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Introduction 

DON L. IVEY 
FRANCESCA LA TORRE 

s the commitment to improve highway safety emerged in the late 1960s and the philosophy 
of safer roadsides and clear zones took hold nationally there were maintenance issues that 

challenged the highway engineer to find a practical solution. Prominent among these issues were 
(a) tire–pavement available friction, (b) influence of potholes and road surface roughness, 
(c) water accumulations, and (d) influence of pavement edge drop-offs. 

These issues were important because these conditions can never be completely eliminated 
in all roadways all the time. Thus it was important to be able to prioritize treatment of these 
conditions so that with limited funds the highest influence on safety could be achieved. This need 
was addressed by the Transportation Research Board (TRB) Surface Properties–Vehicle 
Interaction (AFD90) Committee. This committee set up a task group on Roadway Surface 
Discontinuities and Safety. That group was active from 1980 until the publication of TRB’s first 
state of the art report in 1983. That report, “The Influence of Roadway Surface Discontinuities 
on Safety,” was the culmination of the task group’s work. 

In subsequent years many of the members of the original task group remained active in 
the various areas of relevant study. In so doing, they were acutely aware that by 2003 TRB’s first 
state of the art report no longer reflected the state of the art and that revision was needed in areas 
where new information obtained through both research and experience had become available. 

The TRB Surface Properties–Vehicle Interaction (AFD90) Committee set up a new task 
group to update the 1983 State of the Art Report 1 (SOAR 1) in 2003. That new group is 
composed of members of the original task group plus others enlisted to provide expertise in 
various areas. 

Members of the new task group have rewritten sections of SOAR 1 (1983), retaining that 
information still viable and changing and adding new information. The result is this report. 

The most important changes since SOAR 1 was published are 

1. Hydroplaning. It was found, contrary to common engineering understanding in 
1983, that large tractor/trailer rigs (18 wheelers) were also subject to hydroplaning at usual 
highway speeds when in an unloaded condition. Further advances were made in predicting 
hydroplaning critical speeds. 

2. Holes and Bumps. Research was completed in defining road roughness frequencies 
that are most influential in affecting tire–pavement friction. Due to the style changes initiated by 
automobile manufacturers that make 17 to 20 inch rims available, these modern rims are more 
susceptible to damage and thus to air-outs due to interaction with holes, bumps, and edges. 

3. Edge Conditions. In 1983 few tests of edge conditions above 55 mph had been 
conducted. Speed limits of 70 mph are now common. Recent research has shown some pavement 
edges to be of more concern at elevated speeds resulting in changes in some maintenance and 
construction recommendations. Research on certain edge shapes has shown safety improvements 
that can be made during construction and maintenance. These improved methods are gaining 
acceptance through a combination of research and positive experience. 

A 
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4. Positive Effects of Road Surface Discontinuities has been added. It deals with 
positive influences of discontinuities such as rumble lines, rumble strips, rumble zones, and 
speed bumps. 

These innovations, powerfully cost effective, are expected to become widespread in use. 
The current objectives of TRB Committee AFD90 in preparing this report are consistent with 
those originally stated in 1983. The writers trust that this document will be useful to practicing 
highway engineers in making evaluations of maintenance guidelines and priorities. 
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Accident Data Relationships 

FORREST M. COUNCIL 
LINDSAY I. GRIFFIN III 

S. L. HALLMARK 
JACK HUMPHREYS 

raffic accidents can be complex events. To assume that traffic accidents or a given subset of 
traffic accidents (e.g., accidents that result from inadequate surface friction) can be 

accurately predicted on the basis of one antecedent condition such as skid number is wishful 
thinking. 

Making the situation even more difficult is the fact that accidents are rarely categorized 
as resulting from inadequate surface friction. Instead, some surrogate for inadequate friction 
must be found. The usual candidate is wet surface accidents. The tacit assumption in choosing 
this surrogate is that an accident that occurs on a wet surface is the result of inadequate friction. 
As Hegmon (1) points out, accidents that occur on wet surfaces may or may not be associated 
with inadequate friction. It follows that it is extremely difficult to predict wet surface accidents 
solely on the basis of skid number. 

SURFACE FRICTION AND TRAFFIC ACCIDENTS 

In a review of the literature on the association between wet surface accident rate and skid 
number, an unsatisfactory association between the two measures was demonstrated (2). In that 
review a simple linear regression of wet accident rate on skid number (SN70) was calculated for 
data contained in Rizenbergs et al. (3). The resulting equation was 

AR = 31.80 − 0.55 SN  (1) 

where AR is the wet accident rate (wet accidents per 100 million vehicle miles), and SN is the 
skid number (SN70) predicted for a speed of 70 mph. This equation accounted for 8.7 percent of 
the variance in wet accident rate. 

This same regression procedure was then applied to a second set of data provided by 
Rizenbergs et al. (4). In this case, the resulting equation was 

AR = 101.58 − 1.51 SN  (2) 

(Note that for this second data set skid numbers were recorded at 40 mph.) This second 
regression equation accounted for 9.6 percent of the variance in the wet accident rate. 

Equation 1 was based on data for rural, four-lane, controlled-access highways. Equation 2 
was based on rural, two-lane roads. The low values of 8.7 and 9.6 percent indicate that skid 
number alone is not extremely helpful in predicting wet weather accident rates. 

A 1998 study by Jayawickrama and Thomas (5) provided some understanding concerning 
why measured skid numbers do not correlate well with accident rates. In that study, repeated 
measures of skid resistance data were collected on the same six pavement sections over 18 
months. The authors found that the measured skid numbers varied as much as 10 to 12 skid 

T 
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numbers for the same location, depending on temperature and precipitation. Thus, a single 
measured number is a questionable indication of true skid resistance. 

In addition it should be recognized that the frictional properties of a road surface are not 
inherently adequate or inadequate. Rather, those surface properties are adequate or inadequate in 
terms of specific vehicle maneuvers—stopping, turning, accelerating (i.e., vehicle demand for 
friction). This fact has been recognized directly or indirectly in a number of studies (6–11). 

In the study by Ivey and Griffin (6), wet weather accidents were used as a surrogate for 
accidents that result from inadequate friction. Several variables were used as surrogates for 
vehicle demand for friction: 

ADT = average daily traffic, 
ACC = access (a standardized subjective scale of roadway congestion), 
   SN = skid number at 40 mph, 
  TW = proportion of time wet, 
  VM = mean traffic speed, 
     V = variation in traffic speed (one standard deviation from the mean), and 
   LN = lanes of traffic. 

For 32 segments of highway on high-speed roads (55 mph), wet accident rates (WARS) 
ranged from 0 to 6.56. Approximately 58 percent of the variance in WAR could be accounted for 
by the following standard multiple linear-regression equation: 

WAR = 21.7 + 0.0009 ADT + 2.34 ACC – 0.40 SN 
+ 286 TW + 1.32 LN 

(Note that the units of WAR are wet pavement accidents per mile per year.) 

For 36 segments of highway on low-speed roads (<55 mph), the WARs ranged from 0 to 
40.41. Approximately 46 percent of the variance in WAR could be accounted for by the 
following standard multiple linear-regression equation: 

WAR = −0.75 + 0.0001 ADT – 0.053 VM + 0.54 V 
+ 069 ACC – 0.025 SN 

Although Equations 3 and 4 still leave a large portion of the variation in the dependent 
variable unaccounted for, note that by tacitly taking demand for friction into account in these 
equations, much greater accuracy is achieved in predicting WAR than would have been possible 
on the basis of SN alone. This is emphasized by comparing the values of 58 and 46 percent 
(which roughly account for half the variation) to the values of 8.7 and 9.6 percent (which account 
for roughly one-tenth of the variation). 

In a more recent study, Xiao et al. (12) attempted to predict wet pavement accidents using 
a fuzzy logic model, an alternative to traditional regression models such as the one noted above. 
The authors concluded that while more developmental work is necessary, the fuzzy logic models 
appear to be more accurate and reliable than nonlinear regression models. Their models indicated 
a relationship between wet-weather accidents per mile and skid number, posted speed, average 
daily traffic, pavement wet time, and driving difficulty. The latter is a high, medium, low rating 

(3)

(4)
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for a section of roadway based on horizontal and vertical alignment, signalization, presence of 
turn lanes, number of access points, and surrounding land use. 

That combining measurements of skid resistance with wet pavement data is predictive of 
wet weather crashes is further supported by the results of New York State DOT’s Skid Accident 
Reduction Program (SKARP) (13). Since they could not obtain accurate and timely data on 
rainfall for every pavement section on the state system, the DOT compared the proportion of wet 
weather crashes at each site with the proportion for similar roads in the same county. The 
assumption here is that rainfall (and thus wet pavement exposure) would be similar across a 
county, a reasonable assumption. If a location has a wet weather crash rate that is 50 percent or 
more higher than the wet weather crash proportion for all roads in the same county for two years, 
and if it has a low skid number, it is treated with an overlay or microsurfacing as part of the 
maintenance program. Preliminary analysis of before and after data indicates reductions of 50 
percent for wet road accidents and 20 percent for total accidents. While these results could be 
somewhat inflated due to possible regression-to-the-mean bias, there is fairly clear indication 
that the site selection or treatment program is effective. Again, the results further support the 
finding that skid numbers need to be used in combination with rainfall or other similar data if 
they are used to predict safety. 

During the study of truck tire hydroplaning in 1984 Chira-Chavala (14) analyzed wet 
single-vehicle accidents of commercial vehicles compared to dry accidents. It was found that 
empty rigs were three times more likely to be involved in losses of control than were loaded rigs. 
This was considered to be strong circumstantial evidence that empty rigs were going out of 
control due to sensitivity to hydroplaning at common highway speeds. This overrepresentation is 
illustrated by Figure 1. 

FIGURE 1  Means of wet to dry ratios for single-truck accidents and collisions.
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SURFACE DISCONTINUITIES AND TRAFFIC ACCIDENTS 

The literature on the relationship between roadway discontinuities and traffic accidents is 
limited. If discontinuities are related to crash risk, then a significant problem could exist, 
particularly on two-lane rural roads. As reported by Neuman et al. (13), approximately 39 
percent of the fatal crashes occurring annually—approximately 15,000 fatal crashes—involve a 
vehicle departing the roadway. Of these roadway departure fatal crashes, approximately 50 
percent occur on rural two-lane roads. An additional 14 percent of fatal crashes are head-on 
crashes, some of which could be unsuccessful recoveries from roadway departures. Studies 
which have attempted to look at both the extent of roadway discontinuities (e.g., pavement edge 
drops, pavement ruts, potholes, etc.) and the relationship of these discontinuities to crashes 
include the following. 

A 2006 study by Hallmark et al. (15) examined the frequency and magnitude of 
pavement edge drop on rural two-lane roads with ADT of 400 vehicles per day (vpd) or greater 
in two midwestern states. Randomly sampling sections of these roadways, the researchers found 
that 22 percent of the total sampled mileage in one state and 31 percent in the second state had 
edge drops of no greater than 1.0 inches. Edge drops of 2.5 inches or greater were found on 3.3 
percent and 7.1 percent of the sampled mileage in the two states. Note that the sampled roads 
were all state-system roads, and edge drops may be found more often on non-state-system roads 
(i.e., county or local roads) where maintenance funding may be more limited. These two states 
are believed to have very good shoulder maintenance programs, and thus it is perhaps unlikely 
that these statistics represent state systems in other states. 

Unfortunatley, no other studies of edge drop extent or on the extent of other roadway 
discontinuities were found. 

With respect to roadway discontinuities and crashes, Ivey and Griffin (16) examined 
15,968 single-vehicle accidents that occurred in North Carolina in 1974. Police officers’ narratives 
for all 15,968 accidents were read by automated means. Any narrative that contained 1 of 19 key 
words (e.g., dip, rocks, rut, edge) was printed out and reviewed by the authors to determine if that 
accident resulted from, or was aggravated by, a roadway discontinuity. Approximately 566 (3.5 
percent) of the 15,968 accidents were associated with roadway disturbances. 

