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Preface 
 
 

his electronic circular publishes two papers as a supplement to Transportation Research 
Circular E-C049 (http://gulliver.trb.org/publications/circulars/ec049.pdf). Papers in both 

Circulars were presented at the 9th International Bridge Management Conference, held at the 
Orlando Airport Marriott Hotel, April 28�30, 2003, in Orlando, Florida. The conference was 
sponsored by the Transportation Research Board in cooperation with FHWA. The objective of the 
conference was to provide a forum for the exchange of information about the state of the practice 
and state of the art in bridge management systems between practitioners and researchers in all 
levels of the public and private sectors. Transportation Research Circular E-C049 contains papers 
on bridge management concepts, strategies and health indices, asset management, joints, coatings 
and concrete repair, life-cycle costs, load testing, utilizing the Internet and performance measures, 
deterioration and reliability, future directions and challenges in bridge management systems, 
management system implementation, safety and serviceability, scour modeling and experiences, 
expert systems and uncertainties, and concrete deterioration. The papers in this Circular have not 
been subjected to the TRB peer review process.  

 

T 

http://gulliver.trb.org/publications/circulars/ec049.pdf
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Dynamic Load Tests in Bridge Management 

 
JAN BIEŃ 

JOZEF KRZYZANOWSKI 
PAWEL RAWA 

JAROSLAW ZWOLSKI 
Wroclaw University of Technology 

Institute of Civil Engineering 
 
 

The potential application of dynamic test results in the bridge management process is 
considered. The classification of the bridge dynamic tests, based on the method of vibration 
excitation, is proposed and four main types of tests are distinguished: excitation by traffic, by 
special vehicles, by force-generating devices, and by means of special techniques. All the 
considered testing methods are illustrated by examples of the tests preformed by the authors. 
Special attention is paid to the possibilities of damage detection by means of monitoring the 
bridge dynamic parameters. Advantages and disadvantages of the presented testing methods 
are discussed taking into account their usefulness in computer-based bridge management 
systems. 

 
 
 

ridge structures are exposed to various dynamic loads, e.g. moving live loads, time 
varying wind loads, etc. The dynamic effects are taken into account while designing 

bridges and play an important role during the whole life of the structures. The results of the 
experimental dynamic analysis carried out for many years offer valuable information for 
comprehensive bridge management (1–6). The main methods of dynamic bridge testing and 
their potential applications in computer-based bridge management systems (BMS) are 
presented in Figure 1. Two basic types of bridge dynamic tests can be distinguished in the 
proposed classification: structure dynamic response tests and structure vibration tests. 

Dynamic response tests are performed to obtain dynamic characteristics of the bridges 
under normal traffic or under special vehicles with controlled parameters. These types of tests 
enable the determination of the following parameters: 

 
• Stresses and strains in the bridge components�the basic data for fatigue analysis; 
• A dynamic load factor (dynamic load allowance)�a measure of bridge dynamic 

sensitivity; and 
• Vibration frequencies, mode shapes, vibration amplitude and damping under the 

live loads. 
 

In the vibration tests special force-generating devices or other special techniques are 
used for the excitation of the bridge vibration. The main goal of this kind of test is as follows: 

 
• The determination of the natural frequencies of bridge vibration, 
• The identification of the corresponding mode shapes, amplitudes and damping 

characteristics of the structure. 
 

B 
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The results of both types of dynamic tests include important information, which can 
be used as tools supporting selected elements of the bridge management process (Figure 1): 
 

• The fatigue analysis based on experimental data; 
• The analysis of bridge serviceability taking into account the users comfort 

(vibration frequency, amplitude, acceleration, possibility of resonance occurrence, etc.); 
• The stiffness analysis (displacements under traffic loads, experimental verification 

of theoretical models, etc.); 
• The detection of bridge damages based on the identification of changes in 

structure dynamic characteristic; and 
• Monitoring forces in cables (e.g., in cable-stayed bridges) or in other external 

prestressing tendons. 
 

