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EXECUTIVE SUMMARY

This project developed and tested a concept to determine actual track geometry alignment and cross level in
sharp curves and turnouts in rail transit systems. The improved track geometry testing system would utilize
the current track design or a “best fit” track design as a baseline for testing rail rapid transit and light rail
transit track. This concept would provide transit systems the ability to accurately identify track geometry
defects based on their track design, thereby reducing maintenance time and cost. Transit agencies could
also benefit by utilizing the “best fit” track design data generated by the track geometry system as an
alternative to improve their current track design.

Automated track geometry tests using original design criteria or calculated “best fit” designs would provide
accurate results for evaluating track alignment deviations. Evaluating current track conditions and
managing these conditions on rail rapid transit and light rail transit systems could be greatly improved if
this concept is implemented. Time and costs currently incurred by transit systems in evaluating and
managing their track could be significantly reduced by methods developed in this project. This would
improve the efficiency of the track evaluation and of tamper maintenance, which would enable the transit
agency to focus its time and efforts on actual track problems, contributing to improved track safety.

The comprehensive “best fit design”, digital track design database, once obtained, has several features:

1) The design is always an achievable design. This occurs as basic criteria of the mathematical
model development process use minimal track adjustments or “throw limits” to discover the
design given actual track position as the starting point.

2) The analysis of current geometry from track tests will use valid track design parameters when
reporting deviations from design.

3) The real-time reporting will be testing for deviations at the same location as the data acquisition
vehicle so that visual verification can be accomplished with out delay.

4) The absolute determinations of the location of track geometry test results are independent of
operator inputs, making detection and correction of operator inputs practical.

5) There is a practical method for managing the track geometry-testing program to insure
everything is tested.

6) The byproducts of geometry testing include both finding geometry defects and the data input
for fixing these geometry defects with automatic machinery.

The effort has been to develop and demonstrate automatic programs for curve design based on the manual
and semi-automatic and automatic methods developed. We were fortunate to discover these methods,
which have been applied to all 16 curves in a Geometry Test run and brief explanations are given in each
case shown in this report.

We are confident as a result of this project that the specified benefits of having the track design database
are achievable. Digitizing the complete track design of a transit system, foot by foot is practical. The
concepts described are the essential elements for systematizing the complete track design effort. The
construction of the track design database that achieves the above six features is fully automated when these
procedures are imbedded in a track geometry data acquisition and reporting system that includes an
historical database for sequential periodic geometry testing. Such systems exist and now contain years of
geometry test data at both the Washington Metropolitan Area Transit Authority (WMATA) and the
Massachusetts Bay Transit Administration (MBTA).



PROBLEM DEFINITION

The research project statement and objectives were to develop and test a concept to determine actual track
geometry alignment in sharp curves and turnouts in rail transit systems. The track geometry system would
utilize the current track design or a “best fit” track design as a baseline for testing rail rapid transit or light
rail transit track. This report describes the software that has been developed to handle the automation of
curve design.

BENEFITS FOR GEOMETRY TEST REPORTING

This concept provides rail transit systems the ability to accurately identify track geometry defects based on
their track design, thereby reducing maintenance crew time and cost. Transit agencies would also have the
ability to utilize “best fit” design data generated by the track geometry system to make lining and tamping
corrections to the current track. Track classification standards in sharp level curves and turnouts cannot be
defined using the industry’s current geometry testing methods. Therefore, during an automated track
geometry test, this type of track is not properly classified, and required track geometry maintenance may
not be defined. When using conventional methods of track geometry testing, the track design criteria are
not considered. Automated track geometry tests using original design criteria or calculated “best fit”
designs would provide the desired results for evaluating track alignment and crosslevel deviations.
Evaluating current track conditions and managing these conditions on heavy rail rapid transit and light rail
transit systems could be greatly improved if this concept is implement. Time and costs currently incurred
by transit systems in evaluating and managing their track would be significantly reduced.

OTHER BENEFITS

Along with the desired values of track geometry parameters being established, the locations of these values
are also established and standardized, just as they are in standard track charts. The curve design
identification points become the equivalent of automatic location detectors (ALDs) for all track work and
future track maintenance and test reports.

The standard form for a track design database is equivalent to a Digitized Track Chart (DTC). This DTC
becomes a convenient place to store other fixed data for use in track evaluation such as designated Track
Speed and Ride Quality.

The DTC is ideal for input data to models such as NUCARS that are used to evaluate the performance of
new rail transit revenue vehicles prior to purchase.

The methodology for validating a curve design that was utilized in this project is the same technique as is
used to maintain the track both manually and with automatic machines. The throws for restoring current
track geometry to the desired track geometry are calculated using data from each geometry test.



DATABASE DESIGN, MODELING, AND AUTOMATION

Establishing The Database

Data has been provided for this project by MBTA and WMATA including detailed construction details on
curves selected for inclusion in this project. The curve parameters provided include locations of the curve
points as well as the spiral-curve details. Conversion among several coordinate systems is required to
complete the comparison of the absolute locations in the construction design and the locations discerned
from the mathematical models using detailed track geometry data. There is direct comparison of the length
of track between the curve points specified on the design charts and the length measured from the geometry
system.