The data in Table 1 are adapted from the original report. Note that police accident reports 
are not always correct in indicating the elements that contribute to a specific accident because of 
a wide variation in officer experience and capability. Nevertheless, even with this known 
shortcoming, the keyword-narrative data-retrieval system developed by the North Carolina 
Highway Safety Research Center is a powerful tool. 

The authors inferred that approximately half of the accidents reported in Table 1 resulted 
from a disturbance off of the traveled surface (e.g., “which dropped off the pavement,” “vehicle 
hit curb and overturned”) and half resulted from disturbances in the lane of travel (e.g., “vehicle 
hit bump in road,” “ruts in road caused loss of control”). 

Klein et al. (17) reviewed accident data from three sources: California accident data (police 
level data), collision performance and injury report (CPIR) data provided by the Highway Safety 
Research Institute of the University of Michigan, and Indiana accident data (levels II and III) 
provided by Indiana University. Their findings were based on 23 hard copies from the California 
files, 26 from the Michigan files, and 22 from the Indiana files. The authors concluded that the 
most significant roadway disturbance is shoulder drop-off, closely followed by loose material on 
roadway. Lesser disturbances included potholes, rough roads, dips, and roadway design faults. 
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TABLE 1  Number of Accidents from Discontinuity (Keyword) 

Disturbance Frequency Disturbance Frequency 
Water 143 Patch 11 
Dropped 173 Bump 9 
Soft 71 Dip 9 
Curb 62 Rocks 4 
Edge 59 Ruts 4 
Hole 34 Track 3 
Rail 24 Rut 2 
Drop 23 Manhole 2 
Rock 19 Bumps 2 
Surface 12 Total 566 

In a more recent (2005) study, Dixon (18) examined the extent to which roadway factors 
including pavement edge drop were possible causal factors in rural two-lane road fatal crashes. 
The authors randomly selected 150 fatal crashes on both state-system and non-state-system roads 
in Georgia, visited the crash locations, and recorded roadway characteristics. Although they were 
not initially looking for drop-off, it was noted at a number of locations investigated. The 
researchers estimated that in 38 of the 69 non-state-system fatal crashes (55 percent), edge 
rutting or edge drop-off was present. In 21 of the 38 sites where drop-off was present, the authors 
determined that it appeared to be one of the crash causal factors. The researchers also felt that 
edge drop was more likely to have been present when they investigated crashes on non-state-
system roads than on state-system roads. 

In the 2006 study referenced above, Hallmark et al. (15) conducted a comprehensive 
examination of pavement edge drop-offs (EDOs) which include reviewing of national and state 
guidelines on maximum acceptable drop-offs on existing roadways and during construction or 
repaving, sampling the frequency of drop-offs in two states, determining what roadway 
characteristics were correlated with higher incidence of EDOs, estimating the numbers of crashes 
related to EDO in four states, and developing a model predicting EDO crashes as a function of 
measured drop-off and other roadway factors in two states. With respect to estimation of EDO 
crashes on two-lane rural roads, the extent of the problem, police narratives and sketches on 
samples of crash report forms from four states (North Carolina, Illinois, Iowa, and Missouri) 
were examined by researchers who made judgments on whether each crash was a “probably” or 
“possible” drop-off related crash. Although the judgments were made by different researchers, 
while the amount of detail on the state crash forms differed from state to state, and while the 
sampling was from state-system roads in two states but all rural two-lane roads in the other two, 
an attempt was made to use the same methodology. In general, a “probably” drop-off crash was 
one where the police sketch indicated the possibility of tire scrubbing (i.e., the vehicle was drawn 
parallel to and near the pavement edge during the crash sequence) and the shoulder condition 
indicating the presence of an edge drop. A “possible” drop-off crash again included some 
indication of a tire-scrubbing condition, but was unclear on shoulder condition. Obviously, since 
tire scrubbing is not routinely investigated or recorded by the police, these were researcher 
judgments based on the data available. The results for the samples of crash report forms 
reviewed were then extrapolated to estimate the proportion of total crashes and the proportion of 
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single-vehicle run-off-road crashes involving “probably” and “possible” drop-offs in each state. 
The results indicated that the percent of two-lane rural road crashes which were “probable” EDO 
crashes ranged from 0.01 percent to 0.12 percent across the four states. The percent of two-lane 
rural road crashes that were “possible” EDO crashes ranged from 0.57 percent to 1.24 percent. 
For these same roads, the percent of single-vehicle run-off-road crashes that were “probably” 
EDO crashes ranged from 0.14 percent to 1.24 percent, and those that were “possible” EDO 
crashes ranged from 1.89 percent to 12.44 percent. 

Finally, using data from Iowa and Missouri, the research team attempted to explore the 
issue of critical height of EDO by developing negative-binomial regression models where 
potential EDO crashes per mile were modeled as a function of AADT, lane width, shoulder 
width, and a specific fraction of drop-off measurements above a given height or within a given 
height interval. The height intervals examined were all 2.0 inches or greater. Note that the 
crashes being modeled here were not the same as in the “problem-size” analysis, since it was not 
possible to manually examine the report form for each crash. These potential EDO crashes 
included five different crash types (e.g., head-on crashes into opposing vehicles after running off 
the road), but the largest component was all run-off-road right crashes. The Iowa results 
indicated that the fraction of edge drops above 2.5 inches for a roadway segment was a 
statistically significant predictor of these potential EDO crashes. The Missouri results, based on a 
much smaller sample, did not show any of the EDO variables to be significant predictors. 

In summary, although most authorities would agree that road surface discontinuities may 
precipitate or aggravate accidents, the magnitude of the problem still remains in question for 
many such discontinuities. The 2006 research effort provided some information on edge drops. It 
appears that while the number and proportion of total crashes that are EDO related is small, it is 
large enough to continue to warrant attention, particularly given that there are existing repaving 
techniques that can be used to eliminate the problem (e.g., see FHWA’s “safety edge” at 
http://safety.fhwa.dot.gov/roadway_dept/docs/sa05003.htm). 

Unfortunately, however, even this somewhat limited available knowledge from accident 
data of the relationship between the magnitude and shape of the drop-off itself and the hazard 
presented has not resulted in reasonably uniform warning or remedial action among various 
highway agencies. The Hallmark et al. (15) report lends credibility to this concern in that during 
construction activity, one state reported that a ¾ inch drop-off required warning signing, while 
another state requires signing only when the drop-off equals or exceeds 3 inches. That latter 
state, interestingly, also reports that “any” drop-off is considered hazardous. Such widespread 
admissions of hazard and lack of agreement among various governmental agencies as to how to 
address those hazards are frequently difficult to overcome by defendants in tort claims litigation. 
The fact that resurfacing contracts in some counties and municipalities are still being funded 
without a requirement that shoulders be brought up to pavement level is indicative of the need 
for the most recent information reaching those entities. 
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Roughness, Holes, and Bumps 

JAMES C. WAMBOLD 
RICHARD A. ZIMMER 

DON L. IVEY 
DEAN L. SICKING 

ost people are aware of extreme cases of roughness, such as the potholes and severe 
bumps. The effect of these surface irregularities on safety is widely recognized. The 

hazard of a washboard road where a driver can lose control of a vehicle at inappropriate speeds is 
readily understood. The transition of a roadway from a smooth surface to a rough one, however, 
may give a driver difficulty in controlling his vehicle and can be more subtle in its influence on 
safety. By violating driver expectancy, a road that is differentially rough may be less safe than a 
uniformly rough road. See Figures 1 and 2. 

ROUGHNESS 

Studies of the effects of roughness on vehicle handling characteristics were conducted in 1972 by 
Quinn and Hildebrand (1, 2), by Brickman et al. (3), and by Wambold et al. (4). These studies 
demonstrate that pavement roughness had an effect on the tire–pavement friction available to the 
vehicle. The Quinn and Hildebrand study demonstrated the effect of pavement roughness on 
steering, and the study by Wambold et al. demonstrated the effect of pavement roughness on 
traction. 

The relationship between road roughness and accident risk was reported by Parr in 1973 
(5). In 1975 Hutchinson et al. (6) reported that traction is highly dependent on the speed at which 
a driver traverses a rough road; thus when frictional measurements are made at speeds other than 
the test speed, road profile data should be considered. Therefore, frictional predictions without 
profile considerations can result in gross errors. In 1976 Ivey and Griffin (7) reported on the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M 

FIGURE 1  Critical roughness on gravel farm road. 
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relationship between road surface failures and accident causation. In that paper a group of 
engineers ranked a number of surface conditions in relation to safety, based on their 
understanding of vehicle dynamics, potential surface conditions, and experience. According to 
that ranking, washboarding, or corrugated surfaces, was a leading condition pertaining to the 
pavement surface that affected safety. 

In 1977 Magnusson and Arnberg (8) reported that road roughness affects a driver’s 
ability to collect information and carry out intended maneuvers. They also reported that a 
person’s ability to perform motor tasks has been shown to be reduced by vibrations, but it is not 
known to what degree the findings are applicable to vibrations encountered on a rough roadway. 
In 1977 Bohn and Dunkle (9) and in 1980 Kuehne and Bohn (10) simulated the effects of road 
roughness on pavement loading and traction. Although the way roughness reduces available 
pavement friction was illustrated, it was determined that a better tire road model would be 
required to achieve accurate quantitative results. In a more recent paper Burns (11) concluded 
that roughness affects safety in many ways, and it needs to be considered in any evaluation of 
pavement safety. He noted that roughness can reduce the steering and braking force and can 
significantly affect the controllability of a vehicle. Washboarding surfaces and repeated cycling 
undulations of the surface can cause significant control problems and can shake a vehicle, thus 
causing it to lose part of its load. In another paper Molenaar and Sweere (12) concluded that 
roughness appears to have a marked effect on road user safety. 

A study at the Pennsylvania Transportation Institute makes use of a circular track 
developed by R. R. Hegmon. This track has been modified so that roughness of a known 
amplitude and wavelength can be inserted in a wheel track. Testing was reported at TRB (13) 
and showed a 30% loss of traction between 8 and 12 Hz. Figure 3 shows the wavelengths that 
need to be avoided as a function of speed. 

In a paper by Bester (14), a study is described in which the effect of the riding quality of 
the road surface on the accident rate was investigated. This was done for a network of paved 
roads in two of the provinces in South Africa. Data on various road features were collected from 
the KwaZulu-Natal and Western Cape Provincial Road Departments. Road sections with 
constant cross sections were identified. For each of these, the average traffic volume, the terrain 

FIGURE 2  Repairs of critical roughness on a concrete bridge deck. 
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type, riding quality, and the different types of accidents were obtained. Correlation matrices, 
direct comparisons, and regression analyses were used to determine the effect of the different 
road features on the occurrence of the different types of accidents. The road and its environment 
alone contribute only about seven percent to the occurrence of accidents. However, when the 
combination of human error and the road is considered, research has shown that more than 20 
percent of accidents can be ascribed to this combination of factors. Improving the Pavement 
Serviceability Index (PSI) from 2.0 to 3.5 leads to a 34% lowering of the total accident rate in 
rolling terrain and by 39% in mountainous terrain. 

One factor that is probably the least understood is the effect of vehicle vibration induced 
by road roughness on driver performance. It has been reported by human factors researchers that 
continuous exposure to vibration may induce fatigue, which may in turn be a factor that 
contributes to accidents. To date, no direct relationship between road roughness and fatigue-
related accidents has been clearly established, although the International Standards Organization 
(ISO) provides an arguable link between vibrations and fatigue. 

The International Roughness Index (IRI) has in recent years become the standard for 
assessing pavement surface roughness. It is based on a quarter-car model traveling the pavement 
surface at a constant speed. The pavement surface is represented by true geometric data; i.e., the 
longitudinal profile represents the pavement surface. IRI has been proven to satisfactorily 
explain phenomena such as pavement performance and pavement deterioration. However, 
vertical motion frequencies and amplitudes affecting humans the most are different from those 
used in the model. Humans are also affected by side motion, which is not accounted for at all. At 
a road test with instrumented vehicles (15) it was found that the index did not properly indicate 
rough road sections. Thus the IRI was less suitable for this time of road. A laser profiler 
commonly adapted to road surface surveying was also used for assessing the IRI. Raw data were 
stored so that other models could be tried, including horizontal acceleration. A comparison was 
then made to the instrumented vehicle test data. Some suggestions are made for a ride quality 
index adjusted to human aspects. 

