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Abstract:

The project was concerned with the development of a neural network-based method of accurately
estimating truck attributes (such as axle loads) from strain response readings taken from the
bridge over which the truck is traveling. The approach is designed to remove the need for
intrusive devices (such as tape switches) on the deck of the bridge to obtain such data so as to
provide a convenient and viable means of collecting bridge loading statistics.

The problem with tape switches is their longevity. They are rapidly destroyed by heavy
traffic, particularly following precipitation. They can also warn truck drivers about the presence
of instrumentation on the bridge. As a result, truck drivers may avoid the bridge or reduce speed,
thus introducing bias into the collected data. The system can estimate truck attributes solely
from strain readings taken from girders supporting the bridge deck, thus eliminating the need for
surface instrumentation. The system is inexpensive to implement since the only bridge
instrumentation required is the existing weigh-in-motion (WIM) strain transducer technology.

The system has many practical applications, which can be broadly classified under two
headings: (1) to enforce legal weight limits on trucks without the need to stop those vehicles for
weighing; and (2) to obtain comprehensive statistics for use in, for example, highway bridge
design or fatigue rating of existing bridges. A detailed database of tmck types, and loading
conditions can be acquired, from which it will be possible to elicit location specific and time-
wise trends in bridge loading, which in turn will be useful in determining bridge refurbishment
and replacement policy.

The approach to the problem was to exploit the automatic modeling capabilities of neural
networks to develop an accurate model of the function that maps from bridge strain to loading
conditions. Training of the networks was based on data defining the strain response of bridgès to
a variety of truck loading situations. A two-level neural networking system wãs adopted. This
modularized approach was proposed, in preference to a singular network, to facilitate the task of
training. The network at the first level in the system was trained to classiff a given truck loading
condition and, thus, select an appropriate set of networks for estimating truck ãttributes from the
second level of the system. A variety of altemative networking systems were considered for the
first level, including a selÊorganizing device that determines its own classification system for
truck loading situations, based on natural clusterings of the training data within the problem
domain. The second level in the system comprises three networks for each truck loading class,
estimating velocity, axle spacings, and axle loads. These second level networks were developed
using a supervised training algorithm. A variety of supervised training algorithms were
considered for this purpose and their performances compared. The input to both the first and
second level networks are an allay of strain readings measured at a fixed location on a girder at a
prespecified sampling rate during a truck crossing event.

Most generally, the project demonstrated the currently most viable ways of using artificial
neural networks to determine the attributes of trucks in motion, to within an acceptable degree of
accuracy.



1.0 BACKGROT]I\D

A weigh-in-ryotr_q (WIM) systeq capable of accurately determining the velocity, axle spacings,
and axle loads of fast moving trucks from measurements of the straiã response ofitre structure" 

'
over which the¡r- are-travglitg, has many practical applications. In particülar, it would enable
enforcement of legal weight limits on trubks withoùf the need to stðp those úehicles for
yei^ghing, an{ eqqbfe comprehensive statistics on vehicle-bridge loading to be obtained for use
P,.fol ex3lgrl,e, hi_ghway bridge design or fatigue dþg of exñting brid"ges Moses 

"t 
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Existing yn4 methods make use of tape switðhes laidãcross eacñlane õf a Utiage foi L- '7 --J-

dete.rmining the velocity, the number. olaxles, and spacings of the a:des, otr a patittg truck. In
addition, a transducer attached.to a girder supportin! the b?idge deck is ûsed to measî,re strain, at
I given sampling rate, during tt-re truck crossiñg. Cõmbininglhese data, and by the,5. o}.ffitt
theory of mechanics, it is possible to approximãte the load o--n each of the truck's a:rles. r--

. The main problem with the existing.system is that the tape switches rapidly deteriorate in
heayy.tr.affic, particularly following precipitation. The presence of the tapé swítch"r utro **t
truck drivers that the þri{Se is instrumentêd-- As a resuii, they may modeiate their speed or u òi¿
the bridge, thus introducing bias into the collected data. The-soluiion to this problem considered
here was to develop a neural rletwork-based method of estimating truck attributes (such ur, *lã-
loads, velocity, and axle-spacings) solely from the transducer stríin reaOingi. Thid has the
advSntage-of removing the need for,the tape switches, or other bridge deck-instrumentation. In
addition,.the approach makes use of the existing WIM strain transdúcer technology, *¿ irìftut
inexpensive to develop and implement.

2.0 NET]RAL NETWORKS

Artificial neural networks are computing devices that emulate, to different levels of abstraction,
the structure and o-peration of the Central nervous system. lhéy are configured fto- ã f*gã 

--'
number of parallel opgating processors, or neuroni, each of wirich perforìms ro-" fri*itftifunction, and are us¡rfll¿ implemented through ggftware on a general-purpose OigitäLcomputer.
These neurons are linked such as illustratedin ligure l, to foãn a neÅroik that ierformìã 

--

higher-order function. This could be anything fro;l, forexample, estimating construction
productivity Ch_ao a¡!,skibniewski [1] t-o the simulation of thê báhavior of ãynamic construction
processes Flood and Worley [3].

