50 kHz 

 
10 kW 

 
20 uS 

 
5 kHz 

 
0.52 - 1.00 

 
0.52 - 1.10 

 
0.66 - 1.99 

 
0.38 - 3.38 

 
50 kHz 

 
100 W 

 
20 uS 

 
5 kHz 

 
0.52 - 0.90 

 
0.52 - 0.99 

 
0.66 - 1.78 

 
0.38 - 3.38 

 
100 kHz 

 
100 W 

 
10 uS 

 
10 kHz 

 
0.40 - 0.53 

 
0.49 - 0.58 

 
0.49 - 1.09 

 
0.18 - 1.61 

 
125 kHz 

 
100 W 

 
8 uS 

 
40 kHz 

 
0.33 - 0.45  

 
0.42 - 0.50 

 
0.41 - 0.93 

 
0.15 - 0.31 

 
----- 

 
----- 

 
----- 

 
----- 

 
----- 

 
----- 

 
----- 

 
----- 

 
300 kHz 

 
100 W 

 
3.33 uS 

 
80 kHz 

 
0.18 - 0.24 

 
0.24 - 0.27 

 
0.21 - 0.49 

 
0.08 - 0.20 

 
  (1)  Other parameters: Train Speed = 80 MPH, Correlation Time = 4 Seconds, Receiver Sensitivity (10dB S/N) = 5 uV. 
(2) In general, the lower range limit is determined by pulse frequency (controls propagation velocity) and pulse duration.  

Upper range limit is mostly determined by pulse frequency (controls attenuation rate) and pulse power. 
(3) In this case, the range is being limited by the test rate, i.e., a lower test rate would increase the upper range limit. 

 
TABLE 1  Predicted Range Segments Versus Pulse Parameters and Track Conditions. 
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2.2 PROPOSED SYSTEM OUTLINE 
 
Another major research task was to create a general system outline describing how the proposed system might be 
implemented.  This is intended to provide insight into the concept behind this research, as well as a framework for 
comparing the proposed system to other alternatives in terms of possible advantages and disadvantages, 
particularly as a locomotive-mounted broken rail detection system as opposed to wayside-based alternatives.  The 
proposed system would probably consist of three subsystem units, all contained on the lead locomotive of the train 
and positioned as indicated on the following diagram: 
 

FIGURE 2  Proposed Location of Key Components. 
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1. Driver Interface Unit 
Display and control panel located on or near the driver control stand in the locomotive cab.  Includes a flat 
panel display depicting a visual representation of track conditions ahead, and text information such as the 
classification, distance, location and speed of any identified reflectors; warning and alarm messages; and 
system status.  Also includes audible alarm indicators and the operator control keypad for selecting the 
operating mode and performing initial system setup. 

 
2. Electronics Unit 

Main equipment rack located in or near the locomotive control electronics cabinet, or possibly with the 
CBTC equipment if a separate area is designated.  Contains the majority of system electronics modules 
and components in a rack-mount enclosure protected against dust, vibration and temperature extremes. 

 
3. Rail Coupling Unit 

Inductive loop consisting of a wire coil on a mechanical support frame located just above the rails 
between the first axle and the front of the locomotive.  Provides electromagnetic coupling of signals to and 
from the track. 

 
 
2.2.1 Driver Interface Unit 
 
The components of the driver interface would be the display screen, visual and audible alarms, and the operator 
keypad.  The fully sealed operator keypad would be mostly used to initiate self-test startup functions, input general 
settings and select operating mode.  The system would be designed to be as automated as possible so that little or 
no user input would be required once the train is underway. 
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The purpose of the visual and audible alarm indicators would be to ensure that the crew is aware of any abnormal 
or emergency situation.  A range of alert cues would indicate the urgency according to the risk of derailment or 
collision.  The risk level would be continuously assessed based on several factors such as the distance to the 
broken rail or track occupation, safety rules instituted by the FRA and railroads (such as minimum required 
separation distances for various types of traffic), the speed and braking capacity of the train, and the train crew=s 
response or lack of response to earlier warnings.  Careful consideration would be given to working in conjunction 
with the existing locomotive displays, alarms and emergency systems to avoid operator overload, confusion and 
misinterpretation.  One possibility that could be investigated is to use voice-warning messages, similar to collision 
and low-altitude voice-warning systems used in some aircraft. 
 When a hazard is first detected, it might be useful to require that a crewmember acknowledge the audible 
alarm by pressing a button.  This would indicate that the crew has been alerted to the visual alarm messages on the 
display, and further audible alarms might be more distracting than useful.  If the initial audible alarm is not 
acknowledged, the alarm could automatically repeat with increasing urgency to indicate the level of risk.  For 
critical alarms such as an immanent collision or possible derailment, failure to acknowledge the alarm or take 
appropriate action in a timely fashion could automatically initiate a full-service brake application. 
 During normal operations, the display screen would be the most prominent feature of the driver interface.  
The screen would be based on a plasma or LCD flat panel display that could automatically adjust for optimum 
brightness and contrast under all lighting conditions.  If necessary, additional displays could be provided at 
multiple locations so that the information is clearly visible from all key positions within the cab.  The main area of 
the display would be a “moving map” of the track ahead to give visual indications of any rail failure or track 
occupation.  The image would be similar to modern digital RADAR displays that use color symbols, icons and text 
overlays to present clear and precise information, except that in this case only a one-dimensional vertical line 
would be needed to represent the track ahead.  As the system identifies a signal reflector, a limited amount of 
critical text information such as the location and distance ahead could be “tagged” to the reflector icon using a 
format similar to some RADAR displays.  In the case of a track occupation, the speed and direction of the reflector 
could also be given.  If desired, the display could also include additional information such as ETA (estimated time 
of arrival based on current speed and breaking or acceleration rates), or recommended actions (suggested brake 
application, etc.) to avoid an accident.  Other detailed text information and system status information would be 
provided as necessary in other areas of the display. 
 If the system was linked with a central database of known track structures (possibly via the CBTC data 
link), other useful location and status information for turnouts, bridges, grade crossings, etc. could be mapped onto 
the same display.  Linking with CBTC would also allow known CBTC track occupations to be displayed and 
compared to detected occupations on the track.  Any discrepancies would generate an alarm to warn of an 
unexpected or unusual track occupation.  For example, a “broken” train ahead could be identified if the speed of 
the track occupation ahead (the last axle of the last car) was slowing down relative to the CBTC position and speed 
of the preceding train=s locomotive. 
 The overall premise of the display would be that even if there was little or no outside visibility, the train 
crew could still be made aware of the relative position, distance and status of the track structures ahead, as well as 
any detected hazards.  The moving map would provide a scale representation of the track ahead with graphic icons 
to convey the relative locations and status of track features, other trains or track equipment identified by CBTC, 
and any signal reflections caused by broken rails or unexpected track occupation.  If a hazardous situation was 
detected, alarms would be generated and the icon representing the hazard would be clearly identified by flashing 
and/or color changes.  The objective would be to provide the crew with a clear, unambiguous display that provides 
useful information during normal operations and maximum situational awareness in emergencies. 
 
 
2.2.2 Electronics Unit 
 
The electronics unit would be based on the 19 inch rack mount standard or other modular standard, whichever is 
most compatible with existing locomotive control systems and/or the planned CBTC electronics.  The unit would 
consist of modules that would perform the following functions: 
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• Main control processor (system test and monitor, overall operation, coordinate all other modules) 
• Timing control processor (pulse-echo sequence timing) 
• Transmit pulse generator (digital to analog converter) 
• Computer-controlled high-power transmit amplifier 
• Transmit/receive switch 
• Coupling coil matching 
• Low-noise receiver preamplifier 
• Computer-controlled receive amplifier 
• Signal digitizer (analog to digital converter) 
• Signal processor (signal correlation, reflector identification, etc.) 
• System interface (for driver panel, CBTC, train speed sensor, emergency breaking, etc.) 

 
An important part of designing the proposed system would be to combine the required functions into the optimum 
number of modules that would provide maximum reliability and allow easy troubleshooting and module 
replacement if necessary.  Previous Analogic Engineering, Inc. projects that involved electronic systems for the 
railroad environment have taught that module interconnections should be kept simple and robust to avoid problems 
with heat, vibration and dust.  Also, it might be preferable to mount some components of the transmitter, receiver 
or transmit/receive switch closer to the rail-coupling unit.  This could be necessary if the high-power RF pulses 
interfere with other sensitive electronics within the locomotive cab, or if other systems such as locomotive power 
controllers interfere with the receiver.  Placing some modules near the rail coupling unit could avoid routing very 
high-power or very low-power signals over long cables, either of which could accentuate problems with cables, 
connectors, interference, noise and ground loops. 

The electronics unit would contain many embedded processors to perform specific tasks such as timing 
control, low level signal processing, pattern recognition, alarm generation, operator interface and display 
management, and overall system operation.  All software would be written and tested to standards that ensure 
reliable operation.  The system would include self-testing, auto-calibration, and automatic adaptation to varying 
conditions such as ballast leakage resistance, so that operator intervention would not be needed during normal 
operation.  Transmit pulse power, pulse frequencies and receiver gain would be automatically selected or adjusted 
to reliably achieve the specified range using the minimum transmit power.  Inputs from other locomotive control 
systems could be used to modify system operation for particular circumstances.  For example, an operating mode 
could be selected where range was linked to train speed so that low-speed yard maneuvers would use a much 
lower transmit pulse energy, but still cover the shorter braking distance of the train.  If the locomotive was stopped 
for refueling, etc., the system could be automatically or manually disabled.  By using the locomotive GPS 
information, the system could also adapt, according to particular locations or regions, to avoid interference to or 
from other low-frequency radio systems such as atmospheric RADAR or navigation beacons that operate in the 
same general frequency range. 
 