The characteristics of the bridge dynamic response and bridge natural vibration, based 
on the results of experimental tests, can be applied for 
 

• The evaluation of the bridge condition (conformity with designed dynamic 
parameters, serviceability, dynamic sensitivity, etc.); 

• Monitoring the bridge condition based on the systematic control of structure 
dynamic parameters; 

• Updating the degradation model of the bridge structure; and 
• The optimization of the planning process in BMS. 
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FIGURE 1  Dynamic load tests of bridges and their applications in BMS. 
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Each of the considered testing methods has specific advantages and disadvantages, which are 
discussed below based on the examples of tests performed by the authors. 
 
DYNAMIC TESTS UNDER TRAFFIC 
 
Dynamic tests under normal road or railway traffic are performed to identify the dynamic 
response of the bridge structure to real live loads, for example, Casas and Aparicio (2). This 
type of dynamic tests has the following main characteristics: 
 

• Random nature of loads during the test; 
• The vibrating mass of the structure is increased by the mass of the vehicles on the 

bridge and the dynamic parameters are determined for such a system; 
• Vehicles are continuously moving along the bridge, which complicates the 

identification of the vibration forms; and 
• Tests can be performed without any disturbances in the normal operation of the 

bridge. 
 

An example of the monitoring of suspension bridge vibration under road traffic is 
presented in Figure 2 and Figure 3. The laser-based measuring system applied in this test (7, 
8) consists of the laser transmitter and the position-sensitive receiver connected to a laptop 
computer (Figure 2a). The laser transmitter is placed on a solid base outside the bridge at a 
distance up to 300 m (Figure 2b) and the receiver is located on the tested bridge (Figure 2c). 

 

optical axis

laser beam

experiment
control, data

aquisition and
processing

CAUTION

COMPUTER

X

Y

X

Y

RECEIVER
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LASER LIGHT
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b)
c)

 
FIGURE 2  Laser-based displacement measuring system: (a) configuration,  
(b) transmitter on the riverside, and (c) receiver located on the tested bridge. 
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FIGURE 3  Vibrations of Grunwaldzki Bridge over Odra River in Wroclaw: (a) bridge 

scheme and location of measuring point, (b) vertical displacements under traffic,  
and (c) loads in selected moments of the test. 
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The position of the laser beam on the sensitive screen is continuously recorded in two-
dimensional space. Vertical displacements of the measuring point in the middle of the span 
(Figure 3a) are presented in Figure 3b. The measuring system has been coupled with a 
camera, which enables the identification of the loads configuration during the test (Figure 
3c). 
 
DYNAMIC TESTS BY MEANS OF SPECIAL VEHICLES 
 
In many countries dynamic tests under special vehicles are standard proof load tests before 
opening the bridge for use. Heavy trucks or locomotives with controlled parameters (axle 
loads, geometry, speed, etc.) are usually used as dynamic loads, e.g. (5, 9, 10, 11). The most 
important conditions of this type of test are as follows: 
 

• The main parameters of the dynamic loads are known and can be controlled; 
• The vibrating mass of the bridge is influenced by the moving mass of the 

vehicle(s); 
• The moving vehicles complicate the identification of the vibration forms; and 
• Tests have to be performed without any other dynamic loads of the bridge. 

 
The results of the tests of the arch viaduct A016 (11) over the highway A4 (Figure 4) 

are presented as an example. Vertical displacements of the measuring points A and B, located 
on both sides of the deck in the middle of the span, are shown in Figure 5. The results of the 
test with normal plain road surface are presented in Figure 5a and displacements during the 
test with artificial �bump� (height 3 cm) � in Figure 5b. 