FIGURE 3  Wavelengths to avoid as a function of speed. 
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POTHOLES 

Holes in the pavement have to be a foot or more long and wider than a tire to be hazardous. If a 
driver claims his vehicle was thrown out of control by a small hole, treat this statement with 
suspicion and look for driver actions which may be contributing factors, such as cutting back into 
lane after overtaking. A vehicle can be turned over by hitting a chuck hole without signs on 
either the tire or the hole, especially when the edges of the hole are rounded. 

With this statement Baker (16) gave credence to the danger of holes—a major example of 
discontinuities. Whether called pothole, chuck hole, or any other colloquialism, the nature of 
such a hole is to be hard on tires, vehicles, and drivers’ tempers. But are they a significant direct 
threat to safety? This alleged influence on safety may be highly inflated by many accident 
reports that reflect driver frustrations and excuses. 

Accident reports state that holes are a causative factor in many accidents. In 1976 Ivey 
and Griffin (7) reported a rank ordering of roadway disturbances based on 15,968 accidents in 
North Carolina. Hole was mentioned in 34 reports that ranked hole sixth out of 19 disturbances 
behind the key words water, dropped, soft, curb, and edge. In a Delphi ordering developed by the 
same authors, holes ranked eighteenth out of 20 disturbances. 

In 1977 Klein et al. (17) completed a study of the influence of roadway disturbances on 
vehicle handling. The accident data cited were difficult to interpret because of the extremely 
small sample size from each source. As part of this study a questionnaire was sent to the 
membership of the Automobile Club of Southern California. Twenty-eight percent (1,412 
individuals) responded. Holes ranked third out of 13 identified disturbances in terms of a driver’s 
perception of hazard. It appears that, whether justified or not, holes are clearly perceived to be a 
significant threat to safety. It is also clear that this public perception is not shared by many 
engineers who have significant knowledge of vehicle handling and stability characteristics. 

To clarify this apparent difference in opinions, Zimmer and Ivey (18) conducted a series 
of controlled vehicle–hole interaction experiments. With holes as large as 3 feet long (diameter) 
and 7 inches deep, the stability of vehicles was not affected. That is, the trajectory, or vehicle 
path, was not changed. The only safety-related influence of holes identified was damage to tires 
and rims, with the associated potential for an air-out. Figure 4 shows one of the tests conducted 
on naturally occurring holes. By controlled experiments and computer modeling, the drop rates 
of various automobile suspension systems were determined. The information was then combined 
with observed tire deformation effects to determine the limits of safety (see Figure 4). 

As illustrated in Figure 4, the critical point for a particular vehicle and speed combination 
is first located by determining how long it takes for a tire to descend to a critical level in a hole. 
A line is extended up and to the right from that point. The area cut off by the two arrows (i.e., the 
area of the chart above and to the right of the intersection of arrows) represents those 
combinations of hole length and depth that could produce a potentially hazardous condition. 
Conversely, the area to the left and below the intersection of arrows indicates relatively safe hole 
sizes for the indicated speed. 

Figure 4 is still applicable for vehicles with conventional size rims and tires, that is 
vehicles rim-tire combinations with rim ground clearance, RGC, equal or greater than 3 inches. 

Styling changes of modern automobiles, SUVs, and pickups have rendered Figure 4 
obsolete for those pretentious recipients of rim-tire combinations with rim ground clearances 
significantly less than 3 inches; e.g., rims up to 22 inches in diameter sometimes have ground 
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clearances of as little as 1½ inches.1 While little actual full-scale dynamic testing of these rim-
tire combinations is available at this time it is highly probable that they are significantly more 
susceptible to damage from holes and bumps than are conventional combinations having rim 
ground clearance greater than 3 inches. See Figure 5 for example of a plus-sized tire–rim with 
less than 2 inches of ground clearance (RGC). The coin is a quarter. 

                                                 
1 The auto industry calls this “plus sizing.” 

FIGURE 4  Critical Combinations of hole length and depth for various 
speed and vehicle situations (1983). 

FIGURE 5  Plus-sized rim–tire (reference quarter is 0.92 inches in 
diameter or 23 millimeters). 
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Walter (19) states:  
Plus-sizing seems to be reversing these long-term developmental trends in tire-wheel 
technology. While the functional benefits include improved vehicle handling and high 
speed capability as well as the potential to increase brake diameter, the principal 
disadvantages are many and include cost, weight, fuel economy, ride quality and wet 
grip/snow traction, as well as indicate hydroplaning resistance. Perhaps more serious 
downsides include reduced load-carrying capacity at extremely low aspect ratio, a shift in 
the handling balance toward oversteer and a slight increase in rollover propensity. 

A further disadvantage is that the increased vertical stiffness of low aspect ratio 
tires means they act as shock transmitters rather than shock absorbers. Safety 
implications arise when a motorist will agree to replace a bent wheel that is no longer 
able to hold air, but will continue to use an injured tire since the damage is internal and 
not visible to the naked eye. 

It was found in pre-1983 research by Zimmer that the threshold for damage to rims was 
closely approximated by hole depth or bump height equal to or greater than the rim ground 
clearance (RGC). A conservative approach would be to estimate that this will hold true for 
modern style, low clearance rims. In that case Figure 6 illustrates significant difference in 
sensitivity of the new rims. 

FIGURE 6  Changes suggested by plus-sized rims (for definitions of depth, D, 
and length, L, see Figure 4). 
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The bottom series of arrow indicators defining “Reasonably Safe” and “Possibly Unsafe” 
areas is far removed from the areas defined in Figure 4 in 1983. Figure 7 also indicates this 
major change in sensitivity. 

While in 1983 a pothole would need to be over 3 inches in depth and over 30 inches in 
length to pose a rim damage threat to even a mini-compact vehicle, in 2006 holes as shallow as 
1½ inches no more than 16 inches long could, in theory, cause rim damage. It may be, however, 
that this overstates the problem, since the angle the tire circumferential surface makes with the 
ground surface is much smaller. This is graphically illustrated by Figure 8. For the 1½-inch depth 
in comparison with a 3-inch depth see Figures 7 and 8. 

Damage to tires and rims, with the associated potential for an air-out, is the only 
significant influence of holes on safety identified in the study by Zimmer and Ivey (18). Holes 
are atypical of most highway surface discontinuities in that they have a greater potential to cause 

FIGURE 7  Theoretical change in sensitivity of (low values of RGC) 
rims with low clearance values. 

FIGURE 8  Illustration of contact angle. 
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damage at lower vehicle speeds. A vehicle with an air-out is obviously much easier to cope with 
at 30 mph than at 60 mph. The result of these two effects is that the usual size hole a driver 
encounters is not likely to be a major problem when struck directly. 

Problems can arise if a driver reacts to a hole inappropriately. For example, it is usually 
counterproductive to react with braking or extreme cornering to a hole in the vehicle’s path. In 
general, a given size hole is more likely to cause damage if speed is reduced. Losses of control 
can occur if extreme braking is produced at highway speed. Extreme cornering can have two 
results. First, if a driver reacts with a large steering input to avoid a hole, he may produce a loss 
of control on a low friction surface. Second, he may put his vehicle in a hazardous position with 
respect to other traffic. In the authors’ opinion, it is sometimes the latter maneuver that accounts 
for some of the accidents where holes are identified as having an influence on driver safety. 

The influence of holes encountered when cornering deserves further attention. A 
cornering (turning) vehicle transfers weight from the wheels on the inside of the turn to the 
outside wheels. The springs on the heavily loaded side are compressed. When one of these tires 
encounters a hole it goes down faster because of the acceleration of the higher spring force. Thus 
it is in position to be damaged more quickly (down farther in a given length of hole for a specific 
speed) than is represented in Figure 8. A second and potentially more hazardous situation is if a 
tire is moving laterally and encounters the side of a hole. A trip and roll could possibly occur in 
this situation, but it would require the car to be in an extreme lateral drift (skid). This lateral drift 
would need to be so extreme that it would be associated with intemperate vehicle control or a 
loss of control that preceded contact with the hole. It could be that first-hand knowledge of an 
event such as this, even though it is likely to be rare, led Baker (16) to say that “a vehicle can be 
turned over by hitting a chuck hole.” 

This work does not indicate that holes in highway surfaces should be tolerated. The many 
disadvantages of these flaws dictate their elimination within the bounds of financial constraints. 
In this day of highways that are “past maturity and in future shock” (20), it is unlikely that the 
public will choose to fund the maintenance required to make holes an endangered species. The 
purpose of this work is to put the influence of holes on safety into perspective so that 
maintenance activities can be appropriately prioritized. 

It appears improbable that any but the largest holes cause significant control problems for 
tire-rim combinations with RGC values of 3 or more inches. Exceptions may be a large number 
of holes in a small area that cause extreme roughness, especially where maneuvers such as 
braking or cornering are required. Under some highway conditions, the slower the speed is of a 
vehicle, the larger is the impact force for a given size hole. Although tire or rim damage may be 
more probable at lower speeds for deep holes, the result of such damage will be easier for the 
driver to accommodate. The greatest influence of holes on safety may be the hazard caused by 
drivers trying to avoid them. 

CURBS 

Curbs and gutters were used to facilitate the ingress and egress of carriage riders and later 
automobile passengers, to control roadway drainage, to help delineate the edge of the travelway, 
and to afford protection for pedestrians. As paved roadways branched out into the rural areas, so 
did the use of curbs. Early standards and guidelines published by federal and state agencies 
promoted their use on rural highways and urban streets. 

Two basic types of curbs have been used for many years. Barrier curbs, which were 
designed to prohibit or discourage encroachments, are relatively high and steep faced. Mountable 
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curbs, which were designed to enable vehicles to cross them readily, are relatively low, with flat 
sloping faces. Details of widely used curbs of each type can be found in the AASHO Blue Book 
(21). 

Studies in the 1950s by Benton and Peterson (22) and Benton and Field (23) were some 
of the first to note the potential safety problems with curbs. Vehicle jump subsequent to impact 
with the curb was observed, and recommendations were made regarding barrier height as a 
function of barrier setback from the curb. In 1964 the Highway Research Board Special Report 
81 (24) alluded to possible problems if high curbs are used in front of guardrails. 

The first Yellow Book published by AASHO in 1967 (25) stated that “a dike or curb 
should not be used in front of guardrail where it may result in a dynamic jump by the vehicle 
before it strikes the barrier.” NCHRP reports by Michie and Calcote (26) and Michie and 
Bronstad (27) recommended that curbs be placed behind guardrail. The Red Book published by 
AASHO in 1973 (28) pointed out the need for relatively flat surfaces in front of barriers. It stated 
that barrier curbs should not be used on freeways and high-speed arterials. The second Yellow 
Book published in 1974 (29) reflected these recommendations. 

As shown in Figure 9, studies by Olson et al. (30) overstated the direction capability of 
curbs, probably due to an inaccurate tire model in versions of HVOSM used to simulate vehicle 
tests. Also shown on Figure 9 is a boundary reported by Navin (31) and a boundary derived by 
Ivey that compare favorably. These curves illustrate the modest redirection capabilities of the 
most common curb design. 

The AASHTO barrier guide of 1977 (32) concluded that a curb should not be used as a 
redirective device, and if it is used with a barrier, the face of the curb should be no closer to the 
traveled way than the face of the barrier. 

FIGURE 9  Type B curb redirection. [From AASHO (21).] 



20 TRB Transportation Research Circular E-C134: Influence of Roadway Surface Discontinuities on Safety 

 

A recent study by Griffin (33) indicated that small cars are more likely to be involved in 
curb accidents than are large cars. This appears to be a logical consequence, because handling 
and stability problems associated with car–curb involvements should be inversely related to 
wheel size. Figure 10 shows an extreme example of the damage a curb can cause when struck at 
high speed. 

The literature and data in the report by Griffin strongly suggest that the hazards curbs 
present to errant motorists on high-speed facilities in terms of potential loss of vehicle control, 
potential overturning, and incompatibility with barrier performance outweigh those benefits that 
may accrue as a result of improved delineation, drainage, and traffic control. On most high-speed 
facilities, delineation, drainage, and traffic control can be treated better by other means. 