 
2.2.3 Rail Coupling Unit 
 
Signal coupling between the locomotive and the two rails would be accomplished using a rail coupling unit 
mounted underneath the front of the lead locomotive, between the first axle and the pilot (cow catcher).  The rail-
coupling unit would consist of an inductive coupling coil mounted on a mechanical support frame positioned close 
to the rails, and signals would be transferred to and from the rails using magnetic induction.  This method of 
coupling is necessary because of the low RF frequencies that would be required to achieve maximum range, and 
the local electrical shunts created by the train axles.  The ties and ballast that separate the rails are less than ideal 
electrical insulators, and the transmission line analysis indicates that the track has a large attenuation rate that 
increases with frequency (see Figure 1).  Optimum range would be achieved using a low-frequency RF test pulse 
between 50 kHz and 120 kHz.  Even though the transmission line velocity factor for the track is only around 0.2 
(i.e., a propagation velocity around 20% of the speed of light), these signals would still have very long 
wavelengths compared to the size of the train.  This means that the track impedance at the train and for some 
distance ahead would be dominated by the low-impedance shunt effect of the train itself.  In terms of a 
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transmission line, the train would represent a region of minimum voltage (a voltage null), and any differential 
voltage source connected across the rails or any arriving differential voltage signal would be effectively shorted 
out.  This would rule out any coupling unit that was based on a direct voltage connection such as conductive 
brushes, rollers or wheels insulated from the rest of the vehicle (although non-shunting track vehicles could use 
this approach).  The alternative is to transmit and receive differential currents in the rails to take advantage of the 
fact that the train would also represent a region of maximum current on the transmission line (a current peak).  
Again, directly connecting a low-impedance driver across rails ahead of the first axle would not work since any 
transmitted current pulse would just circulate locally through the first axle.  Since it is impossible to avoid the 
shunt effect of this axle, the proposed solution is to use an inductive coupling method so that this axle would 
become an integral part of the coupling circuit by completing the current path. 

The general layout of the rail-coupling unit is indicated on the following diagram: 
 

FIGURE 3  Location of Rail Coupling Unit. 
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Referring to Figure 3, it can be seen that the first axle and the two rails from the axle to the front of the coupling 
coil form a 3/4 turn electrical loop (or “stub”).  This loop would act as one side of an impedance matching 
transformer, and the windings of the coupling coil would act as the other side.  Transformer coupling would occur 
in the two regions of mutual inductance where the sides of the coupling coil overlap with the left and right rails.  
Consequently, the size, shape and location of windings of the coupling coil would have to be designed to provide 
maximum mutual inductance in these areas.  The number of windings would be adjusted to achieve the best 
possible match between the impedance of the track and the impedance of the transmitter/ receiver.  The net result 
would be that the first axle together with the two rails from the axle to the front of the coupling coil would act as a 
signal source during transmit and a signal load during receive.  This signal source and load would, in effect, be 
connected to one end of the transmission line consisting of the two rails that extend ahead of the coupling coil. 
 Figure 3 also indicates the current polarity in the rail and first axle.  This shows that the direction of the 
current would be reversed on the left and right rails (i.e., the transmitted and received signals are differential), and 
that the first train axle would be used to provide the path to complete the circuit.  If the first axle behaved as an 
ideal shunt, it is clear that any differential currents in the rails would take the preferred zero resistance path 
through the axle, so differential signal currents traveling along the rails could not continue past that point.  
Therefore, all transmitted pulse energy coupled into the rails would propagate forward from the train.  This means 
that the coupling unit would be directional, which is very useful since the rest of the train axles would not be 
“visible” to the system, and only reflectors ahead of the train could have any effect.  For returning echo signals, 
any energy that is not transferred from the rails to the coupling coil would be reflected forward again.  This raises 
the possibility of multi-path echoes that could be misinterpreted as distant phantom copies of local reflectors.  The 
first phantom reflection would appear at twice the distance and seem to be moving at twice the relative speed of 
the real reflector.  This problem also occurs in RADAR and ultrasonic testing, and methods of recognizing and 
filtering these anomalies have already been developed that would be applied in the proposed system. 
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Note: The above assumption about the first axle acting as an ideal shunt is not critical.  In practice, the axle, wheel 
and rail/wheel interface would always have some resistance, but any current that continued past the first axle 
would immediately encounter the second axle, and so on.  Since these signals would be considerably reduced at 
each axle, any reflections from subsequent axles would be highly attenuated (in both directions of travel) and they 
should be insignificant by the time they return to the coupling coil.  Also, at low RF pulse frequencies very little 
phase shift would occur over these short distances, so any reflections would mostly reinforce the initial differential 
signal current.  From a transmission line point of view, the axles of the locomotive are separated by very small 
fractions of a wavelength, and would appear to be substantially in parallel. 
 To achieve effective transfer of electrical energy between the coil windings and the rails, the two sides of 
the coupling coil that run along each rail would need to have significant mutual inductance with the respective 
rails.  This would require that these sides are as long as possible and positioned as close as possible to the rail.  
Any vertical or transverse movement would cause variations in coupling efficiency or coupling balance from rail 
to rail.  This would vary the signal levels and could reduce system performance.  Although it should be possible to 
compensate for some amount of signal variation, it would be preferable to minimize the underlying mechanical 
variations.  Therefore, the coil windings should always be centered over the track, and the distance between the 
windings and respective rails should be kept constant. 
 The mechanical design of the support frame would be critical for safe, reliable and consistent operation.  
On one hand, the coil windings would have to be supported at a constant, close position over the rails.  On the 
other hand, the coil would have to be rugged enough or far enough away from the rail surface to survive possible 
impact sources such as mismatched joints.  Every precaution would need to be taken to avoid interfering with 
other equipment at the front of the locomotive and in particular, nothing must ever be able to foul the leading 
wheels.  To achieve all of these objectives, the coil, support frame, tow arm and any other associated mechanical 
structures would be designed to comply with a standard clearance profile that takes into account high ballast, road 
crossings, turnouts, tunnels, bridges, etc.  The positions of other possible equipment under the front of the 
locomotive, such as sand dispenser nozzles, RADAR speed sensors, cab-signaling sensors, etc. would also be 
considered. 
 Methods would be examined to maintain the minimum practical distance between the rail and the coil, and 
limit vertical and horizontal movement relative to the top of the rail.  One approach would be to simply attach to 
the most stable reference platform relative to the rail.  The pilot (cowcatcher) is solidly attached to the locomotive 
body and conveniently located close to the rail at the very front of the locomotive.  The back of the pilot usually 
consists of a flat vertical steel plate across the full width of the rail that would provide solid mounting for a frame 
or tow arm.  The major problem with using the pilot would be that the locomotive body moves both vertically and 
horizontally relative to the rail profile.  Some of the horizontal movement is due to the front truck rotating slightly 
on its center pivot to allow the locomotive to negotiate curves.  Other horizontal movement is due to the small 
difference between the track gauge and the outside flange-to-flange distance that allows the front axle to hunt 
slightly from side to side (although the wheel tread taper tends to keep the axle centered).  The vertical movement 
is mostly due to the suspension travel as the ends of each axle slide up and down in vertical guides against coil or 
air bag springs.  Referencing off the front axle itself by building an extension forward from the motor casing or the 
axle bearing supports could eliminate most of the vertical and horizontal movement, leaving only the slight 
sideways hunting within the rail gauge gap. 
 Another method would be to provide separate guide wheels for the support frame.  This method is 
successfully used in ultrasonic rail testing to “lock” the position of the transducers that run on the top of the rail to 
the position of the gauge corner.  A similar approach is used on some other track machines, including some 
geometry cars that can operate at train speeds.  The guide wheels are usually non-tapered and can be slightly 
pressured outward to follow any variations in gauge.  The coil frame would be towed from the front to lift up and 
away from any unexpected track obstructions.  An automatic lift system could be provided to rapidly retract the 
coil frame in the event that the frame or guide wheels strike an obstruction or become misaligned with the track.  
The coil frame would also be retracted if the locomotive were not in the lead position.  Either approach would 
require extensive consultation with the FRA, railroads and locomotive manufacturers to ensure that safety 
requirements are satisfied, and might add significantly to the overall system cost.  Therefore, a mechanical 
guidance system would only be considered if absolutely necessary. 
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2.3 POTENTIAL FEATURES, ADVANTAGES AND BENIFITS 
 
The anticipated features, advantages and benefits of the proposed system are described in the following table: 
 

 
Features 

 
Advantages 

 
Benefits 

 
Self contained system mounted in 
lead locomotive.  Control system, 
display and warning indicators 
located in locomotive cab and 
instrument bay, inductive track 
coupling loop mounted ahead of first 
axle. 

 
No reliance on existing wayside 
signaling system, no replacement 
“per-mile” alternative wayside 
infrastructure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Broken rail or track occupation 
warnings generated in the lead 
locomotive. 
 
 
Not dependent on relaying warning 
information from external equipment 
to train via radio system, cab signals 
or external signal lights.  Reduced 
risk of delayed warnings or lost 
warnings.  Real time display and 
alarms for train crew. 
 