Dynamic load factors for various speed of the truck�based on the experimental data 
�are presented in Figure 5c. Five trucks of the same type and the same parameters (axle 
loads, geometry) were used for each test. Differences within the same test are probably 
caused by the various technical conditions of the vehicles. Higher dynamic load factors 
during �bump� tests show the sensitivity of the structure to the damages of the road surface 
(e.g., pot holes). 

 

 
 

FIGURE 4  Arch viaduct A016 over highway A4 during load tests. 
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FIGURE 5  Dynamic load tests of viaduct A016 under special vehicle: (a) vertical 
displacement of the deck�test with normal road surface, (b) vertical displacement of 
the deck�test with artificial �bump� (height 3 cm), and (c) dynamic load factors for 

various speeds of the vehicle. 
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Bień, Krzyzanowski, Rawa, and Zwolski  9 
 
 
VIBRATION TESTS USING PERIODIC EXCITATION 
 
Vibration tests are conducted mainly by means of force-generating devices (1, 4, 12). The 
application of a mechanical vibration exciter enables: 
 

• Controlling the frequency of the excitation force; 
• Free selection of the excitation force location on the tested structure; 
• Identification of the resonance frequency while scanning the wide range of the 

excitation frequencies (mass of the force-generating device can be neglected); 
• Keeping the tested structure in a steady-state for defined conditions of excitation, 

including resonant vibration; 
• Repeatability of the excitation parameters, even after a long time; and 
• Easy transport of the set-up for test execution and short time of disturbances in the 

traffic during the test. 
 
During the last few years two types of force-generating devices were constructed and tested 
by the Institute of Production Engineering and Automation and the Institute of Civil 
Engineering of the Wroclaw University of Technology (6, 13): 
 

1. Vibration exciter based on the rotation of the unbalanced masses for frequency 
between 0 and 15 Hz; 

2. Inertial exciter for lower frequencies, between 0 and 5 Hz. 
 
Up to now twelve various types of bridge structures have been tested by means of the 
exciters. Taking into account accumulated experience, two procedures of the bridge vibration 
tests have been proposed: a preliminary test addressed to new bridges and a monitoring test 
dedicated to bridge structures under operation. 

The proposed procedure of initial testing of a new or rehabilitated bridge by means of 
the vibration exciter is presented in Figure 6. The main steps of the test are explained on the 
example of the footbridge B027 (12) shown in Figure 7: 

 
• A theoretical analysis of the structure (FEM) to define natural vibration 

frequencies and corresponding mode shapes; 
• The determination of the most effective position of the vibration exciter on the 

tested bridge and selection of the measuring points; 
• Experimental detection of the resonance frequencies and measurement of the 

corresponding dynamic parameters; vertical displacements of the bridge deck are presented in 
Figure 8a and results of the frequency analysis for excitation frequency 4.27 Hz in Figure 8b; 
and 

• Comparison of the experimental and theoretical data and storing the dynamic 
parameters of the structure in a computer-based BMS as a basis for the next tests. 
 

The vibration tests are especially useful for monitoring bridge condition. The 
systematic control of changes in the dynamic parameters enables detection of bridge 
condition changes. The proposed testing procedure is presented in Figure 9. The procedure is 
illustrated by the destructive test of the composite bridge D010 on the highway A4, shown in 
Figure 10. 
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FIGURE 6  Procedure of initial bridge testing by means of vibration exciter. 
 
 
In the first step the bridge has been tested according to the procedure presented in 

Figure 6 to define the dynamic characteristic of the structure without damages. In the next 
step one of the steel girders has been cut (Figure 11a) and the vibration tests have been 
conducted in the following sequence for each level of damage severity: 
 

• The excitation of the bridge with the resonant frequency determined for the 
structure without damages; 

• The determination of changes in vibration amplitude and mode shape due to the 
introduced damages; 

• The determination of changes in the resonant frequency of the damaged structure; 
and 

• The measurement of the vibration amplitude and mode shape for new resonant 
frequency of the bridge. 
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FIGURE 7  Tested footbridge B027 over highway A4. 
 
