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FOREWORD
Yacoub M. Najjar, Chairman

Subcommittee on Neural Nets and Other Computational Intelligence–Based Modeling
Systems

Use of artificial neural networks (ANNs) in geomechanical and pavement systems (i.e., transportation
geotechnics) has significantly increased in the past five years. Moreover, their successful application
in other fields of decision-making sciences and in computer and electrical engineering is expected to
lead to further-increased interest and confidence in their application in all fields of civil engineering.
The expert judgements that must routinely be made in transportation geotechnics make it an excellent
field for ANN application.

Despite the fact that ANNs have already proved to outperform traditional modeling counterparts in
solving various complex engineering problems, their practical use in transportation geotechnics is still
limited. The primary obstacles to advantageous implementation of ANNs in transportation
geotechnics are lack of understanding and current skepticism. Most of the reported ANN-based
studies, even though successful, have not been implemented in practice since practicing engineers are
still doubtful of their use. These obstacles can be overcome if the practicing engineers are provided
with sources of necessary background information and involved in specifically-oriented ANN
workshops and tutorials. This circular and the ANN tutorial session at the TRB 79th Annual Meeting
can be considered as a first step toward achieving the goal of overcoming these obstacles.

The main objective of this circular is to provide a source of background information for persons who
are unfamiliar with ANNs and their use in transportation geotechnics. The circular is divided into four
major parts. In the first part, following the introduction section, several ANN types are briefly
discussed and described in approximately the order in which they were introduced in the literature.
The second part is the application section, which summarizes the completed applicable work and
identifies some tasks for which ANNs are particularly well suited and should continue to be
investigated. In the third part of this circular, potential directions for future research are identified and
briefly discussed. Part four contains cited references and related books on ANNs. Finally, names and
affiliations of all individuals who contributed significantly to this circular, or to the session at the TRB
79th Annual Meeting, or both, are listed alphabetically in the Contributors section.

This circular has undergone peer reviews by representatives of both the TRB Committee on Modeling
Techniques in Geomechanics and its Subcommittee on Neural Nets and Other Computational
Intelligence–Based Modeling. In all, this circular was sent electronically to 21 researchers in both
academia and industry or practice for their critical reviews. Suggestions, additional contributions, and
comments received from all reviewers are incorporated in this circular. This circular represents the
seventh version of the initial draft document. Based on these reviews, the Modeling Techniques in
Geomechanics Committee recommended this information for publication as a circular.

Keywords: Engineering applications, modeling, nonlinear function approximation, neural
network, prediction.
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USE OF ARTIFICIAL NEURAL NETWORKS IN GEOMECHANICAL
AND PAVEMENT SYSTEMS

Prepared by:
A2K05(3) Subcommittee on

Neural Nets and Other Computational Intelligence–Based Modeling Systems

INTRODUCTION
Over the past 2 decades, there has been an increased interest in a new class of computational

intelligence systems known as artificial neural networks (ANNs). This type of networks (i.e., ANNs)
have been found to be powerful and versatile computational tools for organizing and correlating
information in ways that have proved useful for solving certain types of problems too complex, too
poorly understood, or too resource-intensive to tackle using more-traditional computational methods.
ANNs have been successfully used for many tasks including pattern recognition, function
approximation, optimization, forecasting, data retrieval, and automatic control. This circular provides
an introduction to ANNs and their applications in the design and analysis of geomechanical and
pavement systems. As ANNs can be a useful complement to more-traditional numerical and statistical
methods, their use merits continued investigation.

ARTIFICIAL NEURAL NETWORKS
The term artificial neural networks encompasses a wide array of computational tools loosely

patterned after biological processes. Physically, all ANNs are interconnected assemblages of
mathematically simple computational elements. These computational elements contain a very limited
amount of local memory and perform rudimentary mathematical operations on data passing through
them. The computational power of ANNs comes from parallelism— input data are concurrently
operated upon (processed) by multiple computational elements.

Functionally, all ANNs are “vector mappers” (1) that accept a feature vector from one data
space and produce from it an associated feature vector in another data space. Hopfield (2) referred
to this as “emergent computation” because the input vectors disappear into the network, becoming
unidentifiable once inside, and then emerge as output. Inside the network, data pass between
computational elements along weighted connections. Because the data that emerge from the network
change as the connection weights change, ANNs can “learn” to produce a desired output by adjusting
the signs and magnitudes of their weights. The appropriate adjustments are determined by the
computational elements themselves, using learning rules that seek to minimize some type of cost or
energy function. Each computational element simply works to improve its own performance. In the
process, the performance of the network as a whole is optimized for the task at hand. This parallel
distributed processing (3) gives ANNs the ability to learn complex mappings without having to
specify a priori functions and rules required by conventional computational methods. The user needs
only to select the correct type of network and the most appropriate data representation (i.e., feature
vectors) for the problem being solved.