Could provide emergency control 
input to train, such as speed control 
and/or braking. 
 
Control system housed in locomotive 
cab with other protected electronic 
systems.  Utilizes onboard power 
supply. 
 
 
Fewer units (i.e., “per-locomotive” 
rather than “per-signal-block”). 
 
 
 
 
Allows centralized equipment 
servicing at existing locomotive 
facilities. 

 
In conjunction with CBTC, enables 
cost savings by eliminating the need 
to maintain wayside infrastructure.  
Provides additional financial 
incentive for adopting CBTC. 
 
Could be implemented without 
CBTC to provide independent rail 
break and track occupation detection. 
 
Simplifies conversion of present dark 
territory (requires CWR or the 
addition of rail bonds in jointed 
track, but no additional wayside 
infrastructure, power or 
communications network). 
 
Improved train safety.  Information 
directly available to train crew, even 
with loss of communications or low 
outside visibility (snow, heavy rain). 
 
Higher reliability, no intermediate 
stages.  More reaction time to avoid 
or minimize accidents.  Information 
immediately available where it is 
most useful to allow prompt driver 
response (e.g., to a rail break under 
the previous train). 
 
Option for fast response, automated 
emergency system to avoid 
derailments and collisions. 
 
Safer and more reliable than wayside 
equipment that is exposed to weather 
extremes and vandalism.  Reduces 
need for large number of distributed 
wayside power sources. 
 
Could to be more cost-effective for 
both capital outlay and ongoing 
maintenance.  Could improve 
reliability by having fewer points of 
possible failure. 
 
Installations and maintenance in 
good work environment.  Centralized 
technical staff rather than many 
distributed field technicians. 
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Features 
 

Advantages 
 

Benefits 
 
Detects track occupation as well as 
rail breaks. 

 
Backup to CBTC.  Also detects 
unusual track occupations such as 
detached or runaway freight cars. 

 
Adds redundancy and protects 
against accidents involving track 
occupations not registered by CBTC. 

 
Detects rail breaks by loss of rail 
electrical continuity and track 
occupation by rail-to-rail shunt.  
Avoids the use of acoustic 
transmission, strain gauges or fiber 
optic cable. 

 
Essentially the same detection 
characteristics as existing signaling 
systems.  Not affected by welds, rail 
repairs, bolted joints (with usual 
bond wires), boltholes, etc. 

 
Compatible with all existing rail 
installation, maintenance and repair 
equipment and procedures.  No 
special equipment re-installation or 
re-calibration required after rail 
installation or repair.  Not susceptible 
to false alarms from common track 
features. 

 
Uses Time Domain Reflectometry 
pulse/echo technique that provides 
distance to reflector and identifies 
break or occupation. 

 
Allows speed/distance/time of arrival 
calculation.  System could suggest or 
initiate optimum response. 
 
 
Locates rail break for repair crew. 

 
Knowing the distance to the hazard 
could promote a safer outcome either 
for responding to a broken rail or 
unexpected track occupation. 
 
Faster repair, less down time. 

 
Optional two-way communication 
link to locomotive CBTC system. 

 
Access to precise GPS train location 
and speed.  Access via CBTC to 
central database of known track 
features and reflector locations. 
 
Comparison and verification between 
any detected track occupation and 
the CBTC registered occupations 
(known train locations, etc.)  
 
Alarm messages relayed via CBTC 
to train control, other trains, etc. 

 
Combining information from both 
systems provides additional useful 
data such as exact break location, 
time to location, etc. 
 
Differences indicate unexpected 
track occupations.  Matches improve 
confidence and reliability for both 
systems by cross-verifying data. 
 
Any detected rail breaks and 
unexpected track occupations are 
immediately updated in CBTC to 
provide system-wide situation 
awareness. 

 
By using Insulated Joints, electrical 
bypass cables and electrical 
switching operated in parallel with 
the turnout mechanism, electrical 
continuity could be made to 
correspond with track continuity. 

 
Protection could extend beyond 
turnouts (and diamond crossings).  A 
train approaching a turnout would 
“see” the state of the selected track 
ahead, ignoring the alternative track.  
Appropriate warnings would be 
given for an incorrectly set turnout 
(e.g. open rails at turnout, track 
occupied past turnout at passing 
track, rail terminates past turnout at 
backtrack). 

 
Confidence under all circumstances, 
for all speeds, from main line to yard 
track, that a safe distance of track 
ahead is available (i.e., is free from 
breaks and not occupied). 

 
TABLE 2  Features, Advantages and Benefits. 
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2.4 OTHER POSSIBLE APPLICATIONS 
 
Accurately measuring the speed and distance of an approaching train could be useful in many applications, notably 
since the TDR approach would tolerate a much higher shunt resistance without indicating a “loss of shunt”. 
 
 
2.4.1 Work Crew Protection 
 
A portable unit could provide a train arrival warning system for rail gangs, based on the measuring the speed and 
distance of approaching trains.  The battery-powered unit would sit beside the track and attach with jumper cable 
clamps to the base of each rail.  The cable to the far rail would run under the near rail so that the attachment could 
remain in place as traffic passes over.  Optional features could include solar panels and a “vibrating pager” 
transmitter for noisy environments.  Specific alarms could be sounded based on the time remaining to clear the 
track.  Other alarms would be given to indicate fault conditions such as a low battery or a poor connection to the 
track.  An “acknowledge” button on the unit could be used to terminate the escalating alarm sequence and verify 
that the work crew was clear.  Another option would be for the unit to present an intermittent or partial track shunt 
to indicate the work crew location to the approaching train (fitted with the detection system described in this 
report), and also indicate whether the crew had acknowledged the alarm and was clear of the track.  As an 
alternative to acting only as a passive shunt reflector, the unit could be an active transponder that would insert 
additional identification or status data into the return signal.  A further option would be to replace one leg of the 
normal pulse/echo path through the track with an alternative path such as a direct radio broadcast to the 
approaching train.  This would be similar to the technique used by aircraft RADAR transponders.  An active 
transponder would double the effective range by halving the track attenuation path. 
 
 
2.4.2 Advanced Grade Crossing Predictor 
 
Existing grade crossing predictors measure the rate of change in resistance of the loop formed by the rails and the 
approaching train.  This method is not entirely accurate and timing errors have been cited as contributing to at least 
one grade crossing accident.  Sufficient warning time is critical, especially as high-speed passenger trains are 
introduced, but if crossing gates close too early for slow moving trains, road drivers have been known to become 
impatient and circumvent the barrier.  A TDR-based sensor could determine the exact speed and distance of an 
approaching train so that the arrival time could be precisely calculated.  Warning lights and road barriers would be 
operated with consistent warning times, whatever the speed of the train.  The proposed sensor would not require a 
particularly low shunt resistance, and could be made failsafe by placing a passive partial shunt reflector at some 
distance from the crossing, and releasing the gate circuit if the reference reflector is not continuously detected. 
 
 
2.4.3 Platform and Pedestrian Crossing Safety 
 
Another type of fixed site application would be a train-warning indicator for passenger platforms and pedestrian 
crossings.  For the pedestrian crossing application, walk/don=t walk lights, audible alarms and even barrier gates 
could be operated in a similar fashion to the grade crossing application.  At platforms, a progressive voice message 
warning could be given to stand back from the edge of the platform, with additional emphasis if the train is 
continuing through at a high speed. 
 
 
2.4.4 Commuter and Light Rail 
 
As an alternative to signaling systems or CBTC, a low-power system on each train could provide broken rail 
detection and collision avoidance up to a range of one mile or so.  Inductive loops could be designed to couple 
signals in and out of the rail even for light trains that don=t always provide a reliable track shunt. 
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3.  CONCEPT AND INNOVATION 
 
3.1 BACKGROUND 
 
Train drivers need to be warned if the track ahead is either damaged or occupied by another train, because 
otherwise the danger may not be seen in time to stop.  Existing warning systems work by dividing the track into 
multiple “blocks” about 1 to 2 miles long with a set of status lights known as “signals” at the entrance to each 
block.  The signals act somewhat like traffic lights, and give the train driver a visual warning if the next block or 
the block after are not safe to enter, i.e., whether to immediately stop or prepare to stop because there is a broken 
rail or track occupation ahead in the next block or two. 
 To operate the signals, each block uses an electrical system known as a “track circuit” to determine the 
safety status of the block and automatically display the appropriate warning lights or “signal aspect”.  Track 
circuits take advantage of the fact that railroad track consists of two electrically conducting steel rails held at a 
constant separation by regular cross ties, usually made of wood or concrete, that provide a reasonable degree of 
electrical insulation.  At block boundaries, IJs are used in each rail to electrically isolate each block.  A continuous 
voltage (DC, AC or pulsed) is applied across the rails at one end of each block, and the amount of voltage arriving 
at the other end is measured.  A track occupation anywhere in the block will short out or “shunt” the voltage 
between the rails, and a mechanical failure of the steel in either rail will usually interrupt current flow along the 
rail.  In either case, the loss of voltage through the track circuit indicates that the block is not safe to enter, and 
signal aspects are set that warn the driver to stop the train before it reaches the block. 
 The present system successfully maintains safe train spacing and has prevented many collisions and 
broken rail train derailments.  However, an extensive and complex wayside infrastructure is required, and ongoing 
maintenance is expensive.  Also, the block-by-block basis for detecting hazards and issuing warnings does not 
promote finely graduated speed control to optimize fuel efficiency or brake wear, or allow traffic spacing to be 
adjusted and optimized for different types of traffic. 
 To solve these problems, the railroad industry is expected to eventually adopt Communications-Based 
Train Control (CBTC).  Using a two way communications link, a centralized control facility will continuously 
receive the GPS location and speed data from each train and then transmit back any required speed adjustments.  
By coordinating all traffic, CBTC is expected to optimize traffic flow, improve railroad efficiency, and safely 
increase traffic density by allowing flexible spacing based on the speed, braking distance and risk associated with 
each type of train (passenger train, freight train, chemical transport, loaded coal train, empty coal train, etc.). 
 Despite these many advantages, CBTC does not provide broken rail detection, and the continued cost of 
maintaining the existing signaling system just to provide this function limits the economic incentive to adopt 
CBTC.  Therefore, the railroad industry is seeking an alternative broken rail detection method that would work in 
conjunction with CBTC to eliminate the need for track circuits, signals and all other associated wayside 
infrastructure and costs. 
 