The fact that so much detailed design data is available ensures that the curve points generated from track
geometry test data will be validated as “matching” the design documents. The database is being structured
to include the design coordinates of the curve points. The conversion algorithms are defined and can be
automated.

The database structure is an extension of the “one-foot-files” fundamental to the track geometry
measurements database. The extended data is the foot-by-foot description of the “actual” track design for
direct comparison with each foot of track geometry measurements from repeated track geometry data
acquisition runs.

Establishing The Curve Points List

The establishment of curve points from track geometry data is inherently a difficult and relatively
unreliable process. It has been hoped that with the expanded capability of the state-of-the-art gyro and
inertial sensors we can significantly improve the process. Some progress has been made. An improved
procedure was designed and implemented. The procedure involves both automated curve point generation
and manual editing of curve point lists.

The first step is to utilize the acquired data on alignment and crosslevel each foot to detect changes in rates
per foot using selected thresholds. Changes over (or under) the threshold persisting for several feet are
monitored and the locations of the beginning of the change are recorded as curve transitions. Each
transition is recorded in the “Curve Point List” for the test run. These curve points are plotted, for each
curve together with the values of the mathematical model of the curve, the absolute alignment, the mean
alignment and the absolute crosslevel.

Achieving Curve Design Data

The procedures discovered were applied to selected data from track geometry tests for MBTA and data sets
were established for all the curves on the Green Line. Each data set contains a list of curves for the test
run, the curve points from the test run, the measurements at stations every 31 feet for each curve, the
mathematical model at each station of the “ideal curve” drawn through the curve points, the half-throws to
transfer the curve measurements to the positions determined by the model, and parameters describing the
validity of the model.

The model validity testing procedure is automatically executed each time there is a change in the model,
and the model is changed every time there is a change in the ordinate or position of a curve point. An ideal
curve model is valid for a given curve if the sum of model ordinates equals the sum of measured ordinates,
(the difference of the sums is zero), the maximum half-throw is practical and the final throw is zero.
Iterative solutions of the model are used to test divergence or converge to a valid “fit” of the model to the
measurement data.



Choosing The Mathematical Model

A simple “stick” model of the curve has been inserted in the system as the model of each curve from the
curve points. The solution of the model results and testing of validity of the model is presented on a graph
for each curve in the database. The applications performed in this project illustrate the need for a data
management procedure for the curve points so that obvious errors in the curve point generator can be
“fixed” manually. Initially the curve point list for the curve will contain a “best estimate” of the type and
number of curve points. A preliminary procedure for adding, deleting and modifying curve points was
implemented. This basic curve-modeling tool provides the basis for experimenting with and improving the
capability to create models of valid curve designs automatically.

Manual Curve Designing

The manual procedures for modifying the lists of curves and curve points allows all the curves in each data
run to be selected consistent with available track charts. Each curve will have the proper type and number
of curve points. Given this basis, which allows a track design engineer to visually position the curve points
initially, the mouse is used for adjusting curve points while simultaneously noting the effects of the changes
on the validity of the resultant model. The changes are accomplished by using the computer displays,
mouse-keys, and control-keys to “move” the curve point. This manual effort is very interesting as one is
led to discern how certain combinations of these manual movements can be automated. An extensive effort
along these lines has let do the development of a preliminary set of semi-automatic tools.

Semi-Automatic Designing

The basic semi-automatic design tool that was shown to be essential was a tool that would iterate toward a
valid solution in the neighborhood of a solution discovered by manual manipulation. The application of a
semiautomatic tool becomes a major time-saver when the manual solution range is visualized but the
required manipulations are too sensitive to be optimized by mouse positioning. Various parameters for
specifying automated movement of the curve point are selected on the computer display and the final
results are found to the specified precision. This tool operates on a single curve point at one time.

This effort provides a number of semi-automated procedures to achieve solutions with manual assistance.
It also provides the groundwork for imagining a wide variety of ways to fully automate the solution process
accelerating the continuing effort to solve more different types of curves in practice. These are
summarized, including:

1. A process for automatically selecting the curve geometry data every foot from a track geometry
test run.

2. A process for automatically discerning the curve points with reasonable accuracy from the curve
geometry data.

3. A process for manually upgrading the quality of the curve point data based upon visual inspection
of the results of automatic acquisition.

4. A system of recording and managing the results all manual and automatic curve point upgrades.

5. Tterative procedures for adjusting curve points to maximize the “fit” of the “ideal” curve to the
available geometry data.

Given these “tools”, the business of marrying the actual curve design described in the construction
documents with the foot-by-foot design that can be compared with the geometry measurements data can be
accomplished with reasonable cost and high precision. Under such circumstances, the track geometry test
can in truth report “deviation from design” and the deviations can be verified to determine track
maintenance priorities accurately.



The framework has been established for the continuing expansion of this technology as more elaborate
applications can be undertaken over time: These will include:

1. A more refined mathematical model containing increased precision (foot increments instead of 31
foot increments) and state of the art spiral designs.