 

The damages affect the amplitude of the bridge vibrations. Figure 11b presents the 
relationship between the severity of the damage (diminishing of the span stiffness) and the 
amplitude of vibrations. The presented results have been obtained for constant frequency of 
excitation and equal resonant frequency of the structure without damages. An amplitude of 
0.25 mm for a structure without any damages diminished to 0.16 mm for 12.7 % of stiffness 
reduction and to 0.04 mm by 19.5 % of reduction. 

Changes of the resonant frequencies for two levels of reduction of the span bending 
stiffness are presented in Figure 11c. For a structure without any damages the frequency is 
12.12 Hz and diminished to 11.77 Hz (in case of 12.7 % stiffness reduction) and to 11.07 Hz 
for 19.5 % reduction of the stiffness. 

The analysis of the test results show that the vibration amplitude of the tested 
structure is more sensitive to the considered damages than resonant frequency. 
 
SPECIAL TECHNIQUES IN DYNAMIC TESTING 
 
Sometimes individual conditions of the bridge dynamic test need the application of a special 
technique of structure excitation. The excitation force, usually of the impulse nature, can be 
produced by 
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• A sudden release of the applied deflection, 
• Stopping of heavy vehicle, or 
• Dropping a mass on the tested structure, and so on. 

 
For instance, special excitation methods can be effectively applied for controlling the internal 
forces in the cables of the cable-stayed bridges. As an example the selected results of the tests 
of the bridge over Vistula River in Warsaw (Figure 12a) are presented. The sudden release of 
the deflection of the cable (Figure 12b) was used for the vibration excitation. Free vibrations 
of the tendon were measured by means of the set of accelerometers placed on the cable 
(Figure 12b). 
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FIGURE 8  Vibration test of footbridge B027: (a) vertical displacement of the deck and 
calculated as well as measured vibration frequency and mode shape, and (b) vibration 

exciter on the tested structure and results of the frequency analysis. 
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FIGURE 9  Procedure of monitoring bridge condition by means of vibration exciter. 
 
 

Two tests of the cable No. 7, performed during preliminary load before opening the 
bridge to traffic (10), are presented: 

 
• The vibration test of the cable before the static tests (no live loads on the bridge) 

(Figure 13a); and 
• The vibration test during static proof load of the main span 4-5. 

 
The recorded changes in the vibration frequencies during both tests can be observed 

in Figure 13b. The axial forces in the tested cable, determined from the experimental data and 
calculated theoretically, are compared in Table 1. The conformity of the results seems to be 
satisfactory. 
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FIGURE 10  Bridge D010 on the highway A4: (a) side view, (b) cross-section A-A, (c) 
top view, and (d) vibration exciter on the bridge deck. 
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(c) (d)
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FIGURE 11  Destructive test of bridge D010: (a) cutting of the steel girder, (b) changes 

of the vibration amplitude as a function of bending stiffness diminishing, and (c) 
changes of the resonance frequency due to span stiffness reduction for showed vibration 

form. 
 
 
 
CONCLUSIONS 
 
Growing experience in dynamic testing of bridges and�on the other hand�the need for 
more and more efficient methods of bridge management enable the formulation of the 
following conclusions:  
 

(c)

(a) 
(b)
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FIGURE 12  Cable-stayed bridge over Vistula River in Warsaw: (a) pylon and cable 
system, (b) cable deflection applying, and (c) accelerometers in the middle of 

cable length. 
 
 
 

• All considered types of the bridge dynamic tests offer valuable and often unique 
information which can be used in bridge management; 

• Various excitation methods and advanced measurement technologies enable 
precise recording and analyzing of the bridge vibration phenomena; 

• The dynamic parameters of the bridge structures are sensitive to the structural 
damages and enable the detection of the damages which are difficult to identify by means of 
the other methods; 

• The systematic monitoring of changes in bridge dynamic characteristic can be a 
useful tool for evaluation of structure condition; 

• The considered dynamic tests are relatively inexpensive and cause minimal 
disturbances of traffic; 

• The utilization of the dynamic test results in the BMS requires standardization of 
the test procedures and measurement techniques to make all the results comparable; and  

• The unified interpretation of the test results can be ensured by the creation of a 
specialized knowledge-based expert systems. 
 