There are nearly as many different types of ANNs as there are researchers working in this
field. ANNs differ in the arrangement and degree of connectivity of their computational elements, the
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types of calculations performed within each computational element, the degree of supervision they
receive during training, the determinism of the learning process, and the overall learning theory under
which they operate (4). Despite that, certain types of ANNs appear repeatedly, either because they
are broadly applicable to a wide variety of problems or ideally suited for a narrow range of problems.
Several of these are briefly discussed herein in roughly the order in which they were introduced.

There are three broad paradigms of learning in neural network technology: supervised,
unsupervised (self-organized), and reinforcement. Each category has its own basic training
algorithm and a number of variants. In supervised learning (learning with a teacher), adaptation
occurs when the system directly compares the network output with a given or desired output. In
unsupervised training, the network is trained to identify the irregularities in the data and to form
categories based on similarity among the data. Reinforcement learning, one form of supervised
training, attempts to learn the input-output vectors by trial and error through maximizing a
performance function (named reinforcement signal). The system then becomes able to know
whether the output is correct or not, but unable to know the correct output.

Hopfield nets (5,6) are fully-connected recurrent networks that store a set of patterns (feature
vectors) in such a way that the network, when presented with a new pattern, responds with the stored
pattern that most closely resembles the new pattern. The Hopfield net actually implements an energy
function in which each stored pattern is a local minimum. Any new pattern introduced to the network
will follow the surface of that energy function to the nearest local minimum— the stored pattern that
most closely matches it. In such networks, the status of each neuron can be updated independently
from that of other neurons in the network; however, all neurons are updated in parallel.

Hopfield nets can be used for
• pattern recognition— selecting one pattern from a set of possible matches,
• pattern completion— providing a complete pattern from incomplete or noisy data,
• classification— identifying a pattern as belonging to a specific group, and
• content-addressable memory— retrieving complete records after given partial information from

those records.
If properly designed, Hopfield nets can also be used for optimization. If the optimization problem can
be written as a Hopfield energy function, the network can find a near-optimal solution to the problem
if given any starting point. Hopfield nets have been used with great success for finding near-optimal
solutions to combinatorial optimization problems such as the traveling salesman problem (7).

Adaptive resonance theory (ART) networks (8,9,10)  store sets of patterns and, when
presented with a new pattern, match it to previously stored patterns. If the new pattern is not
sufficiently similar to any of the existing patterns, an ART network will store it as a new pattern
prototype, to which future patterns can be matched. This allows ART networks to evolve over time
as they are presented with new data. This process is called unsupervised learning because the network
adapts to its information environment without intervention.

ART networks, like Hopfield networks, can be used for pattern recognition, completion, and
classification, and as content-addressable memory. They can also be used for knowledge processing
(i.e., organizing existing knowledge into groups and identifying new knowledge). In this last capacity,
they could be used to detect anomalies in data, because the creation of a new pattern prototype
indicates an anomalous feature vector.
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Kohonen maps (11) (also called self-organized feature maps, SOFM) self-organize to produce
consistent outputs for similar inputs. Specifically, Kohonen maps take data (feature vectors) from one
data space and project them into a lower-ordered data space (usually a line or plane) in such a way
that similar feature vectors project onto points in close proximity to one another. This is called
topology preservation. A special case of SOFM is the learning vector quantization (LVQ) networks,
which, unlike the basic SOFM, do not preserve topological order. The LVQ networks are very
effective in clustering and image data compression.

Kohonen maps can be used for pattern recognition and classification and for data compression
(data are mapped into a space with fewer dimensions while as much content as possible is preserved).
To illustrate this, researchers could present the colors on a computer screen. If red, green, and blue
are combined in varying amounts, millions of colors can be created. Each color is actually a feature
vector in 3-dimensional (RGB) space. A Kohonen map can take those 3-dimensional color inputs and
project them onto a 2-dimensional plane with a finite number of pixels so that all the yellows cluster
together, all the purples cluster together, and so on. The 3-tuple describing each color input has been
replaced by the (x, y) location of the pixel that most closely approximates the color.