2. Mathematical aids for transforming construction curve point designs into modeling curve point
locations and ordinates.

3. Discovery of more advanced iterative algorithms that automate the functionality of more complex
manual adjustments that converge the models to match the actual curve designs.

The ultimate goal of the project is to confirm and permanently record the track design for any railroad
within a reasonable budget and to perform track geometry tests that factually report deviation from design.



AUTOMATED CURVE DESIGN AND APPLICATIONS

Automatic Curve Design Geometry Test

A geometry test run containing sixteen curves was used as a sample from which the curve design data was
extracted. This data sample was analyzed and each curve was solved using the procedures described

below.

i, CURYE DESIGN
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curve Nukeer Figure 1 -- Curve Design Chart Description

The analysis process for full automation
required several extensions of the
software, which are demonstrated. The
first extension is the enhancement of the
Curve Design Chart to include both the
“Deviation from Design (DD)” and the
“Deviation from Mean (DM) ” curves
relating to the differences between the
measurement and the model (DD) and
the differences between the
measurements and the mean (DM), This
yields a chart with seven graphs.

Figure 1 shows the chart configured for
the analysis of Absolute Alignment
Measurements. The chart includes the
graphs for:
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The corresponding analysis for Crosslevel Measurements will use the same technology and the chart

outputs will be:
8. Absolute Crosslevel
9. Mean Crosslevel
10. Absolute Alignment
11. Crosslevel Model
12. Half Lifts (Tamping Machine Data)
13. Deviation From Design
14. Deviation From Mean

The Crosslevel results are not considered in this study except by direct analogy.

Automation of the Stage One procedures was achieved by introducing routines that called the manual and
semiautomatic functions. The procedures were designed to take advantage of the characteristics of the
solution process discovered in Stage One for moving the curve points to “better” positions on each pass
from first to last curve point. Then these were performed repeatedly until the solution no longer improves.

The procedures developed in Stage One worked with limited success. This was initially attributed to the
fact that the model was not the advanced model with sophisticated spiral designs. It was discovered,
however, that the existing “stick-model” could be improved by simply adding more curve points and rules
for automating this process were created in Stage Two. Interestingly, the solutions were found that




otherwise were elusive or impossible, especially on long curves. It was discovered that the curve body
design was not constant over long curves. This is now obvious to the investigation that no curve body has
absolutely uniform curvature. Therefore very minor adjustments of the curvature in the curve body had to
be provided for. Curve points are therefore added automatically during data acquisition on each long curve
body. Provision is made for adding curve points manually wherever desired.

The success we had in finding solutions increased to the point that it seemed that the difficult problems are
solvable if the initialization of curve points is close enough to correct. There seems to be no requirement to
refine the model beyond the available accuracy of the stick-model. The changes in the spirals to eliminate
the “jerk” are below the level of detection of track geometry defects. There is a need for tampers to have
this capability, however, and it might be added to the curve designing process for that purpose.

Using the extended tools, we were able to observe what would happen if we deliberately used the mean
value curve as the desired model. The discovery was that the mean was never a solution to the equations,
in other words the mean was never an achievable position for maintaining the track. This being the case, it
seems that any geometry test that reports “deviation from the mean” seems logically invalid. This may not
mean that the track is unsafe if it passes the “deviation from mean” testing criteria but if the track passes or
fails this type of test, it is inconclusive as to whether it requires maintenance.

CURVE DESIGN SOFTWARE

The development of this software has been focused on automating what has been a difficult engineering
task of digitizing the curve points of railroad track to provide a foot-by-foot detailed database of track
design. This design data, once established, is to be compared with the corresponding foot-by-foot
geometry test data with sufficient precision to input to the automatic tamping machines. False geometry
exceptions caused by false track “design” models are eliminated once and for all by the complete design
database.

The development effort is in its initial stages and cannot be expected to accomplish all its goals in present
form. The first goal is to provide a method for manual interaction with the mathematical equations that
determine what effects “throwing the track™ has on the line of a curve between the two tangent points. We
do this with a chart plotting three graphs: a) a desired model of curve alignment and b) an actual measured
alignment and c) the “throws” necessary to make the transformation. The positions of the transition points
between tangent, spiral and uniform curvature are also plotted. The mouse is used to drag the curve points,
recalculate the model and to improve the solution and reduce the throws. Unless the throws are within
specified limits, the track will be thrown too far, i.e. off the ballast bed or too close to tunnel walls, etc.
The length of rail to achieve a specified design must be the same before and after the shift. The final throw
must be zero.

The engineering process for managing this is called “string-lining” and involves some adjustment of data
on a spreadsheet such as that described in the 1996 AREA Handbook. Each row of the spreadsheet
describes the curvature of the track at “stations” 31 feet apart measured along the curve. The differences
between the measured and the desired curvature are used to calculate the “half-throws” at that station. The
standard engineering practice is to adjust the rail so that at each station has moved to restore a desired
uniform pattern or curve design. Once correctly specified, the design does not change.