. Thele are many different forms of neural networks, the details of which are well documented
tn a number of texts _such as th4t by HechfNielsen [11]. Briefly, however, a neural network
provides_a frurction that maps fr9m a vector of inpuis (iepreseniing a probÍem to be solveâjio u
vector of ouþuts (representing t']rg network's solution io 

-the 
given:pro'blem). Figwe 1 shois trvo

commonly adopted gx11nplg architecture¡ (as proposed for tñis woik¡, the ñrst iõ a hterally
connected network (*it!t all neurons in the ouþui layer connected to each other), and the íecond
is a feedforward network (with the neurons divided into layers with all neurons íí otte tayãi 

:-
connected to all those inJhe subsequent.layer). In eithe¡ cãse, information describing thé
problem is presented to the appropriate input neurons, from where it is transferred acäss the
connections to the neighboring-neurons. This process may be repeated a number of times (in the
case of the feedforward netwo¡k the process is-repeated until valiles are available at the ouiput
neurons). The networks solution to the problem is then read as the set of values generated ärtoss
the outPut neurons. Processing oqerations are performed on the values as they pãss across the
linLt. l" addition, values.converging_a! a neurõn are integrated and put throulti a simple non-
linear function. The precise nature of these operations depends on the type oineural ne¡vork
adopted.

. Certain parameters are associated with the processing tasks performed along the links and at
the neurons, the values of which define the speCific mappìng function implemerited by the



letwor|t'. A major task.in the development of a neural network is, therefore, concerned with
determining an. appropriate set of values for these parameters. Typically thié involves the use of
either a_supervised or an unsupervised training sch'eme, both of ríiúch úere considered for this
*9Tk-. Supervised training invo_lves the.use ofa representative set of training patterns, each of
Y.hi"h comprises an example of the-problem to beiolved and its coor.pondín'g targetêd solution.
The network, in effect, attèmpts to lèam these mappings, usually by mËans ofä itãrative
procedure that adjusts network parameters in a wáy thãt minimi2ejan error function. Error is
measured as some function of the difference betwéen the acfual ouþut from the network and the
targeted output, averaged gver.{! the training pattems. Once trainiirg has been completed, it is
anticþated that tþ9 network will be able to piovide accurate solutionõ to other examþl"s oithe
problem not used in the-training pïocess._ This cannot always be guaranteed however, and thus a
thorough validation of the nenvoik must be undertaken.

Un-sup-eryised tr¿inin8, oq fle other hand, makes use of training patterns that do not include
targeted solutions. Typical of this class of training s_chemes are theäustering algorithmt il;h;,
those proposed.by þh.gnen ll2l -1or 

problem claslification. In its simplest fõrm]trainifi
proceeds by adjusting the network qgame.lers in aw?y that forces each ouçut neuron to-respond
to as many training patterns.as possible without overlápping with the response of othér ó"þ;i---
neurons. The result is a division of the input space intôiegîons containing distinct clusters of
training pattems,_each cluster embraced by a different ouþIut neuron. The"class into which a
problem is placed by the network is denoted by the outpuf neuron that generates the largest
value.

\""*=
ûr.rck loading
dass

= bridge &
tuck attibr¡tss,
(eg: span lengfh,
girder depth, load
on axles...)

LEVEL 2:
feedfonpard network for
estimating truck attri butes

ûuck atùibr¡Þs
(velocity, axle
spacings, axle
loads)LEVEL I:

self-organized network
for classifying truck type

FIGIJRE 1 Overall Structure of Neural Networking System.

3.0 APPROACH

A two-stage neural network system was considered, as illustrated in Figure l, to estimate truck
attributes from the strain response of lhe,bridge over which the truck iitraveiing. The first ofthe
two stages (that shown to the left of the figure) is designed to classify a given trúck loading



condition and thus select an appropriate set of networks from the second level of the system. The
latera\y connected architecturé shown { leve! 1 in the figure is tl,pical of networks usêd fot
clas.sificati!{ Pulloses, thou8lr conventional feedforward-netrvori<i were also experimentãlwit}r
tirr this first level network. The networks in the second level were designed to oþerate for a
given truck loading class, providing estimates of velocity, axle spacings"and;Ëto;d;. 

- -

This modulaizedapproach w_as gdopJed, in preference to a singular network, to facilitate the
task of training the neural networks [8, 9]. In adïition, it enables iãdividual modules to be
retrained, and new Ilodules added, ai new training data become available, without the
burdensome task of having to retrain the completãneffiork system. Each of these subsystems is
described in turn in the foflowing.

3.1 FIRST LEVEL NETWORI(: TRUCK CLASSIFICATION

AygtttY of different types of neural network were considered for the first level in the network.
Of these, the most promising have been found to be:

(a) SORG: a self-organizing- network th_at develops its own classification system (in this
case of truck types).by identi$rin-g clu-sters in _tþ9 training pattems in thé input
domain. Specifically, a system that places radial-Gaussi-an functions over èach cluster
was adopted. The mode of operallon and development of this type of network is
described in detail by Moody and Darken [13].

Jnput to the SORG networks was an array of strain readings measured at a fixed
location on a.girder of the þ_ttdq".dr..ttg ihe passage of a tiuck, as indicatðAìn Ëigurt2. As a truck clos-sgs a bridge it ilducés strâin in the girders. This is measured for
the entire pelog of the truck-crossing by a transducer,þroviding a strain+im" 

"u*èsuch as that indicated in the figure. Baih tn¡ck generatès a charäcteristic strain-time
curve, the form of which is a function of the velõcity of the truck, the number of
axles, the spacing belweeq axles, and the load on each axle. The óbjective is to
recognize tþe type of truck from its strain-time curve. The resultani strain curve for a
truck crossing event was divided. into T array of 32 rcal-valued strain readings
distributed evenly over the duration of the truck crossing event (s"é, øt eiãniple,
Figure 3a).

tnngucer /

strain
readings
60Hz sampling

rate

FTGURE 2 sampling of strain Data Induced by a Truck crossing Event.