 
3.2 METHOD SELECTION 
 
Several alternative technologies for broken rail detection were examined.  Since track circuits operate on a simple 
principle that has been optimized over many decades, it is likely that any alternative based on a “per mile” wayside 
infrastructure would not reduce the “per mile” maintenance costs or have a lower initial cost compared to track 
circuits.  Alternative wayside systems would still require a distributed power supply and some method of 
communicating warnings to the train crew.  However, if the replacement system could operate from each train, 
maintenance tasks could be centralized and costs might be reduced since fewer systems would be required.  Also, 
the electronics could be better protected within the locomotive cab, electrical power would be readily available, 
and the warning information would be immediately presented to the crew without depending on external 
communications or visual signals.  Eliminating warning delays is particularly significant since CBTC would 
probably decrease separation for some types of traffic, and rail failures sometimes occur under a preceding train. 

For a detection system to be fully independent and self-contained on each train, the system must be both 
the source and detector of some form of Ailluminating@ wave that will be reflected by the typical broken rail.  Two 
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candidates, acoustic waves (including ultrasonic) and Radio Frequency (RF) electromagnetic waves, were 
examined in detail.  The main advantage of acoustic waves would be that some types of rail failure could provide 
an acoustic reflection even if the electrical continuity of the rail were maintained.  Examples include jagged or 
non-vertical breaks with points of contact across the gap; breaks with the rail under compression; and breaks 
resting on a conductive tie plate.  Even a partial break or an imminent break such as large head defect might be 
detectable.  The disadvantages of acoustic waves would include the limited range due to acoustic dampening by 
the anchors, ties and track bed, and the inability to test past poor or intermittent acoustic conductors such as joints 
and other track structures.  Also, many false-positive indications would be produced by normal track features such 
as joints, temporary rail repairs and other common track structures, and possibly also from boltholes, bond wire 
holes, some types of weld, and the numerous, small internal defects in the rail steel that are generally benign.  The 
limited range, lack of “visibility” beyond joints, and amount of false-positive “clutter” would probably render an 
acoustic pulse/echo system ineffective for use as the exclusive or primary protection against broken rails. 
 In contrast, a system using electromagnetic waves should be no better or no worse than existing track 
circuits at detecting broken rails and ignoring benign track anomalies, because detection would still be based on 
the interruption of electrical continuity at the broken rail.  Some types of rail break would continue to be difficult 
to detect, but common track features such as bonded joints, temporary repairs, welds and boltholes would not 
cause false-positive alarms.  Since detection would rely on the same basic electrical properties of rails, track beds, 
breaks and occupation as the present system, no major changes in track construction or maintenance would be 
required.  In particular, no new skills, procedures, special or modified equipment, etc. would be needed for rail 
repairs or rail replacement.  The essential difference between the proposed method and existing track circuits is 
that detection would be based on the reflection of pulsed electrical signals that would be both generated and 
received at each locomotive, rather than the interruption of continuous electrical signals that are generated and 
received at two separate fixed track locations using wayside equipment.  To summarize, a locomotive-mounted 
pulse/echo test system has the potential to solve the problem of dependence on wayside equipment; maintain 
compatibility with existing track design and construction methods and present repair and maintenance procedures; 
and provide similar detection accuracy as track circuits by depending on the same principle of electrical continuity. 
 
 
3.3 COMPARISON TO OTHER ALTERNATIVES 
 
Many technologies have been and are being investigated by other researchers to warn train drivers of broken rails.  
Some of these technologies were presented at the “Expanded Workshop on Rail Defect and Broken Rail 
Detection” (4) held by the Association of American Railroads (AAR) in 1997.  This included “Broken Rail & 
Buckled Rail Using Fiber Optics” (4a), “Broken Rail Detection Using Remote Sensing: Air Coupled Transducers 
and Laser Generation of Ultrasound” (4b), “Broken Rail Detection Using Laser Scanning Devices” (4c), and 
“Broken Rail Detection without Track Circuits MTA - New York City Transit - A Proposal”, a method for 
electrified systems only based on measuring the current distribution balance in the rail return path (4d).  Other 
technologies that have been researched under Federal grants include IDEA Award #HSR-18 “An Investigation into 
the Use of Buried Fiber-Optic Filament to Detect Trains and Broken Rail” (5), and SBIR DOT Award #37834 
“Guided Wave Ultrasonic Detection of Broken Rail” (6).  The results of a Transportation Technology Center, Inc. 
(TTCI) field assessment of two systems are presented in “Broken Rail Detection” (7).  A US Patent titled 
“Railway Signal System” (8) was also found to be relevant.  An alternative wayside system using guided acoustic 
waves is being investigated under IDEA Award #HSR-42, but results have not yet been publicly released. 

Broken rails or immanent breaks can be detected as the train passes over them using a number of different 
sensors.  Sensor technologies include optical recognition using high-definition cameras or laser technology; 
EMAT, laser or air-coupled ultrasonic detection of breaks or large head defects (including pulse/echo and Doppler 
detection methods); and magnetic methods such as eddy current and flux leakage.  In evaluating all of the possible 
technologies, the primary consideration should be ensuring the safety of the train crew and passengers by averting 
train derailments.  Therefore, sensor technologies that can only detect breaks close to the train are considered less 
useful since they do not provide any advance warning for the crew.  However, these technologies could be useful 
as secondary detection methods to detect partial or immanent failures for following trains.  For example, a system 
could be deployed on the last car or helper locomotive to detect failures occurring under the train. 
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One approach to providing advance warning is to use fixed wayside equipment (like the present signaling system).  
Two examples of alternative wayside-based systems, fiber-optic filaments bonded to the rail and distributed rail 
stress measurement sensors, were extensively tested at TTCI (7).  Another example would be the guided acoustic 
wave method being investigated in HSR-42.  In the author’s opinion, these methods may be useful in particular 
circumstances but would face several problems as a general replacement for track circuits.  Firstly, existing track 
circuits are based on a very simple principle that has been used for over a hundred years.  It seems unlikely that 
any replacement wayside technology could be more cost-effective per mile to install and maintain (although the 
fiber-optic filament method and stress measurement method might provide additional functionality by predicting 
heat buckles).  Secondly, if anything is added to the track that necessitates special rail handling, new procedures or 
equipment modifications for track maintenance and repair, the cost of these changes must also be considered.  For 
example, the fiber-optic filament is very delicate and difficult to repair in the field, so any rail repairs would 
require additional time, equipment and skills.  The stress sensors are battery powered and require wayside data 
collection sites along the track.  Some of these proposed systems would be prone to damage during any re-
ballasting, tamping or tie replacement operation, and some would need to be reinstalled after a re-rail operation.  
(Note: Elsewhere in this report, suggestions are given to allow the proposed system to test beyond shunting track 
structures such as turnouts.  The fiber-optic filament method might be ideal for protecting the turnout itself.) 

In general, any wayside system will suffer many of the same disadvantages as present track circuits and 
signaling systems, such as depending on remote power and/or communications, and operating in a harsh 
mechanical environment exposed to weather extremes, dust, grease, chemicals, mud, etc.  Distributed wayside 
systems also have an increased risk of accidental damage or vandalism, and specialist technicians may still be 
required throughout the railroad territories, even just for occasional repairs and maintenance.  Finally, wayside 
equipment must still relay warning information to the train crew, and any delay or possible loss of communications 
could be fatal.  Since CBTC will allow reduced separation for some trains, a broken rail that is created under a 
preceding train will need to be quickly detected and the crew of the following train immediately informed. 
 For all of these reasons, a locomotive-mounted system that could test ahead to provide a sufficient 
advance warning might be a better solution.  Apart from the electromagnetic pulse/echo method described in this 
report, the only other technology that might provide this feature would be pulse/echo guided acoustic waves.  As 
mentioned in the previous section, acoustic waves could provide some benefits such as detecting additional types 
of immanent, partial or complete breaks that are not detected by track circuits because electrical continuity is 
maintained.  Unfortunately, this advantage is outweighed by problems such as limited range due to the 
accumulated acoustic damping of each tie plate; not being able to reliably test beyond common structures such as 
joints; and susceptibility to false-positive indications from benign track features such as bolt holes, various types 
of weld, and small internal defects. 
 A feature of the proposed electrical pulse-echo reflectometry approach compared to other proposed 
methods of broken rail detection is that the basis for detection is the same as track circuits, that is, the loss of 
electrical continuity at the broken rail.  It is predicted that the detection performance would be similar (i.e., most 
breaks would be correctly identified and other track artifacts would be correctly ignored), and the main aim of 
eliminating wayside equipment could be achieved. 
 