Back propagation networks are in fact the workhorses of ANNs. They are very powerful and
versatile networks that can be “taught” a mapping from one data space to another, using examples
of the mapping to be learned. The term back propagation network actually refers to a multi layered,
feed-forward neural network (12) trained using an error-back propagation algorithm (13,14,15). The
architecture of a simple back propagation ANN is a collection of nodes distributed over an input
layer, hidden layer(s), and an output layer. In the input layer, the input variables of the problems are
situated. The output layer contains the output variables, or what is being modeled. In statistical terms,
the input layer contains the independent variables and the output layer contains the dependent
variable. The nodes between successive layers are connected with links, each of which carryies a
weight that describes quantitatively the strength of that connection, thus denoting the strength of one
node to affect the other node. As with many ANNs, the connection weights are initially selected at
random. Inputs from the mapping examples are propagated forward through each layer of the
network to emerge as outputs. The errors between those outputs and the correct answers are then
propagated backward through the network and the connection weights are individually adjusted so
as to reduce the error. After many examples have been propagated through the network several times,
the mapping function is “learned” within some error of tolerance. This is called supervised learning
because the network has to be shown the correct answers in order for it to learn. Backpropagation
networks excel at data modeling and classification. They have also been successfully used for image
compression (they are taught to map the inputs back onto themselves), forecasting, speech
identification, and pattern recognition (16).

Feedback (sequential) neural networks (FBNN) consist mainly of two sets of input neurons:
plan units and current-state units (17). These input units feed into a set of hidden units, which in turn
feed into a set of output or next-state units. At the initial phase of the training, a pattern of data is
presented as an input to the plan units with zero input to the current-state units. Feed-forward process
occurs, using initial connection weights and threshold values and producing the first output pattern.
This output pattern is then copied back to the current-state units for the next feed-forward sweep.
Consequently, the current-state units capture the prior history of activation in the network. This type
of network is well suited for modeling the constitutive behavior of geomaterials such as rocks, soils,
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and concrete (18–23). From plasticity theory, it is well known that the current state of stress and
strain has important influence on the next state of stress and strain increments. Therefore, it is
important to use the FBNN concept of training for simulating stress-strain responses. This feedback
approach also ensures that the training phase of the ANN-based constitutive model will be similar to
those used in the testing and prediction phases. In any of these phases, the developed ANN-based
constitutive model has to incrementally build the entire stress-strain response based on the predictions
corresponding to the previous loading steps.

Counterpropagation networks (24,25) are hybrid networks that combine supervised and
unsupervised learning to create a self-organizing look-up table that can be used for function
approximation and classification. As input feature vectors from a training set are presented to the
network, unsupervised learning is used to create a topology-preserving (Kohonen) map of the input
data while, at the same time, supervised learning is used to associate an appropriate output feature
vector with each point on the map. The output at each point is just the average output for all of the
feature vectors that map to that point.

Once the network has been trained, each new feature vector presented to the network will
trigger a response that is the average for those feature vectors closest to it in the input data space.
This is the function of a look-up table. The advantage of this network over conventional look-up
tables is that the Kohonen map provides for a statistically optimal coverage of the input space even
if the mathematical form of the underlying function is completely unknown. Counterpropagation
networks train much faster than backpropagation networks but are not as versatile and are
comparatively slower at producing outputs.

Radial basis function (RBF) networks (26,27,28)  are also hybrids that combine unsupervised
and supervised learning to perform function approximation. The concept involves summing a series
of overlapping Gaussian functions that can approximate any continuous function. In two dimensions,
Gaussian curves are familiar to many as the normal distribution from statistics. In three dimensions,
they appear as bumps with radial symmetry. In higher dimensions, they are difficult to visualize, but
the concept is equally valid. The use of a Gaussian transfer function rather than sigmoid is what
mainly distinguishes RBF from backpropagation networks.

The radial basis function network has a mapping layer in which each neuron represents one
Gaussian bump. As with the counterpropagation network, unsupervised learning is used to determine
how to best partition the data space given a limited number of neurons. Each neuron is assigned to
a cluster of input vectors and affects a Gaussian bump located at the center of the cluster. Once the
data space has been appropriately partitioned, supervised learning is used to adjust the heights of the
bumps so as to produce the best approximation of the function. When a new input vector is presented
to the trained network, it responds with an output that is really just the sum of the outputs from every
Gaussian bump in the network, weighted according to the distance from the input vector to the
centers of the bumps.