Each ouþut from the SORG network represents a different truck loading class. The

4



class to which a given truck-loading situation belongs is indicated by the ouþut
neuron-that generates the value closest to 1.0 (all otñer ouþuts shouid generate a
value close to 0.0).

lnputs to Network
lnputs to Network

@@@@
@@o@
@oo@

measured
stra in

0.

(a)

0

l.c

0.5

0.
(b)

FIGURE 3 Formatting Qtrain-Tim-e Curves for Input to a Neural Network: (a) vector of
real-values; (b) matrix of binary values.

(b) EHAM: a binary networking system that is an extension of the simple Hamming
network This system uses a supervised training algorithm, and so ä classificatiõn
system for trucks must be prescribed. The FHWA system of truck classification was
therefore adopted. The extendedHamming netrvork and its training algorithm were
developed by the principal inwestigator and are not yet published -ih"r1for", u
escription of the system and its trãning algorithm-areþrovided in Appendix iI.

Input to the EHAM networks was a matrix of binary values representing a projection
of the strain readjngs-mga¡ured at a fixed location on a girder ðf tne Uriãge Ouäng the
passage of a truck. The binary map was a32by 32 maúx,with one dim-ension "
representing sample strains taken.atdifferent pôints in time during a truck crossing
event, while the other dimension indicating thè magnitude of the õtrain readings (õe,
for example, Figure 3b).

Each ouþut lom lhe EHAM te!.wot\ repr.esents a different truck loading class. The
class to yhich a given truck loading situãtion belongs is indicated ty thJouput 

-:
neuron that generates the binary value I (all other oúputs should geherate u binury
value of 0).

(c) RG.IN: a radial-Gaussian feedforward networking system that uses an incremental
training a.f8oriJhry. As for.EHAM, training in RõIN is supervised and so the FHWA
syqtem of tnrck classification was adoptedãpriori. The RbIN network and its
traj$n-g {gorithm-were developed by the priircipal investigator and are not widely
pubti$gd - therefore, a descripion of theìystem and its träning algorithm are 

J

provided in Appendix I.

Inpt! to the RGIN networks was an array of strain readings measured at a fixed
location on a girder of the b{{-S_e during-the passage of a lruck. Each ouþut from the
RGIN network.represents_a different truck lóading class. The class to which a given
truck loading situatio!_belongs is indicated by thãouþut neuron that generates'Íhe
value closest to 1.0 (all other ouþuts should generate ã value close toõ.O). In terms
glt!1nput-ouþut data format, fhe RGIN netr¡¡ork operates in the same manner as the
SORG networks, as outlined in (a) above.

T4" n9.nq lVst* wasadopte4 since it had been found to perform well in a similar problem
considered þV Gqgarin et al. [9]. The SORG and EHAM netwbrk systems were selected to see if
their radically different and unconventional approaches to the probtêm would provide a better

measured
stra¡n



solution. SORG, in particular was selected to overcome a limitation of RGIN when applied to
truck classification. RGIN experienced some diffrculty in distinguishing between certain of the
FHWA truck classes (some classes were very similar, whereas others embraced trucks that could
differ in characteristics significantly). It was thought that the self-organized approach of SORG
might enable the network to divide the problem domain into well-defined regions (with less
ambiguity than the partially arbitrary FHV/A classification scheme) and thus reduce the
likelihood of confusion when making a classification.

3.2 SECOND LEVEL NETWORK: TRUCK ATTRIBUTE ESTIMATION

The networks in the second level of the system are designed to operate, not just for a truck
loading class as determined by the first level network, but also for a specific class of bridges. To
keep the research effort within a reasonable bound, the work focused on developing a system for
simply supported multispan steel bridges with negligible skew. Extensions to other set-ups, such
as skewed and prestressed concrete bridges, will be the subject of future work.

Inputs to the second level network were an array of strain readings measured at a fixed
location on a girder of the bridge during the passage of a truck (see, for example, Figure 3a).
Supervised training was adopted, using training pattems that define both input to the network and
corresponding targeted ouþut. Two neural network architectures and supervised training
schemes were evaluated. These were:

(a) RGIN: this is the same system outlined in (c) above used for truck classification
in the first level of the networking system (see Appendix II)

(b) GDR: the most widely used neural networking system, comprising a feedforward
network architecture and using the Generalized Delta Rule for training, a detailed
description of which is provided by Rumelhart et al. [16].

4.0 RESULTS

This trainjng of the networks used data based on the simply supported 17 .lmbridge span
representing the westbound lane crossing the Bull Run on Interstate 66 near Washington DC.
Training patterns were established for the nine classes of tnrck most common in traffic (see
Fig,ln" 4), \ryith the range in axle spacings and axle loadsli_sted in Table I. Three values (the
minimum, maximum, and central value) were considered for each arle spacing and axle load, for
each tn¡ck class, giving the number of alternative truck configurations listed in the end column.
Each truck configuration was run at a speed of 80.1 km,/h, 96 hn,/h and ll2 krn/h, across a single
girder model of the bridge, and strain readings were generated based on a 60 Hz samplingrate,
providing a total of 4,131 strain-time curves. Each curve covered the duration of the truck-
crossing event, and was divided into 32 equal groups of strain readings - the values within each
group were then averaged. Each resultant strain-time curve was used to establish a training
pattern.

?s-t-2

Alternative Classes of Truck
6

f.;ll-\L#ol

[ilp
l-.--r l[-'\#

FD
l-r- ln#
l1'r ln# 3S-3

FIGURE 4 Axle Configurations of FHWA



A total of 1,000 testing pattems were set-up for each type of truck gsing axle spacings and

loads selected af random frãñr within the rangeõ given in Table I, and with velocities between

80.1 km/h and 112 km/h.