 
3.4 RELATED TECHNOLOGIES 
 
3.4.1 Time Domain Reflectometry (TDR) 
 
Time Domain Reflectometry (TDR) is used to detect and locate breaks and short circuits in long communication 
and power distribution cables, and is particularly relevant to the proposed method of broken rail detection.  TDR 
relies on detecting the reflection caused by any changes in the characteristic impedance of the cable (e.g., a break, 
short or kink).  The location of the reflector is calculated by establishing the velocity of electromagnetic wave 
propagation in the cable, and then calculating the distance to the reflector by measuring the time delay between the 
transmitted pulse and received echo.  For cable tests, a TDR unit is directly connected to the cable and a step or 
impulse voltage or current is applied.  For the purpose of broken rail detection, a pulse (tone burst) of RF energy 
would be coupled into and from the rail using an inductive coupling coil. 
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Every transmission line has an associated characteristic impedance that is determined by the physical cross-section 
and the electrical properties of the conducting and insulating materials used in its construction.  An electrical fault 
in the transmission line will cause a local deviation from the characteristic impedance.  Any signal arriving at the 
fault will have some of the signal energy reflected with the remainder continuing on.  The proportion of energy 
reflected is determined by the degree of impedance mismatch.  A complete short circuit or a complete open circuit 
represents the maximum possible mismatch and causes a 100% reflection.  The phase of the reflected signal 
identifies whether the fault is a higher or lower impedance than the characteristic value.  The time delay between 
transmitting and receiving the pulse is used to calculate the distance to the fault for a given propagation velocity. 
 For broken rail detection, the two rails would act as the transmission line.  The electrical discontinuity 
usually associated with a broken rail would represent an open circuit transmission line fault.  For occupied rail 
detection, the axles and wheels of the preceding train would act as a short circuit or shunt between the two rails.  
When either of these conditions is encountered, a pulse sent from the lead locomotive of the train would be 
reflected back to the train.  As long as the signal was not too attenuated (traveling to and from the reflector), it 
would then be received and analyzed.  The phase of the reflection would identify either a broken rail (higher 
impedance) or occupied track (lower impedance), and the time delay would give the reflector distance. 
 
 
3.4.2 RADAR Signal Processing 
 
In many ways, the proposed method of broken rail detection could be described as a guided electromagnetic wave 
RADAR system for trains.  RADAR uses pulse/echo or continuous transmission of radio frequency energy into the 
atmosphere to determine the direction and distance to radio-reflective surfaces.  For the proposed system, the two 
rails would represent the transmission medium instead of the atmosphere, so the signal would be confined to a 
single path and no direction information would be provided.  In many other aspects, the technologies are closely 
related and a large amount of RADAR theory and signal processing methods would be applicable to the proposed 
system.  Examples of useful techniques include: 
 

• Coded transmit pulses with a correlating receiver to provide processing gain and help reject noise and 
interference.  Like RADAR, different codes for each system would allow multiple systems to operate 
independently if the test ranges overlapped.  Many code modulation schemes are available from RADAR 
theory and practice.  For the proposed system, a simple approach would be to select the phase of each 
transmit pulse based on a Pseudo-Noise (PN) sequence. 

• Time Variable Gain (TVG) and/or Distance Amplitude Correction (DAC) to compensate for the 
additional path loss for a more distant reflector.  In the simplest approach, gain could be increased over 
each receive cycle to compensate for a constant attenuation rate along the track.  A better approach would 
be to “map” the impedance variations along the track, such as a grade crossings covered with road salt or 
an area of contaminated ballast, and then detect variations from the expected signal patterns based on GPS 
location.  RADAR systems often include similar processing methods to ignore expected signals 
(“clutter”). 

• Signal processing methods that determine and compensate for the relative movement of the reflector while 
performing test-to-test correlation. 

 
 
3.4.3 Global Positioning System (GPS) 
 
Global Positioning System (GPS) signal processing technology provides another excellent example of using signal 
correlation and the resulting processing gain to recover signals that are far below noise level.  GPS technology also 
demonstrates the precise timing and location accuracy that could potentially be achieved.  All this takes place 
while compensating for the complicated three dimensional relative movements between the GPS receiver and the 
set of satellites being monitored.  In the case of this proposal, the spatial compensation task is greatly simplified to 
a one dimensional problem of a moving train traveling on a fixed path at a measurable speed toward the target 
which would also be confined to the path of the rail. 
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4.  INVESTIGATION 
 
4.1 ORIGINAL RESEARCH TASKS 
 
The objective of this Type 1 Concept Exploration investigation was to establish the theoretical feasibility of the 
TDR approach based on an analysis of the rail transmission line parameters at various RF pulse frequencies.  The 
ties and ballast between the rails provide less than perfect electrical insulation, so the track behaves as a lossy 
transmission line.  The rate of signal loss along the track is the main factor that determines the reflector distance 
for which the returning signals become too small to detect.  Therefore, the most important research task was to 
estimate the track transmission line attenuation rate against all other variables.  The factors that were examined 
included: the electrical properties of the ballast and ties for various types of track; the initial test pulse frequency, 
power and duration; signal coupling losses (train to track and track to train); reflection coefficients for typical rail 
breaks and track occupation; receiver sensitivity; test repetition rate; and techniques of signal processing to 
provide processing gain to recover the highly attenuated signals.  Since many of these variables interact, a 
mathematical model incorporating all parameters was created using MATHCAD to allow many different 
variations to be tested and optimized for maximum range. 
 For any pulse/echo system, maximum possible range is determined by the signal attenuation rate of the 
transmission medium, and the maximum acceptable round-trip signal loss.  There is essentially a signal-to-noise 
ratio “budget” that is the difference between the maximum signal that can be generated and the minimum reflected 
signal that can be received, recovered, and reliably recognized.  Other signal losses along the way such as 
transducer and/or coupling inefficiency, and target reflection coefficient, all have to be deducted.  On the plus side, 
signal processing can provide “processing gain” to improve signal-to-noise based on correlating within each 
pulse/echo test cycle (i.e., between the transmitted and received waveforms), and between a sequence of test cycles 
(with suitable allowance for the relative movement over time between source, reflector and receiver).  Therefore, 
the overall aim of the MATHCAD model was to simulate the entire signal path, from the transmitter to the 
receiver output, to estimate the probability of recognizing a reflector at a given range, and to optimize range for 
various track conditions by adjusting pulse frequency, power, duration and test repetition rate.  The research also 
included a search of US Patents and published research for similar or related methods of testing rail. 
 
 
4.2 RESULTS 
 
From the literature and patent reviews, it appears that the proposed method is a novel solution.  US patents that 
related to maintaining rail vehicle separation, detecting obstructions and detecting broken rails were reviewed to 
determine any overlap with the proposed method.  There are many patents that indicate the use of RADAR and 
related pulse/echo signal timing techniques to maintain vehicle separation or detect hazards ahead of the train.  
Many relate to detecting obstructions only, and are not be applicable to detecting broken rails.  Most patents do not 
suggest using the existing rails alone as the signal transmission medium.  One patent describes using the rails as a 
cavity waveguide at UHF frequencies, rather than a two-wire open line system at lower frequencies.  Others 
require additions to the rail system to propagate the signals.  Of those patents that suggest using the rail pair alone 
as an electrical transmission medium, most are concerned with conventional “steady-state” signaling systems (i.e., 
not involving propagation timing), or communicating data along the rails. 
 Only one patent, 1,517,549, Dec. 1924, (8) was found to have a significant degree of overlap in both 
objectives and operating principal.  This patent describes using the rails as a transmission line at low frequencies 
(50 kHz) to locate broken rails and track occupation.  The significant difference is that detection is based on 
measuring changes in impedance due to standing waves caused by signal reflection.  Considering the technology 
available at the time, this was a reasonable approach, but this method does not provide direct information on the 
distance to the reflector since no timing information is produced. 
 During initial research, it was discovered that nearly all the useful information on the electrical parameters 
and transmission line properties of railroad tracks was attributed to one particular researcher and his associates.  
Dr. R. J. Hill, now an independent consultant and researcher in Bath, England, was contacted to discuss the 
proposed method.  Dr. Hill was very interested in this project and subsequently agreed to act as consultant.  His 
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consultant’s report is available on request, and provides a thorough summary of the information that has been 
published on the electrical properties of railroad track. 
 The investigation revealed that the properties of the track as an electrical transmission line are mostly 
determined by the values of the ballast shunt resistance and capacitance, and typical values produce significant 
attenuation rates that are very frequency dependant.  The MATHCAD model was used to explore the tradeoffs 
between initial pulse frequency, power and duration, various track conditions, signal processing gain and range.  
The main outcome was that no single combination of values for the initial pulse parameters provided the complete 
desired range.  The proposed solution is to use a spread of pulses of varied frequency, duration and power to cover 
the range from a short distance ahead of the locomotive to the maximum possible range.  At least three 
overlapping range segments would be employed, each with an optimized pulse frequency and pulse duration for 
the given segment.  For the longest range, the pulse frequency would be reduced to decrease the signal attenuation 
rate, and the maximum pulse power would be required.  For short-range testing, higher frequencies would be used, 
and lower transmit powers would be sufficient. 
 The results from the MATHCAD model indicate that for conditions ranging from wet to dry ballast, a 
distance of 1 to 2 miles could be tested ahead of the locomotive.  To achieve this range, the initial RF pulses would 
need to be between 50 kHz and 500 kHz with a peak power from 100 W to 10 kW.  This raised concerns during 
the Advisory Panel discussion regarding RF exposure levels for the locomotive crew and other railway personnel 
in and around the train, but further research revealed that human absorption rates are extremely low at these 
frequencies and that any exposure would be below the accepted guidelines (9 - 17).  It was found that much less 
power would be required for shorter ranges, i.e., power requirements decrease exponentially with range.  For 
example, a 100mW transmit pulse could be sufficient to test for breaks or occupation up to ¾ mile in wet ballast 
conditions and up to 1 ½ miles in dry ballast conditions (see Table 4 below). 
 During the investigation, various factors that impact the practical design of the system were determined.  
For example, competing factors affecting the selection of pulse frequency were examined, and a range of optimum 
frequencies for different distances and track conditions were determined.  These choices, along with the need to 
account for the proximity of the train=s own axle shunts, affected the selection of the method of coupling signals 
to and from the rail, and a method was devised based on inductive coupling.  A proposed system outline based on 
this and other design ideas is presented in section 2.2 - PROPOSED SYSTEM OUTLINE. 
 Other refinements of the original idea were developed during this research.  For example, it would be 
essential to continue protection beyond turnouts, diamond crossings and other track-shunting structures.  This 
could be achieved without any active circuitry by using IJs to isolate each rail and electrical cables to bypass the 
structure.  For turnouts, electrical relays could be operated by the turnout mechanism so that the electrical 
continuity of the rail pair would correspond to the mechanically selected track.  A broken rail or occupation on the 
track that the train was about to enter would be properly detected while the state of the other track (for example, a 
train waiting on the siding) would have no effect.  An additional safety benefit would be that a train approaching 
along the unselected track would detect an open rail indicating that the turnout was set against it.  The actual 
turnout would need to be protected by some non-electrical method such as a fiber-optic filament (4a). 