In lower speed urban areas 6 inch curbs have traditionally been considered “barrier 
curbs.” (REF) This misnomer may have had influence in allowing utilities to place poles directly 
behind a curb. This practice, placing poles in a position clearly hazardous to traffic, is still not 
totally discarded. 

QUESTIONABLE INFLUENCES 

Roughness has a traditionally negative connotation to highway engineers. In 1983, when TRB’s 
first State of the Art Report was published that was still true. That report was titled “The 
Influence of Road Surface Discontinuities on Safety.” Every example of roughness given was 
either shown or assumed to have a negative safety influence. Examples were 

• Travel surface roughness, 
• Holes, 
• Bumps, 
• Rutting, and 
• Edge drops. 

The presumed negative influence of these characteristics is not always valid. The budding 
philosophy of traffic calming lends credence to some heretofore unexplained positive influences. 

FIGURE 10  Rim damage and air out from high speed curb impact. 
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This “traffic calming” approach follows an idea expressed by Gallaway in the 1980’s “If 
you make the road bad enough speeds will go down and injury rates will plummet.” In a nation 
addicted to mobility, this is not an acceptable solution. It might be of consideration, however, 
when developing maintenance priorities. 

For example, there is research by Kamplade (34) that shows accident rates reduced as 
wheel path depression (WTD) increases. This is seemingly contrary to conventional wisdom and 
to other research studies, such as Start et al. (35). Depressed wheel paths, pond water, and 
ponded water leads to hydroplaning losses of control. 

The explanation may be in the experimental design of those two studies. In the case of 
the Kamplade data analysis, both wheel track depressions and tire–pavement friction were 
measured. By separation of these variables, as shown by Figure 11, it is seen that higher WTD 
values are a positive influence on reducing accidents while lower values of friction have a 
comparatively negative influence on accident rate (i.e., accident rates increase). When Start et al. 
analyzed simply the one variable influence of WTD values compared to accident rate, they found 
WTD to be a negative influence. (See Figure 12.) These studies might not conflict if there is a 
codependence between friction and WTD. This seems likely, since normally it would be older 
pavements that have significant WTD and these are also the surfaces which would have greater 
traffic polishing. 

It is difficult to explain the indication from Kamplade that larger WTDs result in lower 
accident rates. The only explanation that is straightforward enough to seem reasonable is 
Gallaway’s reasoning: to wit, “As WTDs increase and the water depths get deeper under rainfall 
conditions, most drivers slow down.” The exception to this would be when a restricted zone of 
higher WTDs is a surprise on an otherwise low WTD roadway, i.e., driver expectance is violated. 

FIGURE 11  Wet pavement accident rate as a function of water depth (WTD 
post depth) and skid resistance. [After Kamplade (34).] 
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Also considered should be the fact that the Kamplade data only had rut depths up to about 
6 mm compared to Start’s data that included rut depth up to 14mm. Although not counter-
intuitive in influencing accident rate, the rate is quite insensitive in the 0-to-6mm zone in the 
Start observations. The accident rate according to Figure 12 increases precipitously at rut depths 
greater than 6mm. If heavy traffic polishing or asphaltic concrete bleeding is associated with the 
rut depths in excess of 6mm, greatly reduced tire–pavement friction might account for much of 
the increase. 

On dry pavements the observations of the AASHTO task force on rutting are 

Rutting affects vehicle handling. Handling for smaller vehicles is impaired when they 
drive in a rut pattern that has been established by trucks. There is also concern that the 
wider 102-inch trucks are having steering consistency problems because of rut patterns 
formed by the more common 96-inch wide trucks. (36) 

There are also examples of pavement roughness cited that seem to decrease accident 
rates. Perhaps one conclusion might be: While pavement roughness is clearly a hindrance to 
mobility and transportation economy, the existence of modest roughness does not necessarily 
equate to an increase in accident rates. Some types or degrees of roughness may lead to overall 
traffic speed reduction. 
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Positive Effects of Road Surface Discontinuities 

FRANCESCA LA TORRE 

hen traveling over most road surface discontinuity the effect on the driver is vibration and 
noise inside the vehicle that can be considered as a negative effect on driving comfort. In 

some instances, however, this “vibrational effect” can be achieved intentionally to alert the 
driver to a potential hazard or as a traffic calming intervention. 

These “intentional” discontinuities can be of several types. The most common are 

• Continuous shoulder rumble strips (either rolled-in or milled-in); 
• Centerline rumble strips; 
• Transversal in-lane rumble strips; and 
• Humps. 

The first two types of interventions are aimed at alerting the driver when the vehicle 
departs from its preferred trajectory. The third and fourth interventions are specifically aimed at 
reducing driving speed. 

CONTINUOUS SHOULDER RUMBLE STRIPS 

A shoulder rumble strip is a longitudinal design feature installed on a paved roadway shoulder 
near the travel lane (Figure 1). It is made of a series of indented or raised elements intended to 
alert inattentive drivers through vibration and sound that their vehicles have left the travel lane. 
On divided highways, they are typically installed on the median side of the roadway as well as 
on the outside (right) shoulder (1). 

There are 4 different rumble strip types: milled-in, rolled-in, formed, and raised. A short 
description of each rumble strip type is provided here: 

• Milled-in: This design is made by cutting (or grinding) the pavement surface with 
carbide teeth. Some of these cutting devices could be considered small roto-mills. 

• Rolled-in: The rolled-in design is generally installed by using a steel wheel roller to 
which half sections of metal pipe or solid steel bars are welded. The compaction operation 
presses the shape of the pipe or bar into the hot asphalt shoulder surface. 

• Formed: The formed rumble strip is added to a fresh concrete shoulder with a 
corrugated form which is pressed onto the surface just after the concrete placement and finishing 
operations. 

W 

FIGURE 1  Shoulder rumble strips. 
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• Raised: Raised rumble strip designs can be made from a wide variety of products and 
installed using several methods. The elements may consist of raised pavement markers, a 
marking tape affixed to the pavement surface, an extruded pavement marking material with 
raised portions throughout its length, or an asphalt material placed as raised bars on the shoulder 
surface. 

The most common shoulder rumble strip types are the milled-in and the rolled-in. The 
difference between the two types is not only the construction technique adopted to realize them 
but also the resulting cross section and therefore the effects on vehicle vibrations, as shown in 
Figure 2. 

Several studies were conducted in the 1990s to evaluate the effect of shoulder rumble 
strips on freeways. All lead to the conclusion that these interventions are extremely cost effective 
in reducing single-vehicle, run-off-road accidents. Concerning those first evaluations the studies 
conducted by Wood (2), Hickey (3), and Perillo (4) estimated the following: 

• Wood, in 1994, reported a 70% reduction in single-vehicle, run-off-road accidents by 
implementing milled-in rumble strips in the Pennsylvania Turnpike; 

• Hickey, in 1997, updated Wood’s results on the effects of the shoulder rumble strips 
in the Pennsylvania Turnpike, confirming a reduction in single-vehicle, run-off accidents by 60% 
over 53 test segments; and 

• Perillo, in 1998, reported a reduction in single-vehicle, run-off-road accidents up to 
88% after the installation of milled-in shoulder rumble strips in the New York Thruway. 

It should be noted that the described studies are straightforward comparisons between the 
accidents occurring before and after the rumble strip installation. These are normally considered 
statistic-limited or naïve before–after studies. 

A recent study by Griffith (6) on rolled-in rumble strips, resulted in a “medium-high” 
level of predictive certainty according to NCHRP Project 17-25 (7), a potential reduction in 
single-vehicle, run-off-road accidents by 14%, considering all freeways (rural and urban); and a 
21% reduction, considering only rural freeways. Even though these expected reductions 

FIGURE 2  Difference in cross section between rolled (left) and milled 
(right) shoulder rumble strips (5). 
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in accidents are much smaller than the ones estimated in the late 1990s, they confirm rumble 
strips are extremely effective, considering the reasonable cost of the intervention. As noted in 
NCHRP Project 17-25 (7) these results are not applicable to other road classes (two-lane or 
multilane rural highways). Similar results have been obtained, by Carrasco et al. (8) showing that 
the late 1990s indications on the effectiveness of shoulder rumble strips on accident reduction 
appear to be overestimated. The most recent estimate gives a reduction of single-vehicle, run-off 
accidents of 22%. 

Patel et al. (9) have recently analyzed the effect of this treatment on two-lane rural roads 
and found out that there is still a considerable positive effect with a reduction in single-vehicle, 
run-off-road accident of 13% when all accidents are considered and 18% when considering only 
injury accidents. It was noted that not all sites experience a crash reduction and the resulting 
standard deviation of the expected crash reduction is 8% for total accidents and 12% for injury 
accidents. This means that, considering a 95% confidence interval, the effectiveness in terms of 
crash reduction can range from 13−15.7% and 13+15.7% for all accidents and 18−23.5% and 
18+23.5% for injury accidents. As it can be seen, a “negative crash reduction” (which means a 
crash increase) can occur within the 95% confidence interval. According to Patel et al. an in 
depth study with a larger database should be conducted to find out the explanatory variables that 
lead to such a different performance in different sites (e.g., road geometry, different types of 
accidents, etc). 

To investigate the human behavior in response to milled rumble strips a driving-simulator 
study has been conducted at VTI in Sweden (10) simulating the vehicle response when travelling 
over 4 different types of milled rumble strips. It was concluded that all tested rumble strip 
designs and placements had clear alerting effects and consistently induced the appropriate 
steering correction. 

The effectiveness of permanent raised pavement markings (Figure 3) has been 
investigated by Bahar and others and reported in the NCHRP Report 518 (11). The major 
conclusion is that the effectiveness of this type of marking on road safety is limited on low 
volume roads. This may be due to lower design standards. Centerline raised pavement markings 

FIGURE 3  Permanent raised pavement markings. 
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induce the driver to move toward the shoulder potentially increasing the run-off-road events on 
roads with lower design standards. It was also found under some conditions, the raised pavement 
markings may cause drivers to increase speed. This may be due to better visibility. 

The Conference of European Director of Roads (CEDR) Task Group on Road Safety is 
currently preparing a report on the best practices on cost-effective road safety investments. 
Rumble strips are indicated as a highly cost effective measure to reduce run off accidents. 

Rumble strips are also identified as a potential safety intervention for single-vehicle 
accidents by the PIARC Road Safety Manual (12) even though there is no specific quantification 
of the potential accident reduction that could be expected. 

The positive effects of continuous shoulder rumbles strips on safety were shown in a 
recent paper by Finley and Miles (13): “Previous research findings have clearly shown that 
continuous shoulder rumble strips along the shoulders of freeways yield significant benefits—
between 15 and 80 percent reductions in ROR crashes. In addition, transverse rumbles strips in 
the travel lane typically yield crash reductions between 20 and 30 percent. Based on these 
positive results, transportation agencies are continuing to install rumble strips in the travel lane 
and are beginning to install rumble strips on undivided roadways to reduce ROR, head-on, and 
opposite direction side-swipe crashes.” 

One of the disadvantages of shoulder rumble strips is the negative effect that these can 
have on bicycles. This issue has been addressed by Moeur (14) who proposes to pattern the strips 
in the shoulder leaving gaps without grooves to allow the cyclist to drive across the rumble strips 
on the smoother segments. 

The Federal Highway Administration (FHWA) has established a specific website 
(http://safety.fhwa.dot.gov/roadway_dept/rumble/) where several good references on shoulder 
rumble strips including the “Synthesis of shoulder rumble strip practices and policies” (15) can 
be found. 

CENTERLINE RUMBLE STRIPS 

Centerline rumble strips are obtained by milling the centerline of two-lane, two-way rural 
roadways (Figure 4) in order to limit the head-on and opposite-direction sideswipes. A recent 
and extremely comprehensive study on this type of intervention has been conducted in 2005 
leading to an NCHRP Synthesis (16). 