These data were used for training and testing both the level 1 and level 2 networks illustrated
in Figure 1 above.

4.1 TRUCK-TYPE CLASSIFICATION

The first series of experiments were concerned with the development.of the truck classifier (see

Level I in Figure 1).^ The EHAM networking system required amaximum of 917 hidden
neurons to leãm all'the training patterns at an ouþut, while the RGIN network was found to
improve little beyond 1,000 hiããen neurons {or any output. The performance of the networks,
onðe ffained, was measured using the example truck crossing events not used for training. In
each experiment, the percentageóf correct and incorrect classificationsby the network were
registeräd. Table II shows the performance of both the EHAM and RGIN networks for the 9,000

tel patterns (1,000 pattems pei truck type). It is clear from these results that there is little to
distinguish bètweenthe two types of network in terms of performance. However, the EH4M
netwo-rk has the advantage olbeing simpler in form and two to three orders of magnitude faster

to train (see Section 4.3 below).

32%

FIGURE 5 Average Percentage Misclassification of Trucks
by EHAM Network Classifiers, for each FHWA truck type.



Referring to Table II, it can be seen that the neural networks had an average of a¡ound 89%
success rate at truck classification, ignoring the truck type 2S-T-2. The poor pérforrnance of the
classifier for the truck type 25-1-2 can be attribuied to the signifrcaritly different axle
cgnfigwatiorr of this tfnq of vehicle compared to the others in the FHWA classification system.
Ittil.typg oftruck is relatively rare and thus should not significantly affect the accuracy of á tnrck
loading database for a bridge. Moreover, ways of improving performance for the ZS-|-Z truck
class are being considered, including the use of more training patterns for this category.

An important observation made in this series of experiments was that the truck
misclassifications tended to be between trucks with the same number of axle clusters. This is
illustrated in Figure 5, which represents each FHWA truck glpe by a circle, and the percentage of
misclassifications as a numåer adjacent to an arrowi. For eiampie, truck class 3S-3^ experieãced
1% misclassifications as class 2S-2 and 5% misclassifications-as class 3S-2. Referring to the
figure, it can be seen that the truck tlpes 25, 35 and 45 all have two clusters of axles-and the
misclassifications of these trucks were confined within this group. Similarly, trucks of type 25-
I, 2S-2,3S-1, 3S-2 and 3S-3 all have three clusters of axles and their misclássifications ü¡ere all
confined within the three-axle cluster group. This suggests that an improvement could be
achieved classiôring trucks in two tiers of neural netrvork, the first of which would identifu the
number of axle clustea!_s on a truck, and the second to refine this classification to a specific
FryV/-A .category.. The _ability of such an approach to decrease the percentage of
misclassifications is currently under investigation.

Finally, SORG, the selÊorganizing network approach to classification, was able to converge
on a classiñcation system rapidly. A range of between 4 and 15 radial-Gaussian neurons weîe
considered in these -experiments, allowing the SORG to develop classification systems
comprising from 4 and 15 distinct classes. However, an inspection of the resultant classification
systems developed by _the network was inconclusive. Thai is, the SORG divided the example
tr.atning patterns. into classes of truck loading situations that were indistinct - for example, óne
class-may contain truck loading_ examples generated by a range of different axle configurations,
and loading configurations. There was no consistent partitìoning of the problem sþace into
gIouPS of truck loading situations that could be characteized by tangible parameters suóh as load
distribulion, or numbers of axles. Further work is recomménded, however, using alternative
types of selÊorganizing network, ar-rd u-sing concepts such as normalization of inp-ut values to
make sure each input has the same significance on the problem as the others.

4.2 TRUCK ATTRIBUTE ESTIMATION

At the second level in the system (see the right hand side of Figure 1) are a set of neural networks
designed to estimate truck attributes. For each class of truck, there is a separate neural network
to determine axle spacings, al<le loads, and velocity.

_ Th. pe-rfoqqance of the second level networks can be no better than the performance of the
first level classifier network. That is to say, if the first level network were to misclassiff a truck,
then the wrong networks would be selected from the second level in the system, and thus the
truck attribute estimations will be invalid. The second level network has béen shown in earlier
ryot\ to provide an acceptable degr. ee of accuracy assuming that the first level network correctly
classified the truck. The emphasis of this study was, therefore, on ensuring correct first levél
classification, and to see if an alternative networking system could improve ón the performance
of the second level in the system.

Of the two types of networking system evaluated for the second level in the system, the

i Misclassifications were measured from an early test using the EIIAM system, but are characteristic of all the
experiments performed with EHAM and RGIN for truck classification.



RGIN approach was found to significantly ouþerform the GDR. A major problem with GDR
was that it was very slow to train, often taking several days (see Section 4.3 below), and often
did not converge on a solution at all. Where GDR did converge, its performance at truck
attribute estimation was considerably below that of RGIN. For RGIN, typical results provided
estimates that, for 90% of the test cases, had absolute errors within 6.41òl for axle loads, 0.78m
for a,rle spacings and 6.21r:.nl}i, for truck velocity. These results are encouraging, though ways of
further improving performance, especially removing outlying results, are being considered.

4.3 TRAINING SPEED

A major advantage of the proposed EHAM classifier system is the speed with which it can
develop a network. For example,0.024 seconds was the average processing time required to
develop one hidden neuron in a network (typically 1,000 hidden neurons were required to
provide an accurate classifier), using a set of 4,131 training patterns". In contrast, the RGIN was
approximately 430 times slower in training for the classification problem, taking an average of
10.33 seconds to train each hidden neuron for the same set of training patterns (taking 2.87 hours
to train the entire network).