Automatic curve alignment equipment is used to shift the track to positions that might be different from the
original track design. Since the desired pattern is basically a trapezoid, we introduced methods for
adjusting the lines rather than the points. These adjustments can be achieved on the graph by moving the
transition points, redrawing the lines, and recalculating the throws. The manual design user can use the
mouse to drag the curve transition points individually or in groups to achieve the desired solution.

We allow use of some of the accepted curve design practice. One practice is to transition into and out of a
curve with the same rate of change of curvature. The second is to maintain a constant rate of curvature
between the transitions. The positions of the curve points are in a proper design when the same amount of



rail and acceptable maximum throws are achieved. The final throw always has to be zero at the end of a
curve. These rules of practice are a matter of designer choice and are not always relevant.

The manual interface with the curve design process as implemented is a basic first step in many curve
design applications. The model is moved to “fit” the irregular existing curve data. The first discovery is
that the unique desired solution is visibly correct on the chart. The exact position of the curve points is so
critical that the increment of adjustment required is too small to do manually. But it is possible to see in
which direction very small adjustment of the curve point is required. We have automated the fine
adjustment process for any chosen point or group of points.

It is possible to observe by the manual manipulation process that we can adjust the points in sequence with
minimum influence on the previous points. The characteristic propagates along the curve making step-by-
step partial solution of the curve practical. So we introduced partial solutions into the algorithm.

We observed that the partial solutions can be extended station by station and tend to follow a “crease” in

the solution surface that cannot be discovered any other way. The solution surface is so critical that very
high precision in the calculations is necessary for ascertaining where the next partial solution “station” is

located. This “ranging” of the partial solutions over specified station limits then becomes another part of
the solution algorithm. This discovery has been the only avenue for finding solutions to long curves.

Based upon these discoveries we prepared a solution search function, which can be specified for the range
of stations around each curve point. We then proceeded to establish suitable sequences of these functions
for identifiable curve types and are now in the process of establishing a useful family of identifiable curve
types. With this introduction, we have a context for understanding the software tools that allow this
research to continue.

The further development of the system to automate these manual procedures was implemented in Stage 2.
The procedure implemented functionality that replicates solutions schemes discovered by manual
experimentation. Each solution scheme involves:

Selecting the curve

Selecting the sequence for adjustment of curve points
Selecting the range of stations involved in the solution
Selecting the criteria for direction of curve point adjustment
Selection the objective for ending the curve point movement
Determination of the repetitions of steps 2. -- 5.

SNk =

CURVE DESIGN SOFTWARE OPERATION

The Curve Design software developed under the first Stage of the project includes a complete subsystem
under the General Analysis System developed by Trak-Tech Corporation. The General Analysis System
converts raw sensor data from an inertial based non-contacting geometry test into values of the geometry
parameters per foot of track, including alignment and crosslevel. The Curve Design subsystem uses
alignment and crosslevel, detects the location of curve points, and maintains a set of lists for analysis of
curves. These lists include the Curve List, Curve Point List, Measurement Data List, and Model Data List.
Each of the lists is maintained in text form to allow maintenance with common editing subroutines.



Curve List and Curve Point List

Curves and Curve Points are accessible from dropdown lists on the following form. The Curve List is
visible together with each of the associated lists. The curves are numbered sequentially for the test run,
usually all or part of a Line of track.

The Curve Points are numbered sequentially for the entire run and are indexed via the Curve List. The
Track Code usually identifies each of multiple tracks on a line. Each point in the Curve Point List is a
transition between tangent, spiral, and curved track conditions. These transition points include the
following and are specified as Point Type on the above form:

Transition Types:

CBT -- CURVE BODY TO TANGENT
SOT -- SPIRAL-OUT TO TANGENT

TSI -- TANGENT TO SPIRAL-IN

CSI -- CURVE BODY TO SPIRAL-IN
SOI -- SPIRAL-OUT TO SPIRAL-IN
TCB -- TANGENT TO CURVE BODY
SIC -- SPIRAL-IN TO CURVE BODY
SOC -- SPIRAL-OUT TO CURVE BODY
SOO -- SPIRAL-OUT TO SPIRAL-OUT
SIO -- SPIRAL-IN TO SPIRAL-OUT

SII -- SPIRAL-IN TO SPIRAL-IN

CSO -- CURVE BODY TO SPIRAL-OUT
CSC -- CURVE BODY TO CURVE BODY

Each entry in the Curve Point List includes its Ordinate and its Location. Each of these parameters is to be
modified as a part of the curve design process, and the original value of the parameter is maintained as a
baseline reference.

Curve design involves the establishment of Stations every 31 feet along the track and the measurement of
track curvature and crosslevel at each station. The locations of the start and end of each curve are
measured in terms of feet from a standard marker, in this case the start of the run.

Curve Measurements

The measurements that are input from the geometry test and the results computed from the model are
displayed on the following screen. The Station List includes the actual geometry measurement for each
station on the curve. Currently included are the Absolute Alignment, Mean Alignment and Absolute
Crosslevel. Each of these data elements influences the determination of Curve Points. Their simultaneous
display on the Curve Design Chart provides insight on where the Curve Points are located, and is used in
the manual and automated curve design procedures.