One of the key studies identified in this area by the NCHRP Synthesis is the 2003 IIHS 
study (17). This study has been rated “medium-high” in terms of level of predictive certainty by 
NCHRP Project 17-25 (7) and has indicated a potential accident reduction of 14% with respect to 
all accidents and 21% when only head-on and opposite-direction sideswipes are considered. The 
results of this study are applicable only to two-lane rural roadways. 

One of the key limitations of this intervention technique is the reduced visibility of the 
centerline painting due to the milled portion of the surface. To overcome this effect the NCHRP 
Synthesis (14) highlights the innovative solution proposed in Minnesota where 4–6 inch rumble 
strips have been placed 2 inches on each side of the centerline. 

Based on the results if the international inquiry conducted in 2005 for the NCHRP 
Synthesis, and on additional literature review conducted for this report, this type of intervention 
seems to be currently in use only in the United States and in Canada. 
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An interesting application of milled centerline rumble strips can be observed in Austria 
where they have been used in the tunnel entrance areas in bidirectional tunnels. The draft new 
release of the Austrian standard RVS 09.01.25 requires rumble strips as a mandatory treatment at 
tunnel entrances. 

DISCONTINUOUS IN-LANE RUMBLE STRIPS 

This type of intervention consists of installing transverse strips, usually raised over the pavement 
(Figure 5) in order to alert the driver of an incoming potential hazard (such as a sharp curve or an 
intersection) to induce a speed reduction. This type of intervention is specifically recommended 
by the PIARC Road Safety Manual (12) as a speed reduction technique. 

Elvik and Vaa (18) have estimated an average accident reduction of 33% in terms of 
injury accidents at intersections when applying this type of intervention. Considering a 95% 
confidence interval this reduction ranges from 25 to 40%. The counter effect is that traffic noise 
can be increased by 2–6 dB as a result of installing transverse rumble strips. In several countries 
their application is therefore limited to rural areas. 

FIGURE 5  Raised transverse in-lane rumble strips. 

FIGURE 4  Centerline milled rumble strips. 
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HUMPS 

Humps are artificial elevations of the pavements (Figure 6). Often humps are designed so that 
they can also be used as pedestrian crossings. Elvik and Vaa (18) have estimated a 48% 
reduction in accidents (42 to 54% considering a 95% confidence interval) when installing humps. 
The speed reduction that can be achieved by installing humps ranges from 24.4 to 36.4 km/h. 

It should be noted that the vertical acceleration induced by speed humps is extremely 
high for high driving speeds. In most countries speed humps are therefore accepted only on 
urban roads with low design speed and with lighting to allow the driver to reduce the speed well 
in advance of the humps. 

THE EFFECT OF RUMBLE STRIPS ON EXTERIOR NOISE 

A key disadvantage of rumble strips is the noise generated outside the vehicle. This can be 
disturbing to the inhabitants surrounding the road infrastructures. Two studies have recently been 
published, (one based on a United States experience (13), and one based on a Danish experience 
(19)). Both investigate the influence of different rumble strip designs on exterior noise. Kragh et 
al. (19) shows that a change in the rumble strip design can seriously affect the noise levels 
measured at 25 m from the travelled lane. When a sinusoidal indentation is used only a 0.5–1 dB 
increase in the noise level is expected as compared to a “rectangular” indentation that can 
produce 3–7 dB higher noise levels. 

Much higher noise level increases have been found by Finley and Miles (13). They show 
noise levels that increase from 4–5 dB (when using “button rumble strips”) to 19 dB when milled 
rumble strips with 12-inch spacing are considered. 

Noise is an issue in some urban areas. Even high macrotexture pavements are apparently 
an issue due to higher noise, and high textures have long been encouraged from a tire–pavement 
friction perspective. All noise/vibration guidance methods, generally reduce accident rates and 
are considered good practice where environmental issues related to increased noise are not 
determining factors. 

FIGURE 6  Speed hump. 
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n abrupt difference in elevation between two adjacent riding surfaces can occur at the 
joining of (a) a paved traveled way and an unpaved shoulder, (b) a paved traveled way and 

a paved shoulder, (c) a paved shoulder and an unpaved adjacent area, or (d) two traveled lanes. If 
this difference in elevation reaches certain levels for certain edge shapes, safety can be affected. 

Pavement edge drops can be produced when the longitudinal edges of an asphalt concrete 
pavement lift are not tapered to become flush with the surface of the existing paved shoulders. 
Edge elevation differentials are a necessary temporary situation at the edge of a pavement 
overlay until the adjacent overlay can be placed. Another common pavement edge drop can 
result from the displacement of untreated shoulder material from the edge of the traveled way 
caused by vehicle tire contacts or erosion from wind, rain, or other environmental conditions. 

The pavement edge elevation differentials considered here range in height from less than 
1 inch to 6 inches. The edge drop-offs created by trenching for the construction of pavement 
widening, edge sub-drainage systems and so forth are deeper and constitute more obvious traffic 
safety problems. Pavement edges can affect vehicle control because of inappropriate action or 
inaction by a driver. 

The following scenario describes the elements of an edge drop loss of control 

1. A vehicle is under control in a traffic lane adjacent to a pavement edge where an 
unpaved shoulder is lower than the pavement. 

2. Through inattention, distraction, or some other reason the vehicle is allowed to move 
into a position with the right wheels on the unpaved shoulder and just off the paved surface. 

3. The driver then carefully tries to gently steer the vehicle to gradually bring the right 
wheels back up onto the paved surface without reducing speed significantly. 

4. The right front wheel encounters the pavement edge at an extremely flat angle and is 
prevented from moving back onto the pavement. The driver further increases the steer angle to 
make the vehicle regain the pavement. However, the vehicle continues to scrub the pavement 
edge and does not respond. At this time there is equilibrium between the cornering force to the 
left and the edge force acting to the right, as shown in Figure 1a. 

5. The driver continues to increase the steer input until the critical steer angle is reached 
and the right front wheel finally mounts the paved surface. Suddenly, in less than one wheel 
revolution, the pavement edge force has disappeared and the cornering force of the right front 
wheel may have doubled because of increases in the available friction on the pavement and the 
right front wheel load caused by cornering (see Figure 1b). 

6. The vehicle yaws radically to the left, pivoting about the right rear tire, until that 
wheel can be dragged up onto the pavement surface. The excessive left turn and yaw continues 

A 
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and it is too rapid in its development for the driver to prevent penetrating the oncoming traffic 
lane (Figure 1c). 

7. A collision with oncoming vehicles or spin out and possible vehicle roll may then 
occur. 

In many situations vehicle loss of control may not develop because the driver steers more 
aggressively. By moving back onto the pavement at a slightly sharper angle and increased lateral 
velocity, the scrubbing action on the face of the pavement drop-off can be avoided. In many 
cases, however, the same result—vehicle loss of control—may occur without the influence of a 
pavement edge drop. A loose, muddy, or low-friction shoulder can have the same effect if the 
driver oversteers when trying to return to the paved surface. Often it is this oversteering that is 
the cause of an accident when a pavement edge drop of modest height is encountered. 

The qualitative effect of pavement edges, or the so-called lip drop-off, has been to some 
degree understood for many years. In Baker’s Traffic Accident Investigator’s Manual (1) 
published by Northwestern University, the following statement is found: “Lip Drop-off is simply 
a low shoulder at the edge of a hard pavement. It is important when the shoulder is more than 
three inches below the pavement….” Based on a telephone conversation with Baker on 
September 22, 1982, it was determined that this conclusion was reached by informal testing at 
Northwestern as early as 1959. 

TESTING AND ANALYSIS 

In 1974 the California Department of Transportation (Caltrans) studied several highway accident 
cases where pavement edge drops were cited as a contributing factor. There were contentions 
that a drop-off height as small as 1 to 2 inches would throw a vehicle out of control as it tried to 
climb back up the pavement edge, that the steering wheel would be wrenched out of the driver’s 
hands, and that the vehicle would be forced into a path into the opposing lanes before it could be 
straightened out. As a result, Nordlin and Stoughton et al. (2, 3) conducted a number of vehicle 
tests under various conditions to confirm or refute some of the claims that were being made and, 
in general, to observe the effects of pavement edge drops on vehicle stability and controllability. 
Pavement edge drops from 1½ to 4½ inches did not throw the vehicles into an unstable condition 
or cause the driver to even come close to losing control during any of the tests. 

FIGURE 1  Illustration of the pavement edge influence on vehicle stability. 
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In 1978 Stoughton et al. (4) conducted several tests involving a broken, crumbling 
asphalt concrete (AC) pavement edge and a 2-inch drop, to the surface of an adjacent muddy soil 
shoulder. The same professional driver from the Nordlin study drove a pickup truck at 60 mph 
on a trajectory with only the two right wheels dropping off and coming back up onto the AC 
shoulder. Because the tires sank in the mud, the overall drop-off height was 2.75 inches where 
the truck returned to the pavement. No problems with vehicle stability or controllability occurred 
in driving the test course. 

In 1976 Klein et al. (5) conducted a roadway surface study that included pavement edge 
drops. In the study accident data and public inquiries through questionnaires were analyzed and a 
variety of both open- and closed-loop tests were conducted. Naïve drivers were used in the 
closed-loop tests. In all of the pavement edge drop-off tests, a special effort was made to achieve 
the tire scrubbing condition before attempting to climb up the drop-off. In edge drop tests with 
drop-off up to 5 inches and the scrubbing condition, losses of vehicle control were encountered 
at higher speed levels, generally more than 30 mph. 

Klein et al. found the time between edge mounting of the front and rear tires to also be 
less than 0.6 sec. As shown in Figure 2 (5), they developed curves for the relationships between 
steering wheel angle and the vehicle steer angle required to climb various vertical pavement edge 
heights from the scrubbing condition. For edge heights up to 3 inches, the curve of Figure 2 
curves is relatively linear. In this range the edge-climbing maneuver appears relatively safe. As 
the curves become more curvilinear, the maneuver becomes significantly more difficult. As the 
curves start a precipitous rise, again approaching a straight line, the difficulty becomes extreme. 

FIGURE 2  Steer angle required for different edge heights. 
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The Nordlin and Stoughton studies had not included the pavement edge-scrubbing 
condition, and the Klein study had concentrated almost entirely on the edge-scrubbing condition 
and one pavement edge geometry, that is, vertical with little edge rounding. Therefore, Zimmer 
and Ivey (6) in 1981 undertook a new study to extend the information already developed by 
Nordlin, Stoughton, and Klein. 

The results of the work by Zimmer and Ivey under the edge-scrubbing condition are 
summarized in Figure 3 (6), where the relative degree of safety, in terms of the subjective 
severity levels, is plotted against the longitudinal edge elevation change (drop-off). 

When compared to the other published studies available in 1983 the influences of 
longitudinal pavement edges on vehicle safety are consistent and supplement each other. It was 
agreed that loss of vehicle control can develop at speeds greater than 30 mph under certain 
circumstances, where inattentive or inexperienced drivers return to the traffic lane by 
oversteering to overcome the resistance from a continuous pavement edge and tire-scrubbing 
condition. This safety problem is minimized where the face has a 45-degree or lower slope. 
However, losses of control can occur even without any edge drop when an errant vehicle is 
returned to the higher cornering friction of the pavement by oversteering. Pavement edge heights 
more than 5 inches in height can interfere with the underneath clearance and thus create safety 
problems for small automobiles. 

In the period subsequent to publication of SOAR 1 (1983) there have been significant 
changes in highway speed limits and in automobile construction. In 1983 the top speed limit was 
55 and all testing had been limited to that speed. There were also no capricious styling driven 
changes to tire construction such as the ones required by 18 to 22 inch rim diameters. This 
styling change now results in rim-pavement clearances that are as little as 1½ inches. 

The Zimmer and Ivey work was criticized for being nonrepresentative of naïve drivers. In 
1986, Olson et al. (7) attempted to study the reaction of naïve drivers to edge drop situations. 
That work demonstrated that it was not feasible to test the “naïve” driver condition. The best that 
would be done was to test a larger number of randomly selected drivers after they had been 
coached in how to get their vehicles into an edge-scrubbing condition. The evaluation criteria in 
the 1983 (Zimmer/Ivey) and 1986 (Olson et al.) studies were somewhat different. A direct 
comparison of the two data sources was not attempted until 2004 when Zimmer and Ivey 
collaborated in relating the two indices for the Atlanta workshop. 