 
 

(a) (b)

(c)
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TABLE 1  Tests of Tendon No. 7 of Bridge over Vistula River in Warsaw 
(South Side) 

 
Experimental results Theoretical analysis 

Bridge load First frequency of vibration 
[Hz] 

Tendon force 
[MN] Tendon force [MN] 

Dead load 1.282 4.447 3.995 
Dead load and 
proof load 1.416 5.425 5.003 
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FIGURE 13  Tests of the bridge over Vistula River in Warsaw: (a) acceleration 
perpendicular to the cable axis and tested cable location, and (b) changes in vibration 

frequencies depending on bridge load. 
 

(b) 

(a) 



18 TR Circular E-C053: 9th International Bridge Management Conference Supplement 
 
 
ACKNOWLEDGMENT 
 
The financial support of the construction and testing of the vibration exciters by the Polish 
State Committee for Scientific Research is gratefully acknowledged. 
 
REFERENCES 
 
1. Flesch, R. G., and K. Kernbichler. A Dynamic Method for the Safety Inspection of Large 

Prestressed Bridges. In Bridge Evaluation, Repair, and Rehabilitation (Andrzej S. 
Nowak, ed.), Kluwer Academic Publishers, 1990, pp. 175�185. 

2. Casas, J. R., and A. C. Aparicio. Dynamic Testing of Bridges Using Traffic-Induced 
Vibration. In Bridge Evaluation, Repair, and Rehabilitation (Andrzej S. Nowak, ed.), 
Kluwer Academic Publishers, 1990, p. 405�420. 

3. Paultre, P., and J. Proulx. Dynamic Testing of Large-Scale Structure. Structural 
Engineering International, No. 1, 1997, pp. 29�34. 

4. Salawu, O. S. Assessment of Bridges: Use of Dynamic Testing. Canadian Journal of 
Civil Engineering, Vol. 24, 1997, pp. 218�228. 

5. Broquet, C., and E. Bruhwiler. In situ and Model Tests and Numerical Analysis of a 
Curved Cable-Stayed Bridge. Structural Engineering International, No. 1, 1999, pp. 57�
62. 

6. Bień, J., M. Gladysz, and P. Rawa.  Vibration Tests of Bridge Structures. First 
International Conference on Bridge Maintenance, Safety, and Management, IABMAS, 
Barcelona, Spain, 2002, pp. 105-106 + CD. 

7. Bień, J., and P. Rawa. Laser Based Testing and Monitoring of Large Bridges. Structures 
Congress of the American Society of Civil Engineers, Structural Engineering in the 21st 
Century, New Orleans, 1999, pp. 332�335. 

8. Bień, J., and P. Rawa, Laser Measurement of Static and Dynamic Displacement of Bridge 
Structures (in Polish). Inzynieria i Budownictwo, No. 3/4, 2002, pp. 161�166. 

9. Bień, J., P. Rawa, and J. Zwolski. Proof Load Tests of Highway Bridges (in Polish). 
Inzynieria i Budownictwo, No. 11, 2001, pp. 661�668.  

10. Bień, J., J. Kmita, P. Rawa, and J. Zwolski. Tests of Swietokrzyski Bridge over Vistula 
River in Warsaw (in Polish). Inzynieria i Budownictwo, No. 3/4, 2002, pp. 166�170. 