The screen also includes a section that displays the results of calculations for the current placing of the
curve points. The results include total length of the curve and each part of the curve, including the spirals,
and curve body. The theoretical speed limits are also displayed here.

Curve Model

The Model List contains the calculated results for each station on the curve and a copy of the overall curve
lengths at current Curve Point positions.



Designing Curve Models

The Curve Design desktop software provides a number of “tools for manipulating the positions of the curve
points in order to obtain a satisfactory “solution”. The user interface is shown below. The OPTIONS
frame displays the option buttons and checkboxes used to control the adjustment of curve points. The
STATUS frame controls the execution modes. The FUNCTION frame selects the function to be
performed.

The Design tab on the right together with the chart below displaying the simultaneous plots of the data in
text boxes on the other tabs is the curve designers desktop. We will refer to this form as we discuss curve
designing in the following.

Figure 2 -- Software Operation Curve Design
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Displaying The Solution
This Chart shows the typical display of graphs being modified as the user moves the curve points. Curve

points can be moved manually, semi automatically or automatically. The “solution” is found when the
chart of the half-throws indicates that the adjustment is practical.

Figure 3 -- Display of a Solution
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Finding a Solution Manually

Starting with the following desktop we can reset the points to their values pre-estimated from the
measurement data. This will yield a chart that is not a solution. Then by selecting the manual mode one
can position the cursor over each curve point and drag it to a new location as was done to obtain the first
chart.

At the same time, the options to keep the spirals the same and to keep the curve body constant were
selected. The “Use This Tangent Point” option chooses which tangent point is on the spiral to be matched.

Finding a curve start or end is a semiautomatic method for moving tangent points. The TSI or SOT point is
set at zero ordinate and then shifted in the “X” direction to the lowest value for the selected search
parameter. The Adjust Endpoint function executes the process.



The search parameters are Difference of Sums, Maximum Throw or Final Throw. The shifted parameter is
the Y or Ordinate value or the X or Location value. It should be noted that these X and Y parameters are
high precision in order to extend the observable range of their change as far as possible in the solution
space.

For the Curve body points the search can be performed in both the X and Y directions simultaneously with
the 2D Search option.

The Partial Solution Option provides a way of searching a specified partition of the solution surface. This
become essential on long curves because intermediate points need to be fixed for the solution to progress.
Otherwise points on the solution surface are moved off. Manual solving is terminated by a right click on
the chart.

Finding a Solution Semi-Automatically.

It is possible to include searching a solution or partial solution from any chosen curve point with the
selected options as described above. The point can be chosen in the Manual Select Only mode so there is
no disturbance of previous results.

There are two semi-automatic functions, called Automatic Point Adjust and Automatic Range Adjust.

The latter is a repeated application of the former over a specified range of stations using an automatically
adjusting partial solution. Each repetition adjusts the partial solution range to be from the first station to the
next final station for the range of final stations.

Finding a Solution Automatically.

Two mechanisms are introduced to automate the curve design process. These are software procedures
called the Standard Curve Adjust (SCA) and the Automated Curve Adjust (ACA), which are logically
sequenced applications of the semiautomatic design procedures. A typical curve design session will find a
solution if the original curve points are in positions that appear to be visually correct. The curve points
may need to be adjusted or inserted manually if the data acquisition run either dislocated them or failed to
detect them. .

CURVE DESIGN SOFTWARE APPLICATION

The research effort for Transit-41 has been to establish methodology so that the development of a track
design database is practical using track geometry data of existing track parameters. The objective is to
achieve full automation in doing this, and such an objective is not unreasonable, but not within the time and
effort of Transit-41. Instead, we have prepared software, a “workbench”, on which we can “hammer out” a
track design within the framework of practical endeavor including manual decision-making. One can also
rationalize the manual decision may never be completely automated, but still, once made, these decisions
can become a permanent part of the database and subject to constant review and revision as “designs” are
repeatedly updated on the same track.

The material brought to the workbench from which the track design database is to be fabricated include the
database of repeated track geometry tests sufficiently correlated so that each foot of track can be compared
with previous tests of that track at regular intervals. The more frequent the intervals, the more certain of
the “track design” parameters stored by track foot convenient for comparison with the current track test
even while it is being performed foot by foot.

The tools in the drawer of the workbench used to “shape” the design vary from simple manual methods to
computer controlled cutting and shaping machines. The purpose of this section of the report on Transit-41
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is to a take a sample of the material and to perform the necessary shaping to the authors concept of the
“best fit” using each of the available tools as examples. As the work progresses, a commentary is made on
techniques for using the tools.

The parameters needed for track design include:

Gage — the distance between the rails on Tangent (a constant)

Curve Gage — the distance between rails on curves (a constant)
Alignment on Tangent — the shape of the track on tangents (a constant)
Curvature — the shape of the track in curves (a complex function)
Crosslevel — the level of the track on tangents (a constant)
Superelevation — the level of the track on curves (a complex function)
Profile — the uniformity of grade (a constant)

The purpose of the workbench then is to concentrate on simulating the complex functions, Curvature and
Superelevation. The points where the rates of change of these parameters change are critical to the track
design specification, and can be used to express the entire design when the model of the track connects
these “curve points”. The connecting link can be a simple straight line or a curve that may itself be quite
complex. The closer together the points of the linear model, the more accurate the straight-line or “stick”
model can become. The procedures in this project use the “stick” model “curve points” to define the
curves.