FIGURE 3  Relative degrees of safety for various edge conditions. 
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The obvious difference between the 1986 Olson study and the 1983 Zimmer study was a 
higher variability in the performance of the 50 drivers in capability to deal with various edges 
compared to the four drivers used in the first work, a predictable finding. The resulting study 
evaluated a vertical drop-off and 45o wedge drop-off with hard and soft shoulder surfaces, 
different passenger vehicle sizes, and front- versus rear-wheel-drive vehicles. Fifty 
nonprofessional drivers were used to complete 185 test runs. Speeds of 20, 30, and 40 mph were 
tested for a 4.5-inch vertical face drop-off; 30, 40, and 50 mph for a 3-inch vertical face drop-off; 
and various speeds up to 55 mph for a 3- and 4.5-inch drop-off with a 45o beveled edge. Results 
indicated that a vertical drop-off of 4.5 inches or deeper could not be negotiated by any of the 
nonprofessional drivers at any speed. They found that vehicle size was relevant and that vertical 
edge drop-offs around three inches could be negotiated at speeds of 30 mph in large passenger 
cars. 

For the speeds up to 55 mph. The authors also evaluated test runs on soft shoulders with a 
professional driver and concluded that the height of the drop-off, not shoulder material, was the 
determining factor in being able to recover safely. 

In the range of Type A (90o as in PCC) edge drops from 2 to 5 inches the average values 
measured in the Olson study ranged from ½ to 1 inch larger than the nominal edge height 
considered. Olson et al. (7) did not study the Type B (rounded as in ACP) edge and concurred 
with previous work on the Type C (45o) safety edge. Because of data variability it was not clear 
that a significant difference between the 1983 and 1986 studies existed. When the two studies 
were finally related it was found there was a difference in the results from Type A edges between 
2 ½ and 4 inches in height as shown in Figure 4. Using the same maintenance guide of key lines 
at the 3 and 5 relative degree of safety level, maintenance should be scheduled and performed 
before the edge exceeds the 2 inch level. This more conservative approach was a conclusion also 
reached by Hallmark et al. (8) and the advisory group acting on the project. 

Ivey and Sicking further evaluated the relationship between drop-off height and the 
driver’s ability to recover. They used simulation and analytical relationships and earlier testing 
by Klein et al. (5) to determine the steer angle necessary to remount a drop-off with 

FIGURE 4  Comparison with Michigan. 
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different heights and edge shapes at 50 mph. Their results reinforced and explained earlier 
findings that edge shape profoundly influences the driver’s ability to recover. A 4-inch vertical 
edge resulted in loss of vehicle control. As the edge shape became flatter, less effect was noted. 
The authors evaluated a 2-inch, 4-inch, and 6-inch drop-off with a 45o wedge. They found that 
even with a drop-off depth of six inches, recovery within the 12-foot lane was possible with a 45o 
wedge, which would come to be called by FHWA, the safety edge. 

Until 1998, no one had reported tests at speeds above 70 mph. Zimmer and Ivey (6) had 
shown some degree of speed sensitivity between 35 and 55 mph, resulting in concern that 
previous results might not be applicable to 70 mph. Zimmer conducted tests for Texas DOT with 
several vehicles at 70 mph on 90o concrete edges (Type A) from one to 4 inches in height. He 
showed that the Type A curve needed to be altered for the 70 mph condition. This finding was 
first presented at the Alabama workshop in 2004 (9). The results are compared in Figure 5. 
Results are shown using 5 modern vehicles on Type A edges (right angle PCC) at speeds of 70 to 
73 mph. 

The somewhat more sensitive results were not inconsistent, however, with the 
conservative approach many state DOTs were taken by requiring signing and marking for any 
type A edge. 

While the 1983 Zimmer and Ivey report in TRR 946 produced guidelines for the 
maintenance of edges and shoulders there was a need recognized for further work in signing, 
marking and barriers to deal with edge drop situations in construction zones. This need resulted 
in the 1988 TRR publication, “Safety in Construction Zones Where Pavement Edges and Drop-
offs Exist” (10), where it was recommended that even less than 2 inch, 90o edges were cause for 
signing and delineation due to unknown compaction of adjacent soil while under construction. 
The relatively simple guidelines developed were adopted in whole or in part by a number of state 
DOTs and continue in use. 

The construction zone report relied on work done by Ivey and Sicking (8) which 
presented an analytical solution to the interaction of tires and edges of various shapes in 1986. 

FIGURE 5  Comparison with 70 mph. 
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This analytical solution made possible the simulation work presented by Ivey et al. (11) on 
tractor/semi-trailer interaction with edges that was done in concert with the development of the 
construction zone report. 

Perhaps of the many influences that resulted in the current attention given to edge drop 
related accidents the “tipping point” was reached with Humphreys and Parham in their 1994 
project for the AAA Foundation for Traffic Safety (12). They not only provided an excellent 
review of the literature at that time but pushed hard for the requirement of a 45o beveled edge as 
a cure for edge drop losses of control, a finding that dated back to 1983 (6) and was reinforced in 
1986 by the University of Michigan and Texas Transportation Institute researchers (13). A 
consensus on the advisability of such a step in construction practice seemed apparent in the 
FHWA sponsored Atlanta workshop in 2004 (14) where the first of two brochures promoting the 
safety edge was presented. The adoption of the safety edge as a standard procedure is moving 
rapidly. Significant efforts are underway in Georgia, New York, Indiana, Texas, and New Jersey. 
The Georgia experience was presented by Wagner and Kim at TRB in 2005 (15). The results are 
consistently positive. 

The latest effort to develop a consensus on the influence of pavement edge drops on 
losses of control was made by Hallmark et al. (9) under sponsorship by AAA Foundation for 
Traffic Safety. It is a comprehensive treatment of the status of state DOT guidelines, the 
documentation of automobile testing and simulation and statistical relationships between edge 
sizes and shapes and accident frequency. That latter relationship was summarized in more detail 
in the chapter on accident data relationships. 

The four factors or sources of new information relating to Figure 3 are 

1. The Olson study interpreted by Zimmer and Ivey indicating a more severe influence 
of Type A, 90o edge (14, 15); 

2. The Zimmer study indicating a more severe influence of a Type A, 90o edge at the 
speed of 70 mph (6); 

3. The emergence of the safety edge recommended by FHWA and now in use in 5 states 
(12, 14); and 

4. The emergence of plus-sized tires and rims with potentially major influence on the 
safe boundaries of Type A 90o edges. 

Figure 6 illustrates these influences with the more severe placement of the Type A, 90o 
curves labeled Olson, 70 mph, and plus-sized rims. Clearly for higher speeds and more critical 
tire–rim designs the Type A edges result in a more severe influence on vehicle stability. 

This makes the use of paving devices and edge grinding to achieve a more forgiving edge 
shape of even greater importance. The placement of the curve for a shape “D” safety edge is 
considered conservative in that the transition from on-roadway surface to shoulder and back is so 
smooth it defies assignment of any degree of severity, except when the elevation change from 
pavement to shoulder causes a noticeable tilt in the vehicle. 

Figure 7 shows clearly the great improvement in safety that can result from producing the 
safety edge, especially with an angle as low as 30o. 

A definitive set of recommendations for constructing and maintaining safe pavement 
edge conditions has now been produced by William D. Lawson and M. Shabbir Hossain (13). 
Most authors to date have concentrated on defining the problem. Lawson and Hossain chose to 
develop and report extremely practical solutions. 
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FIGURE 6  Type A edges compared with Types B, C, and D. 

FIGURE 7  Safety improvement of safety edges. 
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TRANSVERSE FRICTION 

Transverse variations of friction across a lane, sometimes called differential friction, can cause 
significant problems for a braking vehicle. This condition arises when the individual wheel paths 
on which a vehicle’s tires ride have significantly different coefficients of friction. This problem 
may be minor or extremely serious, depending on the magnitude of the frictional difference, its 
relationship to the average coefficient of friction, and the speed at which a vehicle travels across 
the surface. 

This phenomenon was first described theoretically by Zuk (1) in 1959. Zuk developed 
equations to predict the total yaw angle of a vehicle based on its mass, speed, and the coefficient 
of friction for each of the wheel paths. Zuk concluded that a difference in the friction coefficients 
of the wheel paths could be potentially hazardous even though the average surface friction was 
relatively high. 

Fifteen years later Burns (2) provided further information on this subject by performing 
braking tests using various vehicles under highway conditions. These tests provided detailed 
observations of the movement of vehicles braking on split-friction surfaces, as well as 
indications of the relative controllability of vehicles under those conditions. An example found 
on the highway during Burns’ study was where the left wheel path was bleeding and the right 
wheel path was chip-sealed. The right wheel path had a wet stopping distance number (SDN40) 
of 67 and the left had a wet SDN40 of 41. This difference of 26 represents a 63 percent braking 
force differential. A car braking at 40 mph on this surface rotated 90 degrees clockwise. The 
same car braking at 50 mph rotated 270 degrees clockwise. 

This research also identified the most commonly found differential wheel path 
conditions. They are (a) differential flushing or bleeding, (b) unequal wear, (c) partial seal 
coating of a lane, (d) dissimilar shoulder surfaces, (e) maintenance crack patching of only one 
wheel path, and (f) unequal drainage properties. 

In 1981 Hayhoe and Henry (3) conducted research to better determine the levels of 
acceptable differential friction. A simulation of the skidding behavior of cars in plane rotation on 
differential friction surfaces was used to develop the curves shown in Figure 1 (3). These curves 
are used as follows. µ1 is the higher of the two coefficients. Plot the position of the lower 
coefficient (µ2) and the length of the split-coefficient surface. If the resulting point is to the left 
of the µl curve, the situation is potentially unsafe; if it is to the right, a relatively safe situation is 
indicated. 

These and other studies have confirmed that differential friction can have a significant 
effect on a braking vehicle. The vehicle-rotation phenomenon can occur at high as well as low 
friction levels and should be considered in any pavement friction evaluation. The greatest 
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problem arises when the driver releases his brakes after the car has begun to spin. When this is 
done the vehicle is propelled in the direction it is facing. This could be off the road or into 
oncoming traffic. Thus the greater the degree of rotation, the more probable the vehicle will be 
uncontrollable. 

LONGITUDINAL FRICTION VARIATIONS 

In the longitudinal direction variations in the friction properties of pavement surfaces occur more 
frequently than is commonly assumed. There are several types of such discontinuities. One type 
exists where one construction project adjoins another or where a surface has been repaired. In 
these cases the transition from one pavement to the other is often quite sharp, and usually it is 
recognizable by drivers. Whether drivers can and do judge correctly the related changes in 
friction properties, or even realize the possible existence of such changes, is debatable, as is 
whether they adjust their driving pattern to perceived changes. Because not all existing changes 
are perceived and, even if they are likely to be judged incorrectly or ignored, they can constitute 
a potential hazard. 

Gradual transitions occur at locations where the friction demand is higher than elsewhere 
along a roadway, as on curves and where acceleration and deceleration occur frequently and 
consistently. At these locations available friction tends to be lower than on the adjacent tangents 
with freely flowing constant speed traffic. The friction properties of the surface are degraded by 
the greater rate of pavement wear and polishing that accompanies speed changes and cornering. 
The friction needed for these vehicle maneuvers might be available elsewhere on the same 
pavement, but at the maneuver sites it may eventually decrease below that demanded by a 
significant number of drivers. The problem of measuring skid resistance on curves has not been 
addressed since 1977 (4); thus no data are available for assessing the magnitude of the hazard at 
this and other maneuver sites. It is, however, well established that certain types of surface 

FIGURE 1  Recommended maximum lengths of differential friction for safe 
operation of cars during hard-braking conditions (vehicle initial speed is 55 mph). 
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courses suffer considerable loss of friction potential under the influence of traffic, and that this 
loss is accelerated when the tires do more than normal amounts of scrubbing (5). 