11. Bień, J., P. Rawa, and J. Zwolski. Load Tests of Arch Viaducts over the Highway A4 (in 
Polish). Inzynieria iBudownictwo, No. 6, 2002, pp. 316�321 

12. Bień, J., J. Kmita, P. Rawa, and J. Zwolski. Highway A4: Part Wroclaw-Nogowczyce. 
Load Tests of Bridge Structure B027 over Highway A4 � km 218+926.50. Report SPR-
60/2001. Wroclaw University of Technology, Institute of Civil Engineering, Wroclaw, 
Poland, 2001. 

13. Bień, J., J. Krzyzanowski, W. Poprawski, W. Skoczynski, and J. Szymkowski. 
Experimental Study of Bridge Structure Dynamic Characteristics Using Periodic 
Excitation. International Conference on Noise and Vibration Engineering ISMA 2002, 
Leuven, Belgium, 2002, pp. 555�562. 

 



  IBMC03-021 
 
 

19 

Hybrid Knowledge Representation in Bridge Management Systems 
 

JAN BIEŃ 
PAWEL RAWA 

Wroclaw University of Technology 
Institute of Civil Engineering 

 
 
 

Development of computer technology enables the implementation of expert tools supporting 
decision processes in bridge management systems. The proposed expert tools utilize both the data 
base and knowledge base of the system. Decisions in bridge management are very often based on a 
mixture of precise data and fuzzy or uncertain information. It requires proper technology for 
information acquisition, representation, and processing. Presented is the technology of hybrid 
knowledge representation, integrating symbolic and nonsymbolic knowledge representation. The 
proposed technology of the multilevel hybrid network enables the integration of various techniques 
in one computer tool. According to the problem that should be solved and to the type of available 
information the hybrid network can be built of the neural, fuzzy, and functional components. 

 
 

n the traditional computer-based bridge management systems (BMS) information is stored as 
data in the form of the database. The development of computer technology currently enables 

representation of information also in the form of an advanced knowledge base. A general 
diagram of the information flow in the data- and knowledge-based BMS is presented in Figure 1. 

The information coded in the form of data is stored and processed in the computer system 
and after interpretation in a specific context, is used in decision processes. Knowledge 
representation in the computer-based BMS needs much more complex procedures. The following 
main steps of these procedures can be distinguished (1): 

 
• Selection of the knowledge representation method, corresponding to the form of the 

available information; 
• Acquisition of the knowledge as a special type of the information; 
• Construction of the computer knowledge base coupled with the system database; 
• Selection of the proper inference mechanisms for each particular application; and 
• Analysis and interpretation of the results of the computer reasoning and the application 

of the conclusions in the decision processes. 
 

The analysis of the information taken into account in bridge management shows that 
decisions are very often based on the fuzzy information and on the information of various 
degrees of uncertainty (1�3). The classification of the information utilized in the BMS, proposed 
in Bień (1), is presented in Table 1. The classification is based on information fuzziness and 
takes into account two basic aspects: fuzziness of the information definition and fuzziness of the 
information measure. 

 

I 
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FIGURE 1  Information flow in the data- and knowledge-based BMS. 
 
 
 

TABLE 1  Types of Information Utilized in BMS: 
Classification Based on Information Fuzziness 

 
Measure Definition 
Precise (P) Fuzzy (F) 

Precise (P) PP PF 
Fuzzy (F) FP FF 
Undecided (U) UP UF 
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In the proposed classification three types of information definitions are distinguished: 
 
• Precise definitions (P): for example, geometrical parameters or material 

characteristics, based on standards, manuals, etc.; 
• Imprecise, fuzzy definitions (F): for example, technical condition or serviceability, 

etc., which are partly based on subjective interpretation; and  
• Undecided definitions (U): for example, aesthetics of bridge structures, which are 

completely based on individual, subjective impressions. 
 

The information can be described using two types of measures: 
 
• Precise measures (P) � expressed usually by means of the numbers (e.g., span length: 

24 m, condition state: 2, load capacity: 30 t); and 
• Fuzzy measures (F): expressed by means of the fuzzy numbers (e.g. about 20 m, 

between 20 t and 30 t) or by means of the fuzzy linguistic values (e.g. large, intensive, 
insignificant). 