Moreover, the RGIN training algorithm was found to operate several orders of magnitude
faster than the GDR training algorithm for the truck attribute estimation problem. In the
experiments performed here, the GDR took several days to train on the truck attribute estimation
problem if it converged on a solution at all.

" Processing speed experiments were performed on an IBM Aptiva 300MHz, 64Mb RAM, computing system

programmed using Borland's Turbo Pascal.



TABLE I Ran

Type of
Truck

eo

2S

f Parameter Setti

3S

I

13.3-
s3.4

4S

13.3-
s3.4

25-1

2

ngs u

8.8-80.1

13.3-
53.4

Axle Loads (kN)

2S-2

sed fo

8.8-80.1

13.3-
s3.4

3

3S-l

r Establishing Training/Testine patterns

8.8-80.1

13.3-
53.4

3S-2

8.8-80.1

8.8-80.1

4

13.3-
62.3

8.8-80.1

3S-3

8.8-80.r

13.3-
s3.4

2S-l-2

8.8-80.1

8.8-7t.2

5

8.8-80.1

13.3-
53.4

8.8-80.1

8.8-71.2

13.3-
53.4

8.8-7r.2

6

8.8-7t.2

8.8-80.1

8.8-71.2

8.8-80.1

8.8-80.1

t-2

8.8-71.2

2.74-
6.10

8.8-80.1

8.8-80.1

2.74-
6.10

Axle Spacings (m)

2-3

8.8-80.1

2.74-
5.49

8.8-80.1

8.8-80.1

1.22

2.74-
4.88

3-4

8.8-80.1

r.22

2.74-
5.49

8.8-80.1

5.49-t.6

4-5

2.74-
6.10

8.8-80.I

1.22

6.10-
11.6

2.74-
6.10

2.74-
6.10

5-6

No. of
training
patterns

I .22

1.22

t.22

2.74-
s.49

6.10-
11.6

1.22

27

6.10-
11.6

5.49

27

6.10-
11.6

27

1.22

3.05

243

l0

1.22

243

5.49

243

1.22

243

243
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TABLE II Performance of Neural Networks for Truck Classification Problem

FHV/A TRUCK
CLASS

% CORRECT CLASSIFICATIONS

PROPOSED BINARY
NETWORK

RADIAL-GAUSSIAN
NETWORK

2S 92.3% 93.1%

3S

4S

25-1

89.6%

9W_
9t.0%

84.3%

89.4%

23-2 88.0% 87.8%

3S-1 86.1% 85.3%

3S-2

3S-3

g9.2%

89.7%

8_l:3olg-

86.4%

2S-L-2 76.1%

5.0 CONCLUSIONS AND RECOMMENDATIONS

Thg Rroject has demonstrated the currently most viable ways of using artificial neural networks
to determine the attributes of trucks in motion, to within ari_lcceptable degree of accuracy, using
a twg-layerqd artificial neural network. In particular, the EHAIVi methodlas shown to frãvidËresults eqrylly as good as RGIN in terms olits ability to classiff trucks, and to outperfo'rm nCf¡,1
in terms of the speed with which it can develop a working modél for a bridge. However, iàroittft9. T atte.pPt to improve classification accúracy (and ihus ultimately the"accuracy of éstimates
of truck attributes such as axle loads and spacings) Èy ailowing a SOR'G network to ae"ef,op iis--
own classification system for trucks were inconðlusii'e. The project has generated interest hom
industry. and¿n-international consortium has requested a meeiing in ApriTto look into the
possibility of adopting and implementing this te-chnology.

Several recommendations are made for future work, aimed at further improving the
performancg 9f tþe sys_te.m. Firstly, the work here focussed on simply suppôrted stéel bridges
with negligible skew. It is recommended that the technique be appfieâ to^other bridge
configurations,.such. as.skewed and pre-stressed concrete structurès. Ways of fufthãr improving
the accuracy with which the neural networks classifo trucks and estimate truct< attributes, are alio
being con_sidered. Thi_s includes, the use of larger úts of training patterns, which in turn requires
the use of-more powerful computing facilities. Another possibleìvay of improving accuracy
(sugge$ed by the experimenls undertaken in this projecf) involves ciassig'iirg truifts within nvo
tiers of newal networks: the first tier would identiff ihe ñumber of axle clustõrs on a truck, and
the second would refine this classification to a speðific FHWA category. Finally, further work is
rydelyay.tryin_g alternative neural networking system for the selÊorgahized approach to truck
classification. If a self-organized network can be found that derives lts own nieaningful
classification of truck t¡pes, it is likely that aneural network classifier based on thisïould make
fewer misclassifications of trucks - the accuracy of estimates of truck attributes, such as axle
loads and space, would also improve as a direct consequence.
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APPENDIX I: Radial-Gaussian Networks wÍth Incremental Learning (RGIN)

I.l Networks of Radial-Gaussian Neurons

The RGIN networking system is based on a simple feedforward architecture (such as shown totf" l4t of Figurel) comprising a lay_er of input neurons that perform a normalizing fi.rnction, a
single layer of hidden neurons eãch of which implements a radìal-Gaussian function] *¿" i"v.i
ofouþut neurons_that act as_simple_summers ofincoming values. The operation of tirese
networks can be formalized by the following equation:

o, =Zî=rur,re-t'Li='Q¡¡¡-c¡¡f ...(Ll)
where: o, is the value generated at the y-th ouþut neuron;vr,rare weights on the links to the
ouþut neuron defining the amplitude of the h+h radial-Gaussian fi¡nction atthe y-th ouþut
nenron; s, is a squeezing parameter defining the spread of the h+h radial-Gaussian function;
c ¡,n ãre ofßets on the connections to the hlhhiddenneuron defining the position of the
radial-Gaussian function in theT-th inptÍ dimension ; a, is anormalizing parameter; and 1is the value input to the j+h input neuron.