Some findings of this investigation suggest that:

The curve points and stick model (as defined above) are sufficient to describe the design.
Accepting the current track position as the desired design is an option.

Using the pre-determined shape of the curves of standard track-work is an option.
Routinely performed geometry measurements can be used to establish and also maintain
a true track design database.

el e

The following discussion expands upon the methods of using the stick model together with the stringlining
algorithms based upon traditional track curve maintenance practices.

TECHNICAL BASIS FOR “THE WORKBENCH”

The development of the “workbench” software has been focused on automating what has been a difficult
engineering task, that of digitizing the curve points of railroad track curve design parameters to provide a
foot-by-foot detailed database of complete track design. This track design data, once established, is to be
compared with the corresponding foot-by-foot geometry test data with sufficient precision to input to the
automatic tamping machines. False geometry exceptions caused by false track “design” models are
eliminated once and for all by the complete design database.

The engineering process for managing curve maintenance is called “string-lining” and involves some

adjustment of data on a spreadsheet such as that described in the 1996 AREA* Handbook. This
spreadsheet is inserted below for convenience:

*The American Railway Engineering Association (AREA) has since been included in the American
Railway Engineering and Maintenance Association (AREMA)
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Figure 4 -- Stringlining

Ordinates in tenths inch Difference Sum of Differences Half Throw=Sum Full Gage To Superelevation
Station Measured Revised Col2 - Col3 <=>Station Col 5 <=>Prev Stn  Throw Tack 50 Speed
Column 1 2 3 4 5 6 7 8 9
A B C D A B C D A B C D A B C D inches 28.25
-1 0 0 0 0 o 0 o o o0 o o O o O o0 o0 o 0 28.25
0 1 1 1 1 1 0 0 O O O O O O o O 0 O 0 28.25
1 5 7 6 7 7 2 41 -2 2 2 41 -2 -2 0 0 0 O 0 28.25
2 14 13 13 13 13 1 1 1 1t 1 0 -1 1 -2 1 -2 2 -0.4 28.65
3 16 200 19 20 20 4 3 4 4 5 3 5 5 -3 1 -3 -3 -0.6 28.85
4 26 27 26 26 26 -1 0 0O O 6 -3 -5 5 -8 -4 -8 -8 -1.6 29.85
5 30 34 32 33 38 4 -2 3 -3-10 -5 -8 -8-14 -7 -13 -13 -2.6 30.85
6 43 40 39 40 40 3 4 3 3 -7 1 5 -5 -24 12 21 -21 -4.2 32.45
7 56 46 44 45 45 10 12 11 11 3 11 6 6 -31 -13 -26 -26 -5.2 33.45
8 49 47 45 46 46 2 4 3 3 5 15 9 9 -2 -20 -20 -4 32.25
9 35 47 45 46 46 -12 -10 11 11 -7 5 -2 -2 13 -11 -1 -2.2 30.45
10 51 47 45 46 46 4 6 5 5 -3 11 3 3 18 -13 -13 -2.6 30.85
1 49 47 45 46 46 2 4 3 3 -1 15 6 6 29 -10 -10 -2 30.25
12 43 46 46 -3 -3 3 3 4 -4 -4 -0.8 29.05
13 45 46 46 -1 2 2 1A -0.2 28.45
14 50 46 47 4 3 6 5 1 1 0.2 28.05
15 49 46 46 3 3 9 8 7 6 1.2 27.05
16 43 46 46 -3 -3 6 5 16 14 2.8 25.45
17 38 46 46 -8 -8 2 -3 22 19 3.8 24.45
18 50 46 46 4 4 2 1 20 16 3.2 25.05
19 55 46 46 9 9 11 10 22 17 3.4 24.85
20 33 46 46 -13 -13 2 -3 33 27 5.4 22.85
21 44 46 46 2 -2 -4 -5 31 24 4.8 23.45
22 50 46 47 4 3 0o -2 27 19 3.8 24.45
23 47 46 46 1 1 1 1 27 17 3.4 24.85
24 48 47 46 1 2 2 1 28 16 3.2 25.05
25 38 41 M -3 -3 -1 -2 30 17 3.4 24.85
26 37 34 34 3 3 2 1 29 15 3 25.25
27 21 27 27 6 -6 -4 -5 31 16 3.2 25.05
28 18 20 20 2 -2 -6 -7 27 1 22 26.05
29 17 14 13 3 4 3 -3 21 4 0.8 27.45
30 9 7 7 2 2 -1 18 1 0.2 28.05
31 2 1 1 1 1 0 o0 17 0 0 28.25
32 0 0 0 0 0 0 o0 17 0 0 28.25
Sum 1112 1112 1112 End in zero for same angle to tangent Must end at zero to be same tangent
1996 AREA Manual Vol. 1 page 5-3-9 Balance the ordinates, limit the half throws