Radial basis function networks also train much faster than backpropagation networks but are
not as versatile and are comparatively slower in use because each output requires that dozens (or even
hundreds) of Gaussian functions be evaluated.

Generalized regression neural networks (GRNNs) (29) are closely related to radial basis
function networks. In a GRNN, each neuron in the mapping layer represents a Gaussian bump that
coincides exactly with one of the inputs from the training set. Since there is exactly one neuron for
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each training example, the weights are simply set by hand, using the input and output feature vectors
for each example. The training time is therefore zeroed and the weights are initialized to the
coordinates of the feature vectors in the training set. Unfortunately, because the training examples
do not optimally cover the input space, many of the neurons are wasted, and thus more neurons are
needed to achieve the same error level as would occur in a radial basis function network. Therefore,
making them even slower than RBF networks at producing an output.

APPLICATIONS IN GEOMECHANICAL AND PAVEMENT SYSTEMS

As might be expected from the wide variety of network types presented in the previous
section, there are many different areas in which ANNs have been successfully used in geomechanical
and pavement systems. This section will detail applicable work that has already been done and identify
some of the tasks for which ANNs are particularly well suited and for which they should continue to
be investigated.

The earliest applications of ANNs in pavement systems concentrated on areas such as
planning, traffic control and operations, construction and maintenance, and facilities management
(30,31). The last few years have seen considerable interest in using ANNs for geotechnical
engineering applications as well as pavement systems analysis— structural and performance
prediction— and design. ANNs have been successfully applied in a full spectrum of geotechnical
engineering tasks such as site characterization, foundation engineering, soil liquefaction, and
constitutive modeling (32). Moreover, a recent workshop proceedings contains a compendium of
several papers describing mainly artificial intelligence–based applications and research in pavement
and geomechanical systems (33).

The majority of ANN-based constitutive models in the literature are for geomaterials, such
as subgrade soils and aggregate, rather than for paving materials, such as asphalt and concrete.
Penumadu et al. (34) developed an ANN-based constitutive model that captured the rate-dependent
behavior of clay soils. Tutumluer and Seyhan (35) successfully trained a backpropagation ANN to
predict the anisotropic stiffness properties of granular materials from standard repeated load triaxial
tests (i.e., tests lacking lateral deformation measurements). Zhu and Zaman (36) trained a recurrent
neural network (a variant of the backpropagation network often used for time-series analysis) to
accurately predict the axial and volumetric stress-strain behavior of sand during loading, unloading,
and reloading. Using the sequential (feedback) backpropagation training approach, Ellis et al. (18)
developed an ANN-based constitutive model for sands based on grain-size distribution and stress
history. Recognizing the benefits of the feedback approach, Basheer (20) and Basheer and Najjar (21)
used it to simulate the uniaxial stress-strain constitutive behavior of fine-grained soils under both
monotonic and cyclic loading. Penumadu and Zhao (19) also utilized this approach to model the
stress-strain and volumetric behavior of sand and gravel under drained triaxial compression tests.
Subsequently, Najjar et al. (23) and Najjar and Ali (22) have used this feedback approach to
characterize the undrained stress-strain response of Nevada sand subjected to both triaxial
compression and extension stress paths. Most recently, Ghaboussi (37) and Ghaboussi and Sidarta
(38) have introduced the nested adaptive neural network concept, using it to model both the drained
and undrained behavior of sandy soil subjected to triaxial compression–type testing.
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Despite exponential advances in computational speed, pavement structural models still expend
considerable amounts of computing time. Depending on application, the slowest ANNs can be two
or three orders of magnitude faster than elastic layer programs (ELPs) and several more orders of
magnitude faster than the most sophisticated finite element programs (FEMs). There are several ways
in which function-approximation ANNs can be used to speed the structural analysis task. For example
Meier, Alexander, and Freeman (39) trained backpropagation networks as surrogates for WESLEA
in a computer program for backcalculating pavement layer moduli and realized a fifty fold increase
in processing speed. Backpropagation networks were chosen because they are faster than the other
function-approximation networks, albeit much harder to train. This is an important consideration
when researchers are choosing the appropriate type of neural network to use.

