TRANSPORTATION RESEARCH CIRCULAR 498

Presentations from the 8th

INTERNATIONAL BRIDGE MANAGEMENT CONFERENCE

Volume I

Denver, Colorado
April 26–28, 1999

Conducted by
TRANSPORTATION RESEARCH BOARD
National Research Council
PREFACE

This publication contains papers presented at the Eighth Transportation Research Board Conference on Bridge Management held at the Renaissance Denver Hotel, April 26-28, 1999, in Denver, Colorado. The objective of the Conference was to provide a forum for the exchange of information about the state-of-the-practice and state-of-the-art in bridge management support systems between practitioners and researchers in all levels of the public and private sector. This publication contains papers on innovative inspection and data collection, condition deterioration models, user and life-cycle cost factors, approaches to bridge management, optimization and decision support, system components and implementation issues, project and network level activities, user demonstrations of bridge management software, long-term planning and asset management, and load rating and permit vehicle routing. These papers have not been subjected to the TRB peer review process.

ACKNOWLEDGMENTS

TRB Committee A3C06, Bridge Maintenance and Management
Chair: Wallace T. McKeel, Jr., Virginia Transportation Research Council

Conference Program Committee
Chair: Arunprakash M. Shirole

The Transportation Research Board is a unit of the National Research Council, a private, nonprofit institution that is the principal operating agency of the National Academy of Sciences and the National Academy of Engineering. Under a congressional charter granted to the National Academy of Sciences, the National Research Council provides scientific and technical advice to the government, the public, and the scientific and engineering communities.

The Transportation Research Board is distributing this Circular to make the information contained herein available for use by individual practitioners in state and local transportation agencies, researchers in academic institutions, and other members of the transportation research community. The information in this Circular was taken directly from the submissions of the authors. This document is not a report of the National Research Council or the National Academy of Sciences.
The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. William A. Wulf is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both the Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. William A. Wulf are chairman and vice chairman, respectively, of the National Research Council.

The Transportation Research Board is a unit of the National Research Council, which serves the National Academy of Sciences and the National Academy of Engineering. The Board’s mission is to promote innovation and progress in transportation by stimulating and conducting research, facilitating the dissemination of information, and encouraging the implementation of research results. The Board’s varied activities annually engage more than 4,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation.
Contents: Volume I

OPENING SESSION

Current Status of Bridge Management System Implementation in the United States, Edgar P. Small, Terry Philbin, Michael Fraher, and George P. Romack, Federal Highway Administration (IBMC99-043) .. A-1

INSPECTION AND DATA COLLECTION

Bridge Management and Inspection Data: Leveraging the Data and Identifying the Gaps, Kristen L. Sanford, University of Missouri–Columbia, Pannapa Herabat, Mahanakorn University of Technology, Thailand, and Sue McNeil, Carnegie Mellon University (IBMC99-061) .. B-1
Bridge Inspection Decision Making Using Sequential Hypothesis Testing Methods, Samer M. Madanat and DaJie Lin, University of California, Berkeley (IBMC99-001) .. B-2
Segmental Inspection for Improved Condition Reporting in BMS, George Hearn, University of Colorado at Boulder (IBMC99-032) .. B-3
Use of Field Testing in Delaware’s Bridge Management System, Michael J. Chajes and Harry W. Shenton, III, University of Delaware, and Dennis O’Shea, Delaware Department of Transportation (IBMC99-041) .. B-4
Reengineering the Bridge Inspection Process to Enable a Knowledge Management Solution, Frank P. DiCesare, Merrill Clark, Inc., and Paul Demers, GIS/Trans, Ltd. (IBMC99-014) .. B-5
Climbing Techniques for Bridge Inspection, Stephen Sabs, California Department of Transportation (IBMC99-019) .. B-6
Evaluation of Rebar Corrosion in Concrete by Active Thermal Sensing, Dana E. Poulain, Dennis R. Alexander, and Joseph K. Krause, University of Nebraska-Lincoln (IBMC99-027) .. B-7
Role of Underwater Substructure Inspection in Bridge Management, R. Richard Avent, Mohamed Alawady, and David J. Makai, Louisiana State University (IBMC99-028) .. B-8
In-Depth Inspection of Arizona’s Steel Bridges, Mark E. Bernhardt, Burgess & Niple, Ltd. (IBMC99-039) .. B-9
Remote Monitoring of Bridge Scour Using Echo Sounding Technology, Ivan R. Lasa, Florida Department of Transportation, George H. Hayes, Environmental Data Systems, Inc., and Edward T. Parker, Federal Highway Administration (IBMC99-048) .. B-10

CONDITION DETERIORATION MODELS

NDE in Bridge Management Systems, George Hearn, University of Colorado at Boulder (IBMC99-003) .. C-1
The Condition Evolution of Concrete Bridges Based on a Segmental Approach, Nondestructive Testing Methods, and Deterioration Models, Guido Roelfstra, Bryan Adley, Rade Hajdin, and Eugen Brühwiler, Swiss Federal Institute of Technology (IBMC99-025) .. C-2
Adaptation of Pontis Prediction Model to Hungarian Conditions, László Gáspár, Institute for Transportation Sciences, Ltd., Budapest, and László Lublóy, Széchenyi István College, Hungary (IBMC99-004) .. C-3
Analysis of BMS Reference Bridges in Finland, Marja-Kaarina Söderqvist, The Finnish National Road Administration (IBMC99-056) .. C-4
Life Cycle Performance of Bridge Components in New York City, Bojidar Yanev, New York City Department of Transportation, and Rene B. Testa, Columbia University, New York (IBMC99-060) .. C-5
An In-Depth Analysis of the National Bridge Inventory Database Utilizing Data Mining, GIS and Advanced Statistical Methods, Steven B. Chase and Edgar P. Small, Federal Highway Administration, and Chris Nutakor, GIS Trans (IBMC99-047) .. C-6