 
The combination of the three types of information definitions and the two types of 

information measure creates six classes of information presented in Table 1. All the classes of 
information are usually used in bridge management. 
 
TECHNOLOGY OF HYBRID NETWORKS 
 
A variety of information types taken into account in the bridge management process require 
effective tools for data and knowledge acquisition, processing, and utilization. One of the 
promising methods of knowledge representation seems to be the technology of the multilevel 
hybrid networks (1, 4, 5). This technology enables the integration of the various knowledge 
representation techniques in one expert tool. 

The process of the creation of the expert application by means of the hybrid network 
technology is presented in Figure 2. After the general analysis of the problem and the acquisition 
of the available knowledge � the architecture of the final network should be designed. Depending 
on the form and class of the accumulated information (see Table 1) the analyzed problem should 
be divided into sub-problems. In the next step for each sub-problem a dedicated component of 
the network is created. All the components are prepared in the form of prefabricated �blocks� 
which are stored in the library of the computer system and can be used in various networks. In 
the last step of the creation process the components are connected to one another to form a 
multilevel network. For the creation of the components and the final network the specialized 
computer system Neuritis (1, 6) can be used (Figure 3). The system is now available only in a 
Polish version. 

The illustration of the process of the components connecting to obtain a multilevel hybrid 
network is presented in Figure 4. In the system Neuritis the number of network levels as well as 
the number of network components are not limited and depend only on application needs. 
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FIGURE 2  Creation of the expert tool with hybrid knowledge representation. 
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FIGURE 3  Title screen of computer system Neuritis. 
 

 
 

FIGURE 4  Component connection process to obtain a multilevel hybrid network. 
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COMPONENTS OF HYBRID NETWORKS 
 
In the presented system Neuritis three main types of network components can be used: 
 

• Functional components, which enable the implementation of analytical functions for 
knowledge representation; 

• Neural components, based on the application of multilayer neural networks; and  
• Fuzzy components, based on fuzzy logic and fuzzy inference methods applied for 

knowledge representation. 
 
The selection of the type of components depends on the quality, quantity, and form of the 

available information. Each component has to be prepared individually and has to pass all the 
needed tests before being applied as a �brick� of the final network. 
 

TABLE 2  Characteristics of the Hybrid Network Components Available in Neuritis 
 

Definable 
elements of 
component 

Functional component Neural 
component Fuzzy component 

real number ix  real number ix  

fuzzy number ix�  Form of 
input data 

matrix of real numbers 
[ ]iX  

real number ix  

linguistic variable *
ix  

In
pu

t d
at

a 

Number of 
inputs unlimited unlimited 2 

functions of n  variables in 
the analytic form 

neural network 
topology 

membership functions 
for inputs 

membership functions 
for outputs 

Internal 
resources functions of n  variables in 

the discrete form 
neuron activation 

functions 
fuzzy rule base 

aggregation of rule 
premises mathematical operations on 

the input data 
training of the 
neural network 

conclusion activation 
output composition In

te
rn

al
 m

ec
ha

ni
sm

s 

Internal 
operations mathematical operations on 

the internal resources of the 
component 

testing of the 
neural network defuzzification 

real number iy  Form of 
output 
data matrix of real numbers [ ]iY

real number iy  real number iy  

O
ut

pu
t d

at
a 

Number of 
outputs unlimited unlimited 1 
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In the preparation of each type of components the following main steps can be 
distinguished: 
 

• Defining the number of the component inputs and form of the input data; 
• Defining the internal mechanisms of the component�the internal resources specific 

for the component and the internal operations which can be prescribed on the input data and 
internal resources; and 

• Defining the number of the component outputs and form of the output data. 
 
Definable elements of each type of hybrid network components are compared in Table 2. 

The following figures present procedures for the preparation of the main types of the network 
components. 