I.2 RGIN Training Algorithm

lhe training algorithm proceeds by constructing a solution surface out of radial-Gaussian
functions, one at a time. The addiiion of each lúdden neuron is guaranteed to increase the
closeness of fit of the network function to tþ9 training data (see Step 3). It is thus possible to
train the network to a state in which it provides a liteäl interpretatiön áf tne trâ*itig pãtiã*r.
Each training pattern provides a mapping from a vector of inputs, i ,to ucorresponding vector of
targeted ouþr¡fs, i. Each radial-Gaussian function is focused on the general area of the problem
where the residual target(that is, the.portion of the_target.surface yet ió be learneàj irgrg;til.----
Final valueg, or at least,.glose apnlo¡iinations, are detelnined direätþ for ali nàuron parameters
except for the widths of the radial-Gaussian functions which a¡e leamed using a fast'error
gradient degcent technique. Each.successive hidden neuron is in effect traináã onttracoÀponent
of the problem its predeòessors failed to leam.

Step I: A qetwork is fil,st set-up-with-the¡umber of input and ouþut neurons required for the
proÞ1e.{ at hand but with no hidden neurons. Normalizinþ parameters are then
established for the in-put neurons. Usually, the values are leiected so that the range of
activations generated at each input neuron meastued over the set of training puitãä"it
equal to 1.0, thus: ø, = tlQî - l'" . This ensures that each radial-Gaussian function
bears equal significance to.each input variable.

Step 2: The set of haining patterns is scanned to see which one deviates from the input plane by
the greatest amount; that is, the pattern p is selected where >'r=rlro"l is the greatest. A
hidden neuron is then added to the re$ork, The parameters oá the input and ouþut
links of the hidden neuron are set equal to the valûes of the normalized input vector and

the ouþut vector respectively of training pattern B,thatis, ð = ãuiu and I =lp. This
forces the network to produce a radial-Gaussian function at each ouþut neuron,
centered near the point where the amplitude of the target surfaces is þatest. The
amplitude of the radial-Gaussian function-produced aieach ouþut wîll be equal to the
amplifude of the corresponding target surface at the point undei consideration.

Step 3: The squeezlng p-araffI_eter, -s., 
is _tþ9 only remaìning parameter to be leamed (though the

offsets can be allowed to drift slightly from their initial values as described ìn Stãp a.b).
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This is performed in two stages. In the first stage, s is set to 0.0 and then gradually
increased in steps of size ry, until the total enor:

...(r.2)n=Z!,.Ii=,| to.,- o,"l
is less than the threshold value:

' =>:=,|.',='l'o',1' "'(I'3)
At this stage the-neuron's contribution to modeling the target surface will exceed the
elrors it is introducing. Unless there are ambiguous trainiñg data (that is if there are
two or more trainin_g patterns with the same inþut vector but differènt ouþut vectors), it
is guaranteed that E can always be reduced below Z. That is:

given that v, = tu" from Step 2

and rhus n =Zï,I;,1 to, - tÞ.,, '2i='(""' -'f 
I

rhen as_s + co so , - i',=,2î=,1,,.)- I;=,1 )u,,1= r -Z*,1,r,,1
In other words, as .s is increased the radial-Gaussian functions it píoduces at the outputs
become increasingly lo_callzed.until p-is-essentially the only pattern on which they have
any influence. Typically, E will droþ below T before ttre ra¿iat-Gaussian functioí
becomes localized to training-patfe.rn p. Experience indicates that, generally, the
performance of the training ãlgorithm'is notïery sensitive to the ríufting uuíí" of the
paratneter r7,.

Step 4a: The_second stage.training of s is based on a gradient descent technique. The error
gradient is given by:

4 =t' yt +-
ã - Lr=r.Ly=1!-oo"To ...(r.4)

where the sign of the expression -o prr o is reversed if o 0,, 1 t ,., .

The parameter s is increased ' ' AE 'by r7, if fi "negative, 
and is decreased by ry, O # *

positive. Each occasion the sign of ( 
"n*rgs, 

the value of 7" is reduced by the

^factor B, (whete 0 < P, < l; a value of 0.5 was adopted for this paper). When the sign
^dEo, ã does not change, the value of r7, canbe increased, but by a factor lessthan /p,

to accelerate convergence (a val-ue of 1..1 was_adopted for this paper). Adjustments are
made to s in this manner until the relative reduction in error at ràch it"*iiott
þ,,",,ou, - E",,,"ntl Er,,,,,lgoes below a given limit (a value of 0.00005 was adopted
for this paper).