Short sections that have quite different friction properties than the adjoining pavement 
result from pavement markings, particularly at pedestrian crossings or where spot repairs have 
been made that extend across a traffic lane. In the first example the available friction is likely to 
be lower than that of the basic pavement, and in the second example it is likely to be higher than 
that of the basic pavement. Normally this is of little consequence, but it can present a hazard if an 
emergency maneuver must be executed at this location. The consequences will be much the same 
as if the front and rear brakes on a vehicle are out of balance, except that the friction imbalance is 
of a short duration only. The driver would have to react to two changes superimposed on an 
emergency maneuver, and this is at best within the capability of only the most skilled driver. 

Remedies for some of the described cases of longitudinal friction variations are available. 
For instance, instead of repairing a few feet of pavement on a curve, overlaying the entire curve 
will prevent drivers from unexpectedly encountering a different friction level at a critical point. 
Overlaying a curve in its entirety raises the available friction on the curve, if only temporarily, 
above that of the adjacent tangents. This is desirable and will be cost effective if the curve was a 
high accident location even before the pavement needed repair. On the other hand, it is difficult 
to prevent variations between adjoining projects. If highly skid and polish-resistant surface 
courses could be used everywhere, this will not only reduce the total number of skidding 
accidents, but the difference in accident experience between old and new projects will be 
reduced. This is so because, as is generally thought, the relationship of skidding accident rate 
versus skid resistance is flatter at higher skid numbers than it is at low ones (6). Alternately, if 
surfacing projects were designed to involve long sections of roadway, the number of changes in 
available friction would be reduced. Because drivers appear to go through a learning period 
whenever they encounter a change in driving environment, uniform sections of greater length 
may result in disproportionately greater improvements in accident rates than might be expected 
from the reduction in the number of abrupt changes in surface properties. 

Many aspects of the problem of longitudinal variations of friction have not been 
investigated. There are no applicable statistics, but the following example illustrates the potential 
hazard that traveling from a high friction surface to one with much poorer friction properties can 
present. When the latter is of such design that the combination of summer heat and heavy truck 
traffic pumps the asphalt to the surface of the pavement, the wheel paths get quite slippery. 
Bleeding pavements can have an SN40 as low as 10. If such a section is encountered on an 
upgrade by a vehicle coming from a surface with an SN40 of 40, running under full power, the 
drive wheels may suddenly begin to spin unless the driver anticipates the change and reduces 
power. The transition zone may be no more than 10 ft long, and in some cases less. At 55 mph it 
takes 0.12 sec for the vehicle to travel the 10 ft, which does not give the driver enough time to 
sense the impending wheel spin and prevent it. Use of cruise control in hilly country is therefore 
risky. The consequence can be a serious deviation from the intended path. Vehicle spin-out may 
occur. Similar hazards exist during braking and cornering or whenever the wheels of a vehicle 
suddenly encounter a drop in available friction. In the reverse case, other instabilities occur that 
can catch an inattentive or inexperienced driver off guard. 

Thus, from the viewpoint of safety, there is little doubt that longitudinal variations in 
pavement properties should be avoided where possible and, if this cannot be done, these 
variations should be held to a minimum. Where major variations exist, warning signs may be an 
appropriate measure until surface conditions can be corrected. 
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PAVEMENT MARKINGS 

Pavement markings are primarily used to provide visual guidance for drivers and to guide traffic 
flow. Turn arrows, hazard warning messages, and so forth are frequently marked directly on the 
pavement surface. In their intended roles pavement markings are universally held to provide 
positive benefits, particularly under conditions of poor visibility (7, 8), but the degree of skid 
resistance that they provide is of increasing concern with the growing use of plastic materials and 
heavy marking in sections such as ramps and gores. Marking materials generally lower the skid 
resistance of a pavement and, when applied over large sections, increase wet skid stopping 
distances. Differential friction caused by the application of marking materials also gives rise to 
such hazardous conditions as excessive vehicle yaw during locked-wheel skids, loss of control 
during motorcycle or bicycle turning and braking maneuvers, and slipping and falling by 
pedestrians on crossings. 

Skid-resistance requirements for marking materials have traditionally been specified in 
terms of low-speed wet friction measurements (7). However, high-speed skid resistance 
measurements made by the Massachusetts and Michigan departments of transportation (9, 10) 
have demonstrated that low speed measurements do not accurately reflect the absolute skid 
resistance of marking materials for vehicles traveling at highway speeds. Results for three 
materials field-tested in the Michigan study were as follows: 

Material SN40 BPN 
Fast-drying white paint (with beads) 37 31 

Extruded hot plastic (with beads) 23 35 

Smooth cold plastic (no beads) 4 14 

Bare pavement substrate surface 67 – 

In this table SN40 is the skid number at 40 mph as measured by ASTM E274 method of 
test, and BPN is the British pendulum number as measured by ASTM E303 method of test. Two 
of the three materials had lower SN40 than BPN, with the unbeaded plastic having a friction level 
consistent with hydroplaning or melting ice. 

In a later, more comprehensive study (11), the performance of 11 different materials 
applied to four different pavement surfaces was evaluated. A total of 113 combinations of 
material type, material formulation, and pavement surface were included in the study. Macro 
texture, SN40, and BPN measurements were made on each sample surface. Predictor equations 
relating SN40 to BPN and root mean square (RMS) macro texture height were then developed by 
linear-regression techniques. A single regression equation, which would encompass all of the 
materials, could not be formulated at an acceptable level of correlation, so the materials were 
grouped into eight categories, and a separate equation was developed for each category. Thus the 
results of the study may be used to estimate the high-speed skid resistance of typical marking 
materials from low-speed laboratory measurements. In most cases a BPN measurement is 
sufficient to provide the SN40 estimate, although the addition of a macro texture measurement 
may be beneficial in improving the correlation. The average skid resistance numbers measured 
on the various materials included in the study are given in Table 1 (11). 
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TABLE 1  Average High-Speed Skid Resistance of Five Marking Materials 

Marking Material 
No of 

Applications

Avg. Skid 
(SN40) 

Resistance 
Standard 
Deviation 

Traffic paint (unbeaded) 22 20.7 8.0 
Traffic paint (beaded) 41 26.7 6.8 
Thermoplastic (unbeaded) 12 18.7 10.1 
Thermoplastic (beaded) 26 24.7 7.5 
Performance plastic 11 25.2 8.7 

Specific findings of the study were as follows. 

1. For all combinations of material, formulation, and pavement surface, the high-speed 
skid resistance of the marking material was lower than that of the bare substrate pavement 
surface, whereas the low-speed skid resistance in some cases was higher than that of the 
substrate. 

2. The skid resistance of markings applied in the field did not increase significantly with 
time and suffered seasonal and short-term variations similar to those of the substrate pavement 
surface. 

3. Beaded paint and plastic marking materials had significantly higher skid resistance 
than unbeaded materials. The use of unbeaded materials should be avoided. 

4. Chlorinated rubber-based paints had significantly lower skid resistance than alkyd 
resin paints. 

5. Spray thermoplastics had higher skid resistance than hot-extruded thermoplastics. 

The effects of differential friction caused by marking materials on highway safety is 
difficult to determine because of a lack of accident studies specifically directed toward the 
problem. However, single- and double-delineation stripes do not appear to be hazardous to the 
operation of cars and trucks (11). When a large section of marking material is present on wet 
pavement, a differential friction problem could exist. In a computer simulation study of cars 
skidding on pavements with differential friction caused by marking materials (11), a design 
procedure was developed for determining the maximum allowable differential friction between 
pavement and material, given the length of the marking on the pavement. Boundaries of safe 
operation are shown in Figure 2, the same figure that gave boundaries for transverse friction 
variations. Safe operation is indicated if a given combination of the lower coefficient of friction 
(µℓ) and if the length of differential friction surface falls to the right of the appropriate µp curve; 
otherwise braking is potentially unsafe. 

Pavement markings may present a wet skidding hazard to operators of motorcycles and 
bicycles. However, the extent of the hazard and its overall impact on highway safety cannot be 
determined at present, particularly in view of the acknowledged, but obviously positive, benefits 
of pavement marking materials. 

Pedestrian safety is another concern at crossings in urban areas. Requirements for 
satisfactory walking traction are a static coefficient of friction of 0.5 or higher and a sliding 
coefficient of friction higher than the static value (12). The walking traction performance of 
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marking materials in current use appears to be satisfactory, or at least (for materials with the 
most unsatisfactory performance) no worse than borderline. 

TRAVELED SURFACE TO SHOULDER 

The problem of friction variation between the paved surface and the shoulder is related to the 
lateral variation influence. Although it is such a special influence and such a relatively common 
(and critical) influence, it will be given special treatment. 

The primary focus here concerns the existence of a lower friction surface on the shoulder 
immediately adjacent to a traveled lane. There are accidents each year that are triggered by a 
single-vehicle loss of control resulting from the inability of some drivers to deal with a lower 
friction shoulder surface. A driver, either through inattention or from some external influence, 
allows his vehicle to run off the paved surface, perhaps only a foot or two, so that the wheels, at 
least on one side of the vehicle, are on an unpaved, lower-friction surface. It may be sand, loose 
gravel, soil, or perhaps a muddy wet surface. The next reaction of the driver, as he becomes 
conscious of the situation, is critical. If the driver reacts with restraint, allowing the vehicle to 
slow while using modest steering inputs, the paved surface can be easily and safely regained. All 
too often, however, this is not the case. The driver reacts quickly with a steering input that is too 
large. The result is a precipitous steer force generated when the offside front wheel regains the 
paved surface. These actions may result in a collision with another vehicle or a roll. Figure 2 
illustrates this phenomenon. 

In Figure 2a the vehicle is shown with the right wheels on the shoulder (lower friction) 
surface just after the driver has made a left steer input that is too intense. The steering may 
even feel appropriate to the driver in terms of the rate at which he is regaining the appropriate 
lane of the roadway. The driver is not prepared, however, for the radical increase in the 
cornering force and thus the rate of cornering when the right front tire comes in contact with 
the higher friction lane surface, as shown in Figure 2b. The result is a vehicle fundamentally 
out of control, as shown in Figure 2c. Here the vehicle goes into adjacent lanes, may spin out, 
possibly resulting in a vehicle roll. The high lateral acceleration produced in the case shown 
further complicates the recovery problem for an unbelted driver on a bench front seat. This 
driver may be thrown completely out of the wheel position, precluding any further efforts of 
value in regaining control. 

 
 
 

 
 

FIGURE 2  Illustration of loss of control caused by oversteering. 
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One aspect of this phenomenon is that the existence of even extremely modest pavement 
edge height differentials, even 1 inch or less, may be blamed for the loss of control. The chapter 
on pavement edges illustrates the insignificance of these low values of edge differentials on loss 
of control. The degree to which a lower friction surface on the shoulder may influence safety is a 
function of the exposure to people allowing vehicles off the paved surface, perhaps related to 
geometrics (16), and to the degree to which the shoulder surface friction is lower than that of the 
paved surface. The available friction of paved surfaces both dry and wet is widely known. A 
major treatise on this subject was written by Kummer and Meyer (13). This work remains 
amazingly current and the dominant contribution. Data concerning available friction levels on 
surfaces covered by sand, gravel, soil, and mud are much more limited. 

It appears there was much more interest in this type of surface when paved roads were 
rarer. Data on the values of available friction on mud, soil, gravel, sand, and sod are given in the 
chapter on surface contaminants. These values can range from as low as 0.2 to more than 1.0. 
The lowest values are found on wet clay and on wet grass. Some gravels exhibit surprisingly 
high values in either wet or dry conditions. 

The most recent work has been provided by R. J. Koppa (Pavement Edge, Roadway 
Discontinuities, and Vehicle Stability, Task Report on Project 328, Texas Transportation 
Institute, October 1982). By using an ASTM E274 locked-wheel skid trailer, Koppa measured 
both the locked-wheel friction on unpaved shoulder surfaces and the friction on the pavement 
immediately adjacent to the shoulder. The difference in friction, as indicated by locked-wheel 
braking, was thus directly observed. The data in Table 2 describe the surface types and the 
results of Koppa’s tests. In the fourth column, labeled Condition, the pavement condition is 
given [note that D = dry, W = wet (ASTM internal watering system), and W* = wet (by 
significant natural rainfall)]. Only on sites 2, 6, and 7 were skid numbers determined after 
significant natural rainfall, a condition more critical than the quick coating provided by the 
internal watering system. The results on site 2 were somewhat surprising in that the dry skid 
number on the pavement was lower than the wet skid number on the shoulder (38.9 for pavement 
dry compared with 48.8 for shoulder wet). 