If IJs were not acceptable, an alternative would be to place a coupling coil on each track and use an active 
repeater system to receive incoming signals and retransmit them past the shunting structure.  The coils would be 
fixed to the inside web or foot of each rail and operate on the same principle as the locomotive coupling coils. 
 
 
4.3 ADDITIONAL TASKS AND RESULTS 
 
In a discussion with Advisory Panel members, the following additional questions were raised: 
 

• Would the pulse be more attenuated in jointed track (assuming normal bond wire connections)? 
• Given the peak signal level of the transmit pulse required to achieve useful range (possibly up to 10 kW), 

what is the RF radiation hazard exposure in and around the train, along the rail, and in the vicinity of a rail 
break? 

• Would the RF pulses damage or disrupt existing track circuits and overlay systems such as grade crossing 
predictors? 
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4.3.1 Signal Loss at Bonded Joints 
 
A MATHCAD model was developed to estimate the additional signal attenuation due to bonded joints in jointed 
track.  This model calculated the additional signal loss due to reflections at each joint caused by the local change in 
resistance.  There could also be a slight change in rail inductance that would contribute to these reflections.  At the 
pulse frequencies anticipated, the wavelengths are very large compared to the size of each joint, so the magnetic 
fields would be almost identical on either side of the joint.  This suggests that the slight deviation in current path 
through the bond wire would have only minimal influence on the rail inductance, but the exact effect is difficult to 
predict.  In any case, the resistance change would probably be the dominant influence on signal current through the 
joint.  The capacitance and conductivity between the rails should not change significantly at the joint.  This is 
because the entire joint would be at approximately the same voltage, regardless of the actual current path; the same 
surface area of each rail is in contact with the ties and ballast; and the physical shape and distance between the 
transmission line conductors at the joint is only slightly different relative to their separation.  The model indicated 
that for joints on both rails every 39 ft, the detection range would decrease by no more than 2 percent compared to 
Continuously Welded Rail. 
 
 
4.3.2 RF Exposure 
 
A study was performed on the risk to railroad personal posed by the proposed high-power RF pulses.  Several 
government agencies are involved in regulating RF exposure (9 - 15), and other organizations such as IEEE (16, 
17) and ANSI have contributed the underlying research and standards that determine safe operating limits.  The 
most relevant information is summarized in the following table that lists exposure limits for uncontrolled 
environments (i.e., the general public and employees not trained or qualified to maintain and/or service RF 
equipment).  These limits are based on the heating effect of RF fields within the human body, and the limited 
capacity of the human body to dissipate and regulate this additional heat source.  There is also an added safety 
factor of 10 to ensure that any RF heating has no noticeable or subtle long-term effect. 
 
 

 
Frequency 
Range (f) 

 
Electric 
Field (E) 

 
Magnetic 
Field (H) 

 
Power Density 

(S)  (E & H 
Fields) 

 
Averaging Time (Tavg) 

 
(MHz) 

 
(V/m) 

 
(A/m) 

 
(mW/cm2) 

 
(minutes) 

       E2                 S or H2 
 

0.003 - 0.1 
 

614 
 

163 
 

(100, 106) 
 

6 
 

6 
 

0.1 - 1.34 
 

614 
 

16.3/f 
 

(100, 104/f2) 
 

6 
 

6 
 

1.34 - 3.0 
 

823.8/f 
 

16.3/f 
 

(180/f2, 104/f2) 
 

f2/.3 
 

6 
 

3.0 - 30 
 

823.8/f 
 

16.3/f 
 

(180/f2, 104/f2) 
 

30 
 

6 
 

30 - 100 
 

27.5 
 

158.3/f1.668 
 

(0.2, 9.4 x 105/f3.336) 
 

30 
 
.0636f1.337 

 
100 - 300 

 
27.5 

 
0.0729 

 
0.2 

 
30 

 
30 

 
300 - 3000 

 
- 

 
- 

 
f/1500 

 
30 

 
- 

 
3000 - 15000 

 
- 

 
- 

 
f/1500 

 
90000/f 

 
- 

 
15000 - 300000 

 
- 

 
- 

 
10 

 
616000/f1.2 

 
- 

 
TABLE 3  Maximum Permissible Limits for Uncontrolled Exposure. 
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The relevant exposure limit for the frequency range of interest (around 100 kHz or 0.1 MHz) is 100 mW/cm2 
averaged over a period of 6 minutes.  The reason that the exposure limit is much higher at 100 kHz (compared to 
0.2 mW/cm2 at 30 MHz, for example) is that at this frequency the wavelength is much longer than the dimension 
of the human body, so the body makes a poor “antenna” and much less of the energy is absorbed.  This is why it is 
possible to stand as close as 2 m to the base of a 100 kW, 1 MHz AM broadcast antenna tower without exceeding 
the exposure limits.  This same distance from a 100 kW 100 MHz FM broadcast tower would expose the subject to 
15 times the recommended limit.  The fact that the body absorbs different amounts at different frequencies also 
explains the very low limits placed on many handheld radios and cell phones that operate at the higher VHF and 
UHF frequencies.  For example, portable devices operating at 900 MHz within 5 cm of the human body require 
additional compliance testing if the transmit power exceeds 100 mW. 
 A MATHCAD worksheet was developed to calculate the possible exposure near a broken rail immediately 
ahead of the train, where the highest possible exposure might be encountered.  The worksheet was based on the 
following assumptions: 
 
$ 100% of the transmitter power is coupled into the rail, and then all of this RF power is radiated from a 

broken rail immediately ahead of the locomotive. 
$ This power radiates upward and outward in a hemisphere originating near ground level. 
$ The industry standard estimate for the energy contribution due to ground reflection is applied.  Therefore, 

the energy density in the aboveground hemisphere is 1.6 times the amount that would be expected if there 
was no ground and the energy could radiate outward in a complete sphere (i.e., 60 % reflected at ground 
plane, 40 % absorbed). 

$ The work crew is no closer than one meter from the rail break while the train is passing. 
$ The train crew is no closer than 1 meter and the effect of shielding due to metal floor and cab construction 

is ignored. 
$ The effect of operating in the RF near-zone is ignored. 