Each row of the spreadsheet describes the curvature of the track at “stations™ 31 feet apart measured along
the curve. The differences between the measured and the desired curvature are used to calculate the “half-
throws” at that station. The standard engineering practice is to adjust the rail so that at each station has
moved to restore a desired uniform pattern or curve design. Once correctly specified, the design does not
change.
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Figure 5 — Plots of Stringlining Data

Figure 5A is a plot of the measured data (Series 1) and the four revisions (Series 2, 3, 4 and 5)
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Figure 5B is the plot of the throws calculated from the four revisions (Series 1, 2, 3 and 4). Each point-by-

point revision reduced the throws and at last the final throw was zero
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The Workbench methodology utilizes this same approach except that a stick model determines the location
of the design points between the curve points. Then the points between the Curve Points are moved as a
group thus eliminated the “blips” in the final design.

Automatic curve alignment equipment is used to improve the track position using the throws calculated
from models such as these. Our effort is to discover stick models that are solutions suitable for tamper
input. Since the desired pattern is basically a trapezoid, we introduced methods for adjusting the lines
(rather than point by point) of the stick model. These adjustments can be achieved on the graph by moving
the transition points, redrawing the lines, and recalculating the throws. The curve designer can use the
mouse to drag the curve transition points individually or in groups to achieve the desired solution.

We allow use of some of the accepted curve design practice. One practice is to transition into and out of a
curve with the same rate of change of curvature. The second is to maintain a constant rate of curvature
between the transitions. The positions of the curve points are in a proper design when the same amount of
rail and acceptable maximum throws are achieved. The final throw always has to be zero at the end of a
curve. These rules of practice are a matter of designer choice and are not always relevant.

The manual interface with the curve design process as implemented is a basic first step in many curve
design applications. The model is moved to “fit” the irregular existing curve data with automatic assistance
using the automatic functions developed in Stage Two based on the Semiautomatic Functions from Stage
One: Also some thought was given to the fact that a curve cannot change as in turnouts or direct fixation,
or that the mean value curve is a possible solution. Thus we have:

Standard Curve Adjust
Automatic Curve Adjust
Use Mean Curve, and
Fix curve

These functions are accessed from the Curve Design Tab shown above.

AUTOMATIC CURVE DESIGN APPLICATIONS

Sixteen sample curves are used to illustrate the effects of using the “automatic” functions. Examining the
result of their application to Curve 2, for example illustrates that the positions of the curve points is hard to
detect visually. The original position of the curve points for Curve 2, for example, (see below), appears
nearly the same as the as the transformed position of the curve points after alternating applications of two
automated functions. The throws were out of range before but are well within range afterward. The
movements of the curve points from the original estimated positions were performed by the Standard Curve
Adjust and the Automated Curve Adjust functions until the final solution was chosen.
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Figure 6 — Curve 2 — Looks Are Deceiving
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Figure 7 -- Curve 3 — Curve Points Are Hard To Find
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Figure 8 -- Curve 4 — Curve Points Must Be Added
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Figure 9 -- Curve 5 — Good Solutions Found Automatically
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Figure 9C shows the
result that is found on a
“Standard Curve”
without any manual
manipulation of the
curve points using the
SCA function repeated
until no further
improvement is

achieved.
_ ' e
S = Ry Fematon Emm Design R
A ey N e e} —




Figure 10 -- Curve 6 — Crosslevel Must Be Considered
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Figure 11 -- Curve 7 — Automatic Speed Change Points
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Figure 12 -- Curve 8 — Compound Curve
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Figure 13 -- Curves 9 and 1 — Fixed Curves
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Curve 9 in Figure 13A is
determined manually to be a
fixed curve. The modeling
of a fixed curve is
established by changing the
initial and final curve points
to a unique pair, or by any
other means, so the deviation
from design is a constant
zero. The curve points
between the end points are
not usually needed. This
also demonstrates that the
deviation from mean is not
zero, of course, and is in fact
the source of most false track
geometry alignment defects.

Curve 1 is also a fixed
curve. Curve 9 is in a tunnel
on direct fixation and Curve
2 is a turnout or switch.
Both are handled such that
the data acquisition serves to
establish the foot-by foot
shape for the database.

Switches can be classified
and saved as templates to
further justify using this data
for geometry testing.



Figure 14 -- Curve 10 — Requiring Manual Assistance
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figure 14A shows
the original location
of the curve points
after data
acquisition.

The curve looks
simple to solve but it
requires manual
relocation of the
CSO point.

Tthe result in
Figure 14B
happens when
trying to use either
SCA or ACA



When manually relocating the curve points a solution like Figure 14C is typical
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But using SCA the solution is found to be like Figure 14D.
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Figure 15 -- Curve 11 — Complex Curve Solutions
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Figure 16 -- Curve 12 — Manual Curve Points
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Figure 16A is the
curve with the
original points and
the CBC points
added manually

Figure 16B is a
solution using ACA
but this may also be a
fixed curve.