USER AND LIFE-CYCLE COST FACTORS

Contents: Volume II

BMS DEVELOPMENT AND APPLICATION
Optimization of Infrastructure Systems Maintenance and Improvement Policies, Frederick Guignier and Samer M. Madanat, University of California, Berkeley (IBMC99-002) .. E-1
Bridge Management System Development for Municipal-Sized Inventories in Western Canada, Gary Krikiak, Reid Crowther & Partners, Ltd., Canada (IBMC99-035) .. E-3
Examination of Alternative Strategies for Integration of Seismic Risk Considerations in Bridge Management Systems, Edgar P. Small, Federal Highway Administration (IBMC99-044) .. E-4
TRUCK Bridge Rating Software, Zoran Despot and Rade Hajdin, Dr. J. Grob & Partner AG, Switzerland (IBMC99-050) ... E-5
Joint College of Engineering (IBMC99-054) ... E-6
BRIDGIT: User-Friendly Approach to Bridge Management, Hugh Hawk, National Engineering Technology Corporation, Canada (IBMC99-072) ... E-7

APPROACHES TO BRIDGE MANAGEMENT
Distinctive Features of the Swiss Road Structures Management System, Hannes Ludescher and Rade Hajdin, Dr. J. Grob & Partner Ltd., Switzerland, and Swiss Federal Institute of Technology (IBMC99-049) ... F-1
Network-Level Bridge Management Systems for National Road Administrations, Dmitry Gurenich and Nicholas J. Vlahos, Cambridge Systematics, Inc. (IBMC99-059) ... F-2
Inspection, Monitoring, and Priority-Ranking of Bridges, Erik Stoklund Larsen, COWI Consulting Engineers and Planners, Denmark, and Jørgen Holst, Danish Road Directorate (IBMC99-062) .. F-3
Enhancements of the Project Selection Module of the Indiana Bridge Management System, Kumares C. Sinha, Purdue University, Robert E. Woods, Indiana Department of Transportation, and Yong Zhang, Purdue University (IBMC99-007) ... F-4
Finnish Project Level Bridge Management System, Marja-Kaarina Söderqvist, The Finnish National Road Administration, and Magnus Veijola, InfraMan, Ltd., Finland (IBMC99-055) ... F-5
The New Ontario Bridge Management System, Paul D. Thompson, Consultant, Tony Merlo, Ontario Ministry of Transportation, and Brian Kerr, Alan Cheetham, and Reed Ellis, Stantec Consulting, Ltd., Canada (IBMC99-010) ... F-6

OPTIMIZATION AND DECISION SUPPORT
Integration of Maintenance, Repair, and Replacement Decisions in Bridge Management Based on Reliability, Optimization, and Life-Cycle Cost, Dan M. Frangopol, Michael P. Enright, and Allen C. Estes, University of Colorado, Boulder (IBMC99-003) ... G-1
Integration of Reliability-Based Assessment Techniques into an Advanced BMS, Katja D. Flaig and Robert J. Lark, Cardiff University, United Kingdom (IBMC99-066) ... G-3

SYSTEM COMPONENTS AND IMPLEMENTATION ISSUES
Expert Functions in Bridge Management Systems, Jan Bień, Wroclaw University of Technology, Poland (IBMC99-026) ... H-3
PROJECT AND NETWORK ACTIVITIES

Project Selection Method Integrating BMS Data and Nondeterioration Based Needs, Bruce Johnson, Federal Highway Administration, and Frank J. Nelson, Oregon Department of Transportation (IBMC99-070) ... I-2

TxDOT’s Approach for Selection and Programming of Bridge Program Projects, Ralph K. Banks, Texas Department of Transportation (IBMC99-008) ... I-3

Project Level Planning Using Pontis Results, Kevin G. Anderson and Paul M. Kivisto, Minnesota Department of Transportation (IBMC99-052) .. I-4

Bridge Management—Routine Maintenance: Recent Experience with the Routine Management Module in the DABEPRO Bridge Management System, Arne Henriksen, Ministry of Transport, Denmark (IBMC99-021) ... I-5

LONG-TERM PLANNING AND ASSET MANAGEMENT
Integration of Bridge and Pavement Management Systems: A Proposed Strategy for Asset Management, Edgar P. Small, Federal Highway Administration, and Myron Swisher, Colorado Department of Transportation (IBMC99-045) .. J-1

LOAD RATING AND PERMIT VEHICLE ROUTING

BMS for Permit Vehicle Routing in Spain, Joan R. Casas, Angel C. Aparicio, and Gonzalo Ramos, Technical University of Catalonia, and Agustin Sánchez-Rey, Spanish Ministry of Public Works, Spain (IBMC99-013) ... K-2

The Application of Groupware Software Systems to Permit Vehicle Routing, Terry D. Leatherwood, Tennessee Department of Transportation (IBMC99-068) .. K-3

Load Rating and Permit Vehicle Routing, Mark Nord, Colorado Department of Transportation, and George Hovey, InMotion, Inc. (IBMC99-058) ... K-5