A real contrast in relative values would be when both surfaces are wet: pavement wet 
(SN = 16.3) and shoulder slightly wet (SN = 57.8). This would not produce the control sequence 
described in Figure 2, but it could produce a problem if a rapid return was produced that resulted 
in a spin-out due to the low available friction on the pavement. 

On sites 6 and 7 the results were more as expected. Assuming the pavement surface dries 
more rapidly than the adjacent shoulder, the critical situation would be when the pavement 
surface has just dried and the shoulder is still wet: 43.7 compared with 22.3 on site 6, and 68.5 
compared with 30.0 on site 7. 

In general, the friction values obtained on the gravel shoulders were rather high, which 
indicates good traction. The real problems would be expected on wet soil with a high clay 
content and where wet vegetation contributed to lowering available friction. On surfaces of this 
type little is known about the relationship between available cornering friction and braking 
friction. In this case it is the cornering friction that is critical, and few observations of this type 
are available. Braking skid numbers may not provide satisfactory estimates. 



48 TRB Transportation Research Circular E-C134: Influence of Roadway Surface Discontinuities on Safety 

 

SEASONAL AND SHORT-TERM VARIATIONS OF FRICTION 

In the early 1980’s several studies of seasonal and weather related variations of skid resistance 
were funded by the Pennsylvania Department of Transportation and the Federal Highway 
Administration (14–18). It had been recognized that the skid resistance decreased over the 
summer months in northern climates and recovered due to winter maintenance procedures. Also 
it was observed that the skid resistance increases after a period of rain. Models were developed 
to predict the changes over the season as well as the short term variations due to weather 
conditions. Variations as high as fifteen skid numbers (SN40) were observed. 
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TABLE 2  Sites Measured for Differential Skid Numbers 

     Run  
        Mean 

Site Pavement Shoulder or Adjacent Surface Surface Condition* 1 2 3 Skid No. 
1 Bituminous concrete Pavement D 87.4 87.3 86.1 85.9 
  Pavement W 34.6 39.8 34.3 36.2 
  Shoulder D 75.6 81.4 77.1 78.0 
  

Crushed limestone gravel, 5-25 
mm; some asphalt overspray 

Shoulder W 72.5 72.7 74.5 73.2 

2 Seal coat, asphalt bleed; heavy truck Pavement D 38.4 37.1 41.2 38.9 
 distress (tread impressions) Pavement W 22.6 12.3 13.9 16.3 
  Shoulder D 61.3 61.7 62.8 61.9 
  Shoulder W 56.3 57.5 59.7 57.8 
  

Poorly graded gravel from 20 mm 
to silt 

Shoulder W†  40.3 56.5 49.8 48.8 

3 Prepared rill (roadway under Pavement D 69.7 71.7 74.1 71.8 
 construction) Pavement W 56.3 50.9 53.1 53.4 
  Shoulder D 69.8 68.1 67.4 68.4 
  

Gravel, sand, and clay mixture 

Shoulder W 59.9 63.4 61.6 61.5 

4 Bituminous concrete, some asphalt Pavement D 44.2 42.3 39.5 42.0 
 bleed Pavement W 23.8 33.7 26.6 28.0 
  Shoulder D 61.6 59.8 60.2 60.5 
  

Gravelly sand 

Shoulder W 59.7 60.5 61.3 60.5 

5 Bituminous concrete; weathered, Pavement D 45.5 46.1 46.5 46.0 
 somewhat raveled Pavement W 39.3 41.4 39.6 40.1 
  Shoulder D 59.6 60.1 63.9 61.2 
  

Silty sand, course gravel, some 
spillover bituminous concrete and 
vegetation 

Shoulder W 58.7 59.6 62.5 60.3 

6 Seal coat, asphalt bleed Pavement D 45.7 44.2 41.3 43.7 
  Pavement W 22.8 24.2 24.3 23.8 
  Shoulder D 57.9 59.6 62.3 59.9 
  Shoulder W 44.8 32.8 31.7 36.4 
  

Peat with some gravel, vegetation 

Shoulder W†  25.5 22.1 19.3 22.3 

7 Concrete Pavement D 68.5 - - 68.5 
  Pavement W 42.4 - - 42.4 
  Shoulder D 63.0 61.7 62.4 62.4 
  Shoulder W 56.6 55.7 51.8 54.7 
  

Silty gravel 

Shoulder W†  31.0 29.0 - 30.0 
*D = dry, W = wet, and W† = wet after significant natural rainfall. 
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HYDROPLANING 

Hydroplaning is the separation of the tire contact zone from the road surface by a layer of fluid. 
Operational conditions may involve some degree of partial hydroplaning as long as there is 
significant water present. Hydroplaning is a low-probability event, primarily because the 
high-intensity rainfalls necessary to flood a pavement are low probability events. 
Hydroplaning, however, is so hazardous that when it does occur, criteria for surface design 
have been developed to reduce the probability of hydroplaning and driver education is of 
critical importance. 

Some of the earliest investigations and technical reports on hydroplaning came from the 
National Advisory Committee for Aeronautics (NACA) and its successor the National 
Aeronautics and Space Administration (NASA) (1). During aircraft ground operations in wet 
weather, a water removal or drainage problem is created at the tire–pavement interfaces. The 
runway surface water encountered by the moving aircraft tires must be rapidly expelled from the 
tire–pavement contact area or the viscous and dynamic water pressures that build up with 
increasing ground speed will significantly reduce tire/surface friction availability. The same is 
true for automobile and some truck configurations on highways. 

The principal forms of these wet pavement tire friction losses, namely viscous and 
dynamic hydroplaning and reverted rubber skidding, are described in Figure 1. The speed 
regime, pavement and tire conditions, and tire operation mode that contribute to loss in tire 
friction are identified together with the factors that tend to alleviate their occurrence. Viscous 
hydroplaning or thin-film lubrication results from the inability of the tire to penetrate and disrupt 
the very thin residual fluid film left on the pavement after the majority of the trapped water has 
been displaced from the tire footprint. In this case, the pressure buildup within the tire–pavement 
interface is due to fluid viscous properties. Smooth tires operating on wet smooth pavements are 
particularly susceptible to this type of tire hydroplaning. 

During dynamic hydroplaning, a buildup of hydrodynamic pressure between tire and 
flooded pavement is a function of the square of vehicle speed (2). When this hydrodynamic 
pressure exceeds the tire–pavement bearing pressure, a wedge of water penetrates the tire contact 
area and the tire footprint is partially or totally detached from the pavement surface. Under total 
dynamic hydroplaning conditions, tire friction capability is reduced to near zero because of the 
inability of the fluid to support significant shear forces. It should be noted that for many wet 
pavement operations of both aircraft and highway vehicles, reduced tire friction performance 
may occur from both viscous and dynamic fluid pressure buildup resulting in combined 
viscous/dynamic hydroplaning (3). 
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The contact pressure developed between tire tread and pavement establishes the escape 
velocity of bulk water drainage from beneath the tire footprint. High pressure tires can expel 
surface water more readily from the footprint than low pressure tires. When the aircraft ground 
speed equals or exceeds the escape velocity of water drainage from the footprint, “choked” water 
flow occurs. The tire has now reached the state of total dynamic hydroplaning. Test results (4, 5) 
indicate that the critical aircraft ground speeds required for this total hydroplaning condition to 
occur on flooded with an unbraked tire are approximately: 

Spin-down (rotating tire) speed, knots1 = 9 × sq. root of infl. pressure, psi 
and 
Spin-up (nonrotating tire) speed, knots  = 7.7 × sq. root of infl. Pressure, psi 

While these equations have proved useful to estimate hydroplaning speeds under the 
conditions specified. Other factors of influence have been added in more recent research efforts 
which will be described. 

The third form of tire friction loss, reverted rubber skidding, is named for the appearance 
of the tire tread skid path after a prolonged locked-wheel skid. It is believed that friction-
generated heat within the skidding tire–pavement contact area is sufficient to produce steam and 
cause the tire tread rubber to melt (4, 5). The soft, gummy reverted rubber forms a seal around 
the tire footprint periphery and the entrapped steam and water significantly reduce braking and 
cornering capability. This hypothesis would also explain the distinctive (steam cleaned) mark left 
on the pavement in the tire path. Evidence from several aircraft wet runway skidding accidents 
indicates that once started, reverted rubber skidding results in very low tire–pavement friction 
                                                 
1 In deference to the origin of these equations the units of speed are nautical miles per hour. (1 naut mile = 1.15 
highway miles.)  

FIGURE 1  Principal causes of wet pavement tire friction losses. 
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which persists down to very low speeds. With respect to highway vehicles this is probably a rare 
occurrence, and with well maintained antilock brake systems may never occur. 

Returning to consideration of the highway a summary of the relationship among vehicle 
speed, tread condition, and water depth (as a function of rainfall intensity and pavement cross 
slope) is given by Yeager (6) and illustrated by Figure 2, for two typical examples of pavement 
cross slope and pavement width (drainage path length). 

Figure 2 (6) shows that dynamic hydroplaning can occur with water depths as little as 
0.03 inch with slick tires, under carefully controlled conditions. 

Gallaway et al. (7) gave a comprehensive treatment of most factors related to dynamic 
hydroplaning. Those results can be summarized graphically by Figure 3. 

• In 3a critical dynamic hydroplaning speed is reduced from 58 to 50 mph as water 
depth (WD) is increased from 0.1 to 0.7 inches. 

• Figure 3b shows a tread depth (TD) variation from 12 to zero thirty seconds of an 
inch reduces hydroplaning speed from 54 to 47 mph. 

• Figure 3c shows as tire pressure (P) is reduced from 36 to 18 psi hydroplaning speed 
is reduced from 58 to 46 mph. 

• Figure 3d shows the influence of texture depth (TXD). As TXD decreases from .15 
inch to .03 inch hydroplaning speed is reduced from 64 to 52 mph. 

Key elements to keep critical dynamic hydroplaning speed as high as practical, keep 
water depth low, tread depth high, tire pressure high, and texture depth high. Gallaway et al. give 
recommendations for pavement design and maintenance to achieve two of these four conditions. 

FIGURE 2  Estimated free rolling minimum full dynamic hydroplaning speed 
for passenger tires (conditions: relatively smooth surface, rounded footprint, 

and rated inflations and loads). 

) 
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Those recommendations of original construction texture depths of .040 inches or more, 
drainage cross slopes not less than 1½ percent and drainage path lengths as short as practical are 
still valid for conventional tire sizes even though it is recognized in periods of intense rainfall 
(e.g., a rate of 2 inches/hour or more) there will always be positive water depths which will allow 
hydroplaning if a vehicle is driven fast enough. 

Increasing the probability of hydroplaning is the recent styling exercise in the automotive 
industry, apparently an effort to imitate race cars. These are the extremely low-profile tires 
accommodated by plus-sized rims. A significant disadvantage of replacing conventional tires and 
rims with the plus-sized tires and rims on automobiles and light trucks is a spectacular decrease 
in dynamic hydroplaning speed. 

Walter states:  
Dramatic changes occur in the shape of the tire contact patch as wheel diameter increases 
with a fixed tire OD. Specifically the length-to-width ratio of the footprint decreased 
from more than unity (long and narrow) to less than unity (short and wide). The specifics 
of footprint geometry control many important tire performance parameters. The plus-
sized tires with square footprints generate appreciably “more” hydrodynamic lift 
compared to tires with slender footprints, leading to reductions in hydroplaning speeds of 
20 percent or more in going from 15 inch to 17 inch wheels. (8) 

FIGURE 3  Influence of four parameters on hydroplaning speed. 
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HYDRODYNAMIC DRAG 

Observations of hydroplaning as a test trailer passed over or through a puddle showed that 
hydroplaning could occur with puddle lengths as short as 30 feet in concert with significant 
hydrodynamic