 
At 2 meters, the estimated continuous transmit signal required to reach the specified safety limit is 31.4 kW.  
Repeating the calculation for a distance of 1 meter gives a permissible transmit power of 7.9 kW.  Most of the 
assumptions leading to these figures are conservative.  The coupling from the transmitter to the rail would actually 
be less than 100%, with some energy lost in the coupling system and some energy reflected back to the transmitter 
to be dissipated as heat.  The broken rail would reflect energy rather than radiate it (although if close to the train, 
multiple reflections could occur between the break and the lead axle, and much of the energy might eventually be 
radiated).  Finally, the metal cab would provide additional shielding for the train crew, especially at this low- 
frequency/long-wavelength where openings such as windows and doors would represent relatively small gaps in 
the shielding and therefore only minor signal leakage. 
 It is important to note that the limits for RF exposure at these frequencies are based on averages over a 6 
minute period.  One implication of this is that the duty cycle of the pulse is as important as the peak transmit 
power.  For example, the transmitter will have a duty cycle from 20% to 50%.  Therefore, the 7.9 kW average 
transmit power estimated above to be safe at 1 m could actually consist of pulses of 15.8 kW to 39.5 kW. 
 The other significant implication of averaging is that short-term exposure can occur at higher power 
densities if exposure time is limited.  For example, a rail worker or a waiting passenger at a station standing very 
close to the track would only be close to the front of a passing locomotive for a short time.  Since the power 
density varies inversely with the square of the distance between the source and the subject (i.e. the area of the 
expanding spherical surface), any significant exposure would only occur at smaller distances.  Even if the train is 
moving slowly, the subject might only be in this critical range of 1 to 2 meters, for, say, 15 seconds.  The 
allowable exposure for 15 seconds is 24 times (6 * 60 / 15 seconds) the limit averaged over 6 minutes.  The exact 
figures would be obtained by integrating the varying exposure power density over a 6 minute period as the train 
passes the subject. 
 Similarly, the exposure of a rail repair worker working close to a rail break as a train is approaching would 
be averaged over the 6 minutes prior to the worker getting clear of the track for the train to pass.  For most of this 
time, the train would be far enough away that the signal would be highly attenuated before reaching the break. 
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There would be a short time, depending on train speed and the safety margin for getting clear of the track, for 
which any significant exposure might occur as the train gets closer.  For most reasonable combinations examined, 
the worker could be in the immediate vicinity of the break and still not receive any dangerous exposure sustained 
over the 6 minute period.  It should be noted that at very close distances, different parts of the body would be 
exposed to different field levels.  In these situations, the human body can tolerate higher exposures since the 
circulatory system can distribute heat away from the worst affected areas.  For this reason, most exposure 
standards set higher limits for individually exposed body parts such as head, hands and feet. 
 
 
4.3.3 RF Licensing 
 
Based on this study, it is likely that the safety issue could be successfully managed, but there is still a licensing 
issue that would need to be addressed.  It would not be possible to operate under FCC part 15 rules that govern 
unlicensed, low-power transmissions unless the reduced range would be adequate (for 100 mW ranges, see Table 
4).  Therefore, FCC licensing would be necessary to operate at the higher power levels that might be required.  In 
the region of 100 kHz, international agreements provide reserved frequency bands for navigation, radio location 
and direction finding.  Normally this applies to ship and aircraft navigation, but it seems reasonable that 
locomotives could also use these bands since the purpose is related to location finding (in this case, locating the 
broken rail rather than the train).  Other frequencies in this region are available for atmospheric RADAR, which is 
based on a very similar pulse/echo technique and often uses much higher transmitter power.  One complication for 
licensing may be that the transmitter is not fixed as in the case of these other applications. 

It should be noted that in the proposed application, most of the transmitted signal would be dissipated 
along the track and very little would normally be radiated.  The worst case for radiated RF would be using high-
power pulses with a broken rail close to the train.  As described in this report, the system would continuously scan 
the track ahead and automatically select pulses with lower power and higher frequencies for testing closer range 
segments.  Optionally, the system could also include an RF receiver to monitor radiated signals.  This would detect 
excessive radiation caused by a broken rail (and, as suggested by consultant Bob Kubichek, may provide an 
alternative signal timing mechanism for detecting and measuring the distance to a break).  The RF receiver might 
also allow detection and correction of other system problems such as excessive mismatch between the coupling 
coil and the track.  The exact pulse frequency, timing (test repetition rate), and coding (pulse phase sequence) 
could be varied depending on region (based on GPS location) and other received signals (frequency hopping) to 
minimize interference to any existing services and between different trains. 
 
 
4.3.4 Interaction with Existing Track Circuits 
 
The question of possible damage and interference to the existing track circuits was also examined.  To achieve 
maximum range, a transmit pulse power up to 10 kW has been proposed.  The efficiency of the coupling coil to the 
rail is estimated to be 50%, so approximately 5 kW would be transferred to the rail.  Depending on the track 
conditions (that determine track impedance), this represents a pulse voltage in the order of 500 Vac between rails.  
This voltage level may pose the risk of damaging or at least inhibiting the operation of the existing track circuit 
equipment.  On the suggestion of the advisory panel, the two signaling companies that supply the majority of 
equipment to U.S. railroads were contacted.  Neither company was able to provide a definitive signal level that 
would or would not cause interference or damage (since there had never been a reason to test their equipment at 
these higher frequencies), but general information was provided on the protection circuitry used on most devices 
connected across the rails.  These devices are typically rated to handle much larger voltages and currents than a 
single transmit pulse can produce, but are not necessarily rated to handle continuous pulses, even at lower voltages 
and currents. 
 In most cases, lightning protection is provided using three spark-gap arresters in a delta configuration 
between the two rails and a local ground.  The two arresters from the rails to ground are typically high-voltage 
units that breakdown at 350-950 Vac, while the rail-to-rail arrester is typically a lower voltage unit that will 
breakdown at 50 to 100 Vac.  The unit across the rails has a typical continuous operating voltage of 25 Vac.  A 
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similar delta network of three semiconductor devices (TransZorb, MOVs, or two series Zener diodes) is often used 
in parallel with the spark arresters to further limit any high-voltage spike.  A final stage of protection is usually a 
filter circuit consisting of capacitors and inductors designed to attenuate noise and interference outside the 
frequency used by the track circuit (in particular, to reject the power line frequency of 60 Hz and the first few 
harmonics).  The filter stage is sometimes part of the surge suppressor unit or a second separate unit, but is more 
often built directly into the track circuit controller. 

From this information, it appears that a transmit power of 25 W would be within the normal operating 
range of the surge protection circuit, and a transmit power of 100 W might begin to cause breakdown of the spark 
arrester.  Therefore, it may be necessary to limit the transmit power to 100 W or less to avoid equipment damage 
when the train is approaching an existing track circuit device (Note: With access to the locomotive GPS 
information, any necessary power adjustment could be performed automatically).  The effect of reducing the 
transmit pulse power on the maximum detection range can be seen in Table 4 below. 

There may also be a lower voltage level that would not damage existing equipment, but would interfere 
with normal track circuit operation by overloading the input stage.  This would be a serious safety issue for grade 
crossing protection, etc.  Forrest Ballinger (GETS Global Signaling) has suggested that a test could be performed 
to determine the interaction between the proposed system and existing track circuit controllers.  This test could 
occur at a GETS workshop or at the TTCI facility.  John Sharkey (Safetran Systems Corp.) is also interested in this 
research and has requested additional information on the proposed system.  Details of possible cooperative 
arrangements with these companies would be included in any future proposals. 
 As the transmit power is reduced to avoid damage (or interference) to existing track circuit equipment, the 
range will also be reduced.  Fortunately, the relationship between range and transmit power is logarithmic, i.e., the 
range decreases linearly with the log of the transmit power.  As an example, for dry ballast conditions and wood 
ties with a 50 kHz pulse, the round-trip signal attenuation rate is 98 dB per mile, so for each 10 dB (10 fold) 
reduction in power, the range is reduced by 10/98, or approximately 0.102 miles.  This relationship is further 
illustrated in the following table: 
 
 

 
Track Conditions 

 
Range (Miles) Verses Transmit Power 

 
Ballast 

 
Tie Type 

 
100 mW 

 
1 W 

 
10 W 

 
100 W 

 
1,000 W 

 
10,000 W 

 
Wet 

 
Wood 

 
0.74 

 
0.79 

 
0.84 

 
0.90 

 
0.95 

 
1.00 

 
Wet 

 
Concrete 

 
0.82 

 
0.87 

 
0.93 

 
0.99 

 
1.05 

 
1.10 

 
Dry 

 
Wood 

 
1.48 

 
1.58 

 
1.68 

 
1.78 

 
1.88 

 
1.99 

 
Dry 

 
Concrete 

 
2.98 

 
3.19 

 
3.40 

 
3.60 

 
3.80 

 
4.00 

 
TABLE 4  Maximum Range Verses Transmit Pulse Power. 
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5.  PLANS FOR IMPLEMENTATION 
 