This is not a
geometry defect



Figure 17 -- Curve 13 — Automatic Curve Points
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Figure 18 -- Curve 14 — Complex Compound Curve
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Figure 18C is a compound
curve solution using ACA
after adding the CBC points
and manually adjusting the
curve points

Curve 14 may also be a
fixed curve
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Figure 19 -- Curve 15 — Questionable Curve

There is a question about the nature of this curve in Figure 19. It is not a geometry issue so it is reasonable
to Fix it while investigating its design.
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Figure 20 -- Curve 16 — Questionable Data
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There is a question about the end of the curve shown in Figure 20.
appear as such in the geometry test.
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It looks like a geometry issue and would



CONCLUSIONS

This project developed and tested a concept to determine actual track geometry alignment and cross level in
sharp curves and turnouts in rail transit systems. The improved track geometry testing system utilized the
current track design or a “best fit” track design as a baseline for testing rail rapid transit and light rail transit
track. This concept provides transit systems the ability to accurately identify track geometry defects based
on their track design, thereby reducing maintenance time and cost. Transit agencies could also benefit by
utilizing the “best fit” track design data generated by the track geometry system as an alternative to
improve their current track design.

Track classification standards in sharp level curves and turnouts cannot be defined using the industry’s
current geometry testing methods. Therefore, during an automated track geometry test, this type of track is
not properly classified, and required maintenance may be ill defined. When using conventional methods of
track geometry testing, the track design criteria are not considered. Automated track geometry tests using
original design criteria or calculated “best fit” designs would provide accurate results for evaluating track
alignment deviations. Evaluating current track conditions and managing these conditions on rail rapid
transit and light rail transit systems could be greatly improved if this concept is implemented. Time and
costs currently incurred by transit systems in evaluating and managing their track could be significantly
reduced. This would improve the efficiency of the track evaluation and of tamper maintenance, which
would enable the transit agency to focus its time and efforts on actual track problems, contributing to
improved track safety.

It is now clear that the “desired track™ is not always the theoretical mathematical model but is rather more
complex. The existing track, properly maintained free of any irregularities, is very close to the “desired”
track design. The effort to date has enhanced the power of the tools needed to capture the more complex
designs. This project has been able to create the method whereby a digital foot-by-foot description of the
“regular safe track configuration” can be generated. This track design data is then used as the basis for
identifying “exceptions to design” that will be used in exception reports. The project introduces manual,
semi-automated and automated processes for creating a permanent “track design” database.

Two discoveries came to the fore in completing the technical work. First of all, it is impractical if not
impossible to construct perfectly “ideal” curves that fit the track geometry data. It has been necessary to
develop and apply techniques that accommodate the existing track as is after track construction and
maintenance engineers have accepted it. Secondly, the current practice of determining geometry
exceptions by comparing with the mean value curve is logically misleading. The mean value curve is not a
solution. It seems to be impossible for a tamper to move the existing track to a “mean value” position even
if it appears desirable. The existing track position, however, is closest to being the desired position.
Therefore the most logical approach is to use existing track geometry together with visual curve point
verification to initialize the curve design modeling procedure.

FINDINGS AND INVESTIGATORS RECOMMENDATIONS

This effort has brought the development of curve designs for the track design databases to the point of
useful results. Further automation is achievable. On the other hand, the level of automation needed may be
much less than the investigators had originally thought. The crucial factors include the following:

1. The existing track design is much nearer to the desired track design than it was originally
thought, so the addition of more sophisticated curve design models will not be necessary.

2. The stick model with points added, (either manually or automatically), is an adequate
approach when not using existing track design.

3. The design of these models is no different than maintaining the track and developing
tamper inputs, so it dovetails into the common engineering tasks of track maintenance.

4. The software will be made amenable for use by track engineers to use for track design
and maintenance decisions.
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5.

Track geometry testing does not need to calculate mean values. The use of means is an
assumption that not only leads to the false exception problem, but is also a false objective
problem. The mean value is not an achievable or even desirable track design.

The investigators believe that the result of this Transit IDEA project could lead to a follow-on effort for
automated applications. The effort could put track design databases into a new prototype automated track
geometry test environment. The desired objectives in practice could include;

W=

true exceptions in geometry test reports,

management tools for geometry test programs,

realtime detection and flagging of geometry defects, and
automation of the curve maintenance tamper application

The tasks of follow-on effort could include one of the following:

1.

[08)

Create a comprehensive list of the key track test events for annotation of the digital track
charts.

Make a specialized data acquisition run for the operator to locate the key track events in
the geometry data.

Manually review and adjust, the key track events as required.

Use the technology of this completed project to establish the curve points for accepted
track.

Generate the complete digital track chart including seasonal variations using seasonal
geometry test results.

Calculate current track geometry exceptions using the new technology.

Apply lining and tamping machine inputs from the current geometry test to transfer the
track to the accepted track design position.

Document routine procedures to perform 3 through 7 above for each periodic geometry
test.

Follow-on effort would involve field tests including automation of the tamping and lining process at
MBTA and WMATA to create and evaluate the track designs.
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