Step 4b: Adjustments to the offsets cj aremade simultaneously with the adjustments to s
in S.tep 4a. This enables the radial-Gaussian function to drift slightly from its original
position, overcoming the limitation that the centroids of these fi.ñctions can onlyîe
located where there is a training pattern. {{juqtments are made using 

"r.éntiJiy 
ift"

same etÏor gradient descent technique used in Step 4a. In this case, tÉe 
"trot 

gtãdi"nt it
given by:

æ ,tü=r>;=¡- (a,io, - c,)oo" ...(r.s)acj

where the sign of the expression -(a¡ i r,¡ -c ,)oo" is reversed if t 0., 1o o.r.
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Step 5:

Step 6:

Based on the sign r aE

rhisparame,eris,::3dlÏ;îiliî;;;":î;,îi:ï;ii"lï",,_"1;.
error gradient changes. When the sign of ttré enor giádi"nt ¿o.. noi.ft*gE,ifr.
parameter ci can be increased. The values of T,¡ are kept small relative to the distances
between the training patt-ern-s in the input plane -'thi. ir to prevent the introduction oflarge errors that caniesult if the radial-Ga:ussian funciøn i's ãuo*ø i;lrd;iong wayfrom the.trailing pauern around which it was originally foòused. J r
Having developed the hidden neuron, the target o"uçut veciors of each training pattern
are replaced by their corresponding residual larget iectors, ttratìs:--- 

-

l;"" =ií'o -õo
thus producing a new set of training pattems. These revised haining pattems infer anew targe! or elTor surface_at each ouþut, representing the differenõ^betrveen ihe initial
target surface and that produced by thè netwõrk. Thelidden neuron is then t"*por*ii/
switched off and a newhidden neltron is added to the network. ffris fri¿¿ãn näron is
then taught on its own using. tþe modified set of training patternr, fbllo*ñg ffis 2 to 5inclusive. -The processof aãding. successive hidden nrírõnr as súch is r$atea'unt¡
the network has learned the traiñing -!'+lqTS to within à fiãscriueo oegrãã orá""*u"y.
Once training has-been completed,-ail hidden neurons *ä.*ircrtãã ãn-- iñ.-r.ürt*t
î:Y::lLtll be able ro reprõduce the rraining patterns to within ttre;;;;b"ãä.sà"
or accuracy.
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APPENDIX II: Extended Hamming Networks (EHAM)

II.1 EHAM Network Architecture and Operation

The main Pa+ o{a| EHAM network architecture, illustrated in Figure II.l, comprises an input,ouþut, and single hidden layer of neurons. A-l-ay91ed feedforwarä òonngú*tio" is a¿optedwitt
each ouþut neuron connectèd to its own set of hidden neurons. The maiã netr¡¿ork pioriiA", u-*^
direct mppllg l"p " yr","_t9r ofbinary inputs, i ,to avector of blqary ouþuts, d,, . Aregulator
neuron,.feeding information back from the ouipút neurons to the nid<íen näuiõhr, ir i".tuãélio
ensure that only a prescribed number of outpuf neurons fire (usualþ ãr;i. 

---*

INPUT HIoDEN oUTPUT REGULATORLAYER LAYER LAYER NEURoN

Figure II.1: Architecture of Extended Hamming Network.

9itul values, i¡, presented at each of the input neurons are transmitted across the connections to
the hidden neurons. Associated with each of ther" connections is a binary value b¡,¡ which is
applied to the transmitted value in an exclusive-or (XOR) operation. The results oíthi, process
over all connections to a hidden neuron are summed, providing the Hamming distance ,l/,
between the input vector ¡t and the template vector å-,. Formally, this can be expressed as:

H, =ZÏ=,(b,., xoR i,) ... (il.r)
If the value 4 i, l"r. than or equal to the threshold value Ti, (f; is a positive integer in the
rynge 0 to X inclusive where X is the number of inputs to thä netivork), the hidden neuron willfire by ouþutting binary 1, otherwise it will o"ç"fui"ury ô. Thut ir, "

If H, <T) then a| =l;
if H, > T', then ol = 0. " (II'2)

Each ouþut neuron sums the values al generuted at the set of hidden neurons to which it is
connected:

,S1=Fil a'Y Hn=l n ... (rr.3)
and compares the result with a threshold value fî Qî can be any positive integer including
zero). rillg of an ouþut neuron works the oppósite way round to that of the hidden n"uroi.,

If S;,> T;,then aî = l;

if S" <T'r'then a)'=Q.
The regulator neuron suíns the values generated by the ouþut neurons:

s,,,=Zlr=roî

... (rr.4)

...G.5)
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pd lgpnare^sthe result with a threshold value^T"' (where 7,,, isany integer between I and X-1). Firing of the regulator neuron operates as follows:
If S"' < T"' then a"' =-l;
if S" = T"' tltena"' =0; ... (rr.6)
if S" > T"' then a',, = l.

Tþ9 lalue-senerated at the regulator neuron is hansmitted back to the hidden neurons where it isadded to the previous summeã input, moairying È[uäti* u.r so that:
Hn,¡*t=Hn,r+ai'

The netrvork operates in this recursive manner until the activation at the regulator ;:,::n','o,, ,
"itLo 

becomes equal to 0 (at which point the 
""-¡"iãrãrtput neurons firing will be equalto T"') or flips from -1 to +1.

ll,2 Training Algorithm

The EHAM training algorithm falls into the supervised class, making use of a set of p training
pattems each comprising an input vector i, ndgolesRonding target ouþut vector io. trainiig
operates on the main section of the network, exclusive-of the regulatornåuron. Since each oufrutneuron has its own set of hidden neurons, training ðan ue more conveniently described for theone ouþut neuron case. If there are two. or moreãuþuts the trui"ing ruiä¿h i, performed inparallel but is otherwise rhe same as in the singlã;ñ;i-";;n case.

Training proceeds by develoojng on-e-hidden neuron at atime. Each successive hidden neuron istrained on the component ofi!ùrobt"m itr piã¿e.Ë*ä*"}äiË¿l;.Ë""r, rhq ll tr," remainingerror' Hidden neurons are added as such untit ttre rcmãirü error is zero. For a networkcomprising one output neuron, the procedu* i. * rollã*r,^'

Step I: Initialíze the network.
The network is first set-up with the required number of input neurons, an ouþut neuron, butwith no hidden ne'rons. The threshold, 7,, on the ouþut neuron is set to 0.