With the completion of this Type 1 Concept Exploration study, the next step would be to submit an application for 
Type 2 Product Application funding to the Transportation Research Board.  The Type 2 goals would include 
development of a prototype suitable for demonstrations at TTCI and to individual railroads; and extensive field 
testing to measure the actual electrical properties of U.S. railroad tracks at the anticipated test pulse frequencies.  
The general flow of work during Type 2 would be to perform very systematic equipment development in three 
stages.  At the completion of each stage, a demonstration would be performed to establish that the goals of that 
stage had been met and that the theoretical expectations were validated.  These tests would be performed at the 
most suitable location, with TTCI being the first choice. 
 The reason for a three-stage development process is that for each stage, critical questions would be 
answered and worthwhile tests and demonstrations would be performed to determine the merit of continuing to the 
next stage, rather than committing to the full complexity and expense of the final electronic and mechanical 
prototype system in one step.  Each stage of equipment improvement would build upon the previous stage with the 
addition of more powerful transmit amplifiers and different methods of coupling to the rail, working towards the 
final prototype system with a minimum of wasted resources.  Each stage would provide valuable information not 
previously available, such as measurements of the transmission line parameters of U.S. track for a wide range of 
frequencies in different regions and for different soil types and moisture conditions.  This collection of data would 
progressively provide the required information for an accurate range prediction throughout the U.S. for any 
particular conditions and transmit power. 
 The first Type 2 stage would be the development of a portable system with a low-power transmitter that 
would demonstrate the basic concept of detecting broken rails and track occupation over a short distance, perhaps 
1/4 mile.  This first unit would be a static test unit that would attach directly to the rails using clamps, bolts or 
existing bond wires for the first set of tests, data collection and demonstrations.  The preferable method of 
simulating a broken rail would be to use an insulated joint that could be temporarily bypassed with an electrical 
switch to demonstrate the difference in the signal between a broken and an intact rail.  The next best option would 
be to unbolt a rail joint to perform a similar demonstration.  If neither of these choices were available, the rail 
would need to be cut to allow the demonstration.  To demonstrate the detection of track occupation, a shunting 
switch would be clipped or bolted across the rails to simulate a train axle.  These demonstrations would hopefully 
confirm that the TDR method of detecting broken rails and track occupation is valid.  The low-power unit would 
also allow direct measurements of the transmission line properties of the track, such as attenuation rate and 
propagation velocity, for a broad range of pulse frequencies to confirm or correct the predicted values. 
 The second Type 2 stage would be the development of a static demonstration of the inductive loop 
coupling method.  Initial static testing would use a cable to represent the train axle.  With the successful 
completion of these two stages, the test method would be validated and an actual detection range would be 
established for various pulse frequencies using the low-power transmit pulse.  The transmission line characteristics 
of the track, the reflection coefficients of broken rails and track occupation, and the efficiency of the coupling coil 
would be measured.  With this information the range that could be achieved using high-powered pulses could be 
accurately predicted.  If the resulting range was close to or better than the estimated range from this Type 1 study, 
development could continue into the third stage. 
 The third Type 2 stage would be the development of a high-power version and a demonstration test 
carriage that could be pushed or towed by a hirail vehicle for dynamic testing.  Since most hirails are insulated 
from the rail, a brush or conductive wheel shunt would be provided.  This system would allow testing and 
demonstrations of the system performing at various speeds to confirm reliable detection of broken rails and track 
occupation up to a specific range ahead of the vehicle. 
 U.S. Patent Application titled “Method and Apparatus for Detecting Rail Breaks and Occupation” was 
filed on September 5, 2003.  With intellectual property protection in place, partnering with railroad signaling 
companies or other technology-based railroad equipment developers and manufacturers could be investigated.  
Partnering with a suitable company throughout the various stages of equipment development and testing would be 
preferable with the final aim of licensing the manufacture, sales and support to this partner.  The role of Analogic 
Engineering, Inc. (AEI) would be to develop a prototype system for testing and demonstrations, a production 
version for field trials, and then continue concept development for this and other applications.
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6.  CONCLUSIONS 
 
The purpose of this IDEA Type 1 Concept Exploration research project, HSR-38, was to determine the feasibility 
of treating railroad track as a two-wire transmission line and adapting Time Domain Reflectometry to the task of 
detecting broken rails.  This research was in response to the TRB Committee Research Problem Statements 
seeking an alternative broken rail detection method to work in conjunction with CBTC.  The aim is to cover all the 
functions of the present signaling systems so that track circuits, signaling infrastructure, and the associated 
maintenance problems and costs can be eliminated.  Track circuits successfully detect most broken rails by 
determining a loss of electrical conductivity at the break.  Other detection technologies are known that are more 
sensitive to some types of break where electrical continuity is maintained, but these technologies have other 
disadvantages such as producing too many false-positive indications or requiring specialized wayside 
infrastructure.  Therefore, a novel method was devised that would detect broken rails based on changes in 
electrical conductivity like track circuits, but in a format that could be mounted on the lead locomotive of each 
train.  As a replacement for the signaling system function of detecting broken rails, the proposed system would 
probably be no better or worse at detecting problematic broken rails such as partial breaks, breaks on tie plates or 
breaks under compression, but may offer significant cost savings by replacing a system having “per-mile” capital 
and maintenance costs with a system mostly based on “per-train” capital and maintenance costs. 

A locomotive-based approach could also offer other advantages over fixed wayside infrastructure.  The 
main safety advantage would be that the warning information would be generated directly in the lead locomotive 
so the crew could respond immediately.  This could be especially useful when closely following another train since 
broken rails sometimes occur under the preceding train.  Since there would be no dependence on external 
equipment, radio communications, cab signaling, or wayside signals, there should be no opportunity for warnings 
to be delayed or lost due to radio network failure, wayside power failure, loss of visibility, or other possible 
external conditions.  Removing the dependence on external wayside infrastructure would eliminate problems 
caused by equipment exposure to environmental extremes, loss of power in remote locations, accidental wayside 
equipment damage, vandalism or sabotage.  The general economic advantage would be that there are generally far 
fewer trains than track circuits, so fewer systems would be required.  Initial installation and ongoing maintenance 
could be centralized, utilizing the same locomotive maintenance workshops and personal that would install and 
service the Communication-Based Train Control system, rather than requiring a distribution of specialist 
technicians throughout the rail network. 
 The results of the research are encouraging, indicating that the principle of operation is theoretically 
plausible, and that a practical system could possibly be implemented.  The major difficulties to overcome would be 
the mechanical support system required to align the coupling coil close to the track; the effect of electrical 
anomalies and track shunting structures such as turnouts; and electrical compatibility with existing track circuit 
controllers.  An analysis of the requirements for a locomotive-mounted system based on Time Domain 
Reflectometry indicated that detection range would be mostly limited by the high signal attenuation rate along the 
track.  This in turn is mostly determined by the value of shunt conductance through the ballast and ties.  To predict 
range, the track attenuation rate was estimated based on calculated transmission line parameters and values 
extrapolated from previous field measurements.  Based on the available data, a detection range of 1 to 2 miles was 
indicated depending on track conditions such as the tie type (wood or concrete) and the ballast moisture content. 

The general principle of applying TDR to railroad track also has great potential for fixed site applications 
where measuring the exact speed and distance to an approaching train would allow accurate prediction of arrival 
time.  One example could be an advanced train arrival “predictor” for grade crossings to operate warning signals 
and gates so that road drivers have adequate warning to stop even for the fastest trains, but do not become 
impatient (and perhaps attempt to circumvent the barrier) waiting for the slowest trains.  Another possible 
application is to provide data for a low-power radio warning system to broadcast voice messages and digitally 
encoded train ETA for school buses, emergency vehicles, HazMat transportation, motor homes, etc.  There is also 
interest in long-range train arrival prediction to allow more effective traffic preemption at controlled road 
intersections adjacent to rail crossings.  A reliable and cost-effective sensor might also encourage the installation 
of active warning systems at unprotected public and private rail crossings.  Other examples could include rail 
worker warning devices and train arrival warning indicators for passenger platforms and pedestrian crossings. 
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7. INVESTIGATOR AND CONSULTANT PROFILES 
 
7.1 PRINCIPLE INVESTIGATOR - STEVEN TURNER 
 
Mr. Turner, the Principle Investigator and President of Analogic Engineering, Inc., has successfully researched, 
designed and manufactured various ultrasonic test equipment for rail defect detection during the past sixteen years.  
Mr. Turner has performed or directed all aspects of instrumentation design, creation and development including 
circuit design and prototyping, PCB layout, surface mount prototype assembly, low-level micro-controller and 
programmable device coding, and C++ programming for overall system control and real time display functions.  
He was solely responsible for the design and implementation of the ultrasonic instrumentation and the radio data 
transfer system for the first high-speed, non-stop chase car verified testing systems in the U.S. in 1989.  The most 
recently commercialized design was a high-speed twenty-four channel ultrasonic system with real time defect 
recognition and real time colorized B-scan display.  Four systems were produced by Analogic Engineering, Inc. 
and delivered to the client, Herzog Services, Inc.  A vehicle incorporating one of the systems was tested on the 
Rail Defect Test Facility at TTCI in Pueblo CO in August 2000.  Tests were very successful, locating more of the 
deliberately incorporated defects than any previous system tested.  In particular, all defects that could be located 
and verified on the day by manual ultrasonic testing from the top surface of the rail were clearly displayed and 
identified, and two previously unknown defects were found in adjoining welds.  It is estimated that at least twenty 
five percent of rail defect detection vehicles operated by U.S. rail test contractors use equipment based on Mr. 
Turner’s designs. 
 
 
7.2 CONSULTANT - DR. JOHN HILL 
 
Dr. Hill, an independent consultant based in Bath, England, has researched and published extensively on the 
subject of analyzing railroad electrical behavior in terms of transmission line modeling.  This research was mostly 
targeted at determining the behavior of power feed and return currents for electric locomotives, and the range and 
sensitivity of conventional fixed block signaling systems.  Dr. Hill has provided a summary of previous work on 
transmission line modeling in terms of the present application, and an estimate for behavior at higher frequencies, 
including estimated attenuation rates for concrete and wooden ties, for both wet and dry conditions.  This analysis 
was based on Dr. Hill's extensive experience and knowledge of research in this field, including all relevant 
published material in which he has been directly involved, other work of his fellow researchers, and other sources 
of related research.  This report is available upon request. 
 
 
7.3 CONSULTANT - DR. ROBERT KUBICHEK 
 
Dr. Kubichek, Associate Professor, Department of Electrical Engineering, University of Wyoming, Laramie, has 
research and/or teaching experience in many fields that are relevant to this research, including signal processing, 
radio frequency radiation characteristics, and transmission line theory; and has numerous related publications to 
his credit.  In addition, he has extensive experience using mathematical modeling software for electrical circuit 
modeling and signal analysis.  For this project, Dr. Kubichek provided advice on MATHCAD modeling and some 
aspects of signal processing, reviewed the mathematical models for validity and accuracy and was a participant on 
the Advisory Panel. 
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