The diagram of the creation process of the functional component is presented in Figure 5. 
Selected steps of the procedure are illustrated by the screen shots in Figure 6. 
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FIGURE 5  Defining procedure for a functional component of the hybrid network. 
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FIGURE 6  Selected steps in defining the functional component: (a) internal operations, 
(b) internal resources, and (c) visualization of internal function. 

 
 
 

The procedure of defining the neural component is shown in Figure 7. Figure 8 presents 
the visualization of neural component topology in the system Neuritis. 

(a)

(b) 

(c)
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FIGURE 7  Defining procedure for the neural component of the hybrid network. 
 

 
 

FIGURE 8  Definition of neural component topology. 
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Defining the fuzzy component requires specification of the fuzzy inference mechanism. 
The sequence of the basic steps of the component defining procedure is presented in Figure 9. 
The process of the fuzzy component creation in the Neuritis system is illustrated in Figure 10. 
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FIGURE 9  Defining procedure for the fuzzy component of the hybrid network. 
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FIGURE 10  Selected steps of fuzzy component creation: (a) component inputs, (b) 
description of the membership functions, and (c) visualization of the 

membership functions. 
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APPLICATIONS IN BMS 
 
The presented technology of knowledge representation by means of hybrid networks has been 
successfully applied in the Railway Bridge Management System SMOK, developed at Wroclaw 
University of Technology for Polish State Railways (7). A functional scheme of this system is 
presented in Figure 11, where two expert tools are shown: 
 

• Bridge Evaluation Expert Function (BEEF): supporting evaluation of the technical 
condition of the main elements of bridge structures (2, 4); and 

• Prognosis Expert Function: aiding prediction of the bridge condition changes (5, 6). 
 

Figure 12 shows an example of the hybrid network used in BEEF for the evaluation of 
the Technical Condition Index (TCI) of the column bridge pier made of reinforced concrete. A 
three-level hybrid network has been constructed of neural, fuzzy, and functional components. 
The evaluation of TCI is based on the intensity and the extent of structure damages, according 
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FIGURE 11 Functional scheme of the Railway Bridge Management System SMOK. 
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to the rules described in the Bridge Damage Catalogue (8). About 200 hybrid networks have 
been created and implemented in the whole BEEF for combinations of the following parameters: 

 
• Type of structure (bridge, footbridge, underpass, etc.); 
• Type of structure element (main girders, deck, bearings, etc.); 
• Type of construction (plate, box, beam, etc.); 
• Type of construction material (steel, reinforced concrete, stone, etc.). 
 
The presented version of BEEF, as a part of the system SMOK, has been used in the 

bridge management offices of Polish State Railways since 2000. 
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FIGURE 12  Architecture of the hybrid network used in BEEF for evaluation of TCI of the 

column bridge pier made of reinforced concrete. 
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CONCLUSIONS 
 
The technology of multilevel hybrid networks is a powerful and effective tool of knowledge 
representation in BMS. The main advantages of the presented methodology of information 
processing and utilization can be listed as follows: 
 

• Effective composition of the data and knowledge in the computer-based BMS; 
• Integration of the diverse types of information on various levels of uncertainty in one 

expert tool; 
• Unification of decisions in BMS due to application of specialized expert tools; 
• Applications based on hybrid network technology can be easily modified by the 

improvement or replacement of network components, without decomposition of the whole 
network; and  

• Technology of hybrid networks can be developed by adding new types of components 
and implementation of self-modification mechanisms in the components. 
 

On the other hand, it should be underlined that the preparation of network components 
and the creation of practically effective networks is a very time-consuming process, engaging 
quite a large group of specialists. The preparation of knowledge-based expert tools for BMS 
requires the cooperation of civil engineering experts, knowledge engineers, computer scientists, 
and so on. The presented technology requires the continuation of research and extensive 
application study to create a more and more effective knowledge representation. 
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