ANNs may never completely replace the versatility of an FEM or ELP, but they can be
suitable surrogates as long as the mapping problem is reasonably constrained. It would be unrealistic
to expect an ANN to compute stresses, strains, and deflections anywhere in a pavement under any
loading conditions. On the other hand, it would be relatively easy to train an ANN to compute, for
example, the maximum tensile strain at the bottom of the asphalt-bound layers of a flexible pavement
due to a wheel loading. Ceylan, Tutumluer, and Barenberg (40,41) illustrated this capability by
training ANN models to compute lateral and longitudinal tensile stresses as well as deflections at the
bottom of jointed concrete airfield pavements as a function of load location, slab thickness, subgrade
support, and the load transfer efficiencies of the joints. The training sets were developed for
prescribed dual-wheel and dual-tridem gear loads using the ILLI-SLAB finite element program.

Meier and Rix (42,43) trained backpropagation networks to backcalculate asphalt concrete
pavement layer moduli from deflection basins obtained using the falling weight deflectometer (FWD).
They achieved their goal of increased backcalculation speed by creating a neural network that
operates 4,500 times faster than the conventional algorithmic program used at that time. Khazanovich
and Roesler (44) used a proprietary neural network to perform the same task for data obtained from
composite pavements. Ioannides et al. (45) used a backpropagation neural network to determine the
load transfer efficiency of rigid pavement joints from FWD data. Rolling wheel deflectometers are
currently under development, which will make it possible to induce and measure deflection basins at
realistic traffic speeds. Neural networks may be the only method fast enough to analyze the enormous
volume of generated data in a reasonable amount of time.

Gucunski and his co-workers (46,47,48) investigated backpropagation and GRNN networks
for simultaneously backcalculating both layer moduli and layer thicknesses from dispersion curves
generated by spectral analysis of surface waves (SASW) tests. Meier and Rix (49) had previously
shown that neural networks could be used to backcalculate the moduli and thicknesses of soil layers
from the results of SASW tests. Recently, Kim and Kim (50) developed a new ANN-based algorithm
for predicting pavement layer moduli using measurements from both FWD and SASW tests. As a
forward model, this algorithm employs numerical solutions of multilayered half-space-based Hankel
transforms; and it employs an ANN for the inversion process. Though currently more of a research
tool than a production tool, SASW is an attractive alternative that may complement or replace FWD
and could be significant in the future.

There is great potential for using ANNs to develop predictive distress models. Distress
prediction is exactly the type of complex, multivariate problem that has been repeatedly solved using
ANNs. Najjar and Basheer (51) developed backpropagation ANNs for modeling the durability of
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aggregate used in concrete pavement construction. A large database acquired from the Kansas
Department of Transportation was used to train ANN models, which predicted to a relatively high
degree of accuracy the durability factor and percent expansion from five basic physical properties of
the aggregate. Basheer and Najjar (52) also developed ANN-based distress models to predict
longitudinal joint spalling for concrete pavements in Kansas. These models were then successfully
employed to address issues related to quality of construction, using parameters pertinent to pavement
age, accumulated traffic, and other pavement design elements.

Roberts and Attoh-Okine (53) used quadratic function ANNs for pavement roughness
prediction. Quadratic function ANNs are generalized, adaptive feed-forward neural networks that
combine supervised and self-organized learning. Any of the function-approximation neural networks
(backpropagation, radial basis function, counterpropagation, and others) can potentially be used to
develop correlations between structural response variables and measures of pavement distress. The
key to success is not so much the type of network as the volume and quality of training data.

Banan and Hjelmstad (54) illustrated the potential of ANNs for analyzing data from pavement
field tests by reexamining the AASHO Road test data using a proprietary ANN, which, like a radial
basis function network, subdivides the input space and learns an average response for each
subdivision (55). By fitting the data locally, the researchers were able to obtain much better data
correlations than those obtained using regression, which globally fits the data to a single mathematical
function.

Before any predictive distress models can be developed, quantitative measures of pavement
distress and performance must be established and methods developed to measure their values over
time. This is an area in which neural networks have already shown promise. Kaseko, Lo, and Ritchie
successfully used a backpropagation network (56) and Lo and Bavarian used a proprietary ANN (57)
to automatically detect and classify various types of surface cracks in video images of AC pavements.
Chou, O’Neill, and Cheng (58,59) used backpropagation networks to classify surface cracks that had
already been extracted from the video images by other means. Wang (60) and Wang et al. (61)
propose using a neural net computer chip— the Intel Ni1000, which implements a radial basis function
network— to automatically detect, classify, and quantify different types of pavement distress at
highway speeds.