For the network to ouþut the correct result for the p - th training pattern, the value
generated for ,si should be greater than the threshold T" if thetalget output is 1, or it should
be less than or equal t9 T" if the target ouþ_ut is 0. An error vector ã is established tomeasure the disrancg fr* these objãctives'for eactr trãining p"tË;,

- 'tP.=to7T".- Si ' .' (II.8)
The objectives then become:

eo30 if to=1;and
eo20 if to=0.

Since the network starts with no hidden neurons and T" = 0, each element of the error
vector is initialize d' to e o = t o. The total error in the network is measured as:

n= 2',,1
pctl. ... (rr.e)

where lI" is the set of all training patterns for which the network produces an incorrect
output.

Stef ZO: Determine whether most errors arefor training patterns with a target of I or a target of
A count is made of the number of haining pattems Po,r, inthe set llr* (comprising all
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training patterns that have atargetof I but the network produces 0) and the number of
training patterns P,n inthe set lI,* Q-opprising all training patterns that have a target ouþut
of 0 but the netwofk produces a t). rhis is undèrtaken by õhecking how many of tñe
elements inthe errorvector ã do not satisfli the eo< 0 and so) 0 requirements
respectively (see Step 1). A hidden neuron is then added to tlíe netwoik, as described in the
following steps, to reduce the number of patterns in either flo,ro or ll,o, whichever is the
largest set.

Step 3: Add a hidden neuron to the network and establish the values of its template vector i,.
If the number of training patterns tn \ooo is greater than or equal to the number in I,,, iiren
follow Step 3a otherwise follow Step 3b".

Step 3a: The center of gravity f (measured in the input domain) of all training patterns in the
set flr* is determined. Each element of the vector / is calculated simply as:

,.=(,à,:r.)/r,,. ... (r.10)

The training patterns in set flr,ro are then searched to determine which is nearest to the

center of gravity I . tne nearest training pattem B is that wherel" 
,lio,, -/,1 is smallest.

A hidden neuron is added to the networkand its template vector -. r"t !{uur to the input
vector of training pattern þ , that is Ë, =-ip .

The rationale behind this step is that the center of gravity will indicate the corner of the input
-sP?ge 

towards which the erroneous trainilg p-atterñs aretlustered, and thus fòð"ri"ãätr-*-'
hidden neuron at a corner near this point fãcifitates the ."-orrál 

"i;ig"ificant number of
elÏors.

-oR-
Step 3b: The parameters / aîd þ are determined as described in Step 3a except that p,oo and.

f7,on are used in place of Po,ro and iln,sn A hidden neuron is added to the network and its
template vector is set equal to the logical NOT of the input vector of training pattern þ , that
rs:

F, = NoT (t, ) ... (r.11)
Following this, a value of I is added to the ouþut threshold T" and, so that Equation II.g is
maintained, a value of I is added to each component of the error vector ã.

The rationale here is essentially the same as that of Step 3a. In this case, however, the
elÏoneous training pattems are causing the ouþut neurôn to fire when it should noi - the
opposite of the situatioqin SJep 3a. The hidddn neuron, therefore, tr""¿r tã Ue sei up in a
way tfal suppresses (ratþqr than promotes) the possibility of the orrtpur neuron n¡"ã ;h;n
one of the elroneous training patierns are. presented t_o !hê network. fnir ir 

".fri.""iUy 
-

focusing the hidden neuron õñ the opposit'e corner of the input space t" th"t where the'
erroneous training.patterns are clustèied (see Equation II.l f¡ anO incrementingthe õop"t
threshold as described.

step 4: Determine an optimum valuefor the hidden neuron's threshold Ti
All possible values for T', (from 0 to X inclusive) are checked to see which will provide the
gr.eptgst reduction in total error .E in the network (see Equation II.9). This can be achieved
with just one pass through the training pattems.
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Each training pattern is examined to see if its contribution to the total error would be
reduced or increased by the addition of the hidden neuron. If the p - th fiaifing pattern's
target ouþut is I and €o> 0 then its contribution to the total error E will be reáuced if the
threshold zj is set at least equal to the foilowing Hamming distance:

H o,n = I :, (b,., xon i r,,) .

A score of I is therefore added to a variabl a, L k=H',, associated with this Hamming distance.
conversely, if the p - th training pattern's target output is 0 and so. 0 then its contribution
to the total error will increase if the threshold Zj is set at least equal to the Hamming
distance-É/0,,. In this case, a score of -l is added to the variable L o=r,,.

The cumulative scores for all possible Hamming distances are then calculated:

c^=0..r =iLo
Each cumulative ,åi. C, provides a measure of the reduction in error that can be achieved
by setting the threshold Tj to a Hamming distance of m . The value of m atwhich the
highest positive cumulative score is achieved is therefore the value selected for the threshold
7,.

If there are two or more optimum threshold values the choice between them is arbitrary,
though in this paper the smallest value is adopted.

Step 5: Adjust the etor vector
The values of the error vector ã are adjusted to take account of the contribution of the
hidden neuron. This requires each eÍrot €p to be reduced by a value of I if the training
pattern causes the hidden neuron to fire, that is:

ti* - 
"i'o -o,o,n

Further hidden nelrons'are added to the network by repeating Steps 2 to 5 inclusive until the
total error E reaches 0.

20