Another area in which ANNs have already been used is pavement classification. Most state
highway agencies maintain permanent traffic recorder stations at strategic locations in order to
develop a database of traffic patterns for different road types. This database captures the seasonal
variations in the monthly average daily traffic (MADT) at each recorder location. In principle, if you
can match a road segment where there is no recorder to one stored in the database, you can forecast
its average annual daily traffic (AADT) from a short-term traffic count by applying the seasonal
variations stored in the database. In practice, the database is condensed into a handful of road types
exhibiting similar traffic patterns and road attributes; this makes it easier to find a match in the
database. The task of condensing the database is a classic pattern-classification application at which
ANNs excel.

Faghri and Hua (62) used an ART network to group road segments according to their MADT
patterns. The ART network produced groups with far less data scatter than those developed using
conventional methods of cluster analysis and regression analysis. Lingras (63) used Kohonen maps
for a similar purpose and found them to be a suitable alternative to hierarchical classification methods
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currently being used for the task. The Kohonen maps were able to classify both complete and
incomplete traffic patterns and could evolve over time as traffic patterns changed.

Recently, researchers at the University of Texas at El Paso developed a methodology based
on ANN to compute the remaining life of flexible pavements (64,65). They used backpropagation
neural networks to compute the remaining life of flexible pavements subjected to rutting or fatigue
cracking. Their models use the deflection readings from an FWD and the layers’ thicknesses. Results
of their models have been compared with field data from the Texas Mobile Load Simulator (66). An
agreement between the models and field data was observed. Currently the ANN models are being
integrated into a software tool for integrity evaluation of pavement (67).



10

DIRECTIONS FOR FUTURE RESEARCH

There is still considerable work to be done in the area of constitutive modeling. Basheer (20)
proposed techniques for two- and three-dimensional stress-strain modeling of geomaterials, as well
as methods for enhancing usability, flexibility, and ability to integrate neural network–based
constitutive models in numerical solution techniques such as FEM. ANNs could also be used to model
the temperature- and rate-dependent behavior of asphaltic concrete or the fatigue behavior of
asphaltic and portland cement concrete (PCC). Models such as these are especially needed because
mechanistic design procedures will be based on structural analyses of pavements throughout their
design life. This requires that researchers model explicitly, any changes in the behavior of the
pavement materials over time due to such things as seasonal variations in temperature and moisture,
as well as changes due to fatigue.

Some state highway agencies, such as those in Illinois and North Carolina, have begun
monitoring selected in-service pavements for performance. They are keeping records of pavement
materials and cross sections, applied traffic loads, and climatic conditions. Similar data have been
generated, in even greater volume, from the Long Term Pavement Performance (LTPP) project of
the Strategic Highway Research Program (SHRP). The structural response of the pavements to the
recorded loads can be calculated using mechanistic analysis programs. By using ANNs, engineers can
then correlate the observed pavement performance with the calculated structural response. Because
ANNs excel at mapping in higher-order spaces, such models can go beyond the existing univariate
relationships (such as those based on asphalt flexural strain or subgrade vertical compressive strain).
ANNs could be used to examine several variables at once and the interrelationships between them.
ANNs could also be used to develop models for distress phenomena such as thermal cracking, block
cracking, and rutting in AC pavements, and faulting and D-cracking in concrete pavements.

Predictive pavement distress models, whether they are developed using ANNs or conventional
modeling techniques, will have to be calibrated to local conditions. This is done using shift factors,
which adjust the predicted distress development to more realistically reflect field-observed pavement
distress and performance. These shift factors not only vary from state to state, but will have to be
periodically updated for temporal changes in climate, materials, construction specifications, and
traffic. Radial basis function networks would be particularly well suited to this task because they can
be incrementally retrained. This is an important point. Some ANNs, such as backpropagation
networks, must be completely retrained if additional data become available. Others, such as radial
basis function and counterpropagation networks, can evolve over time to accommodate both new
data and changed data. The choice of a network type should anticipate future enhancements as well
as current needs.

The final area of infrastructural analysis in which ANNs could be used is the modeling of the
traffic loads applied to the pavement. Unlike current empirical design procedures based on equivalent
axle loads or equivalent aircraft, mechanistic design procedures make it possible to explicitly model
the landing gear geometry and wheel loads of each individual vehicle. This requires the user to
develop a realistic vehicle mix and project it over the design life of the vehicle. In that capacity, ANNs
developed for time-series analysis (such as recurrent neural networks) can play a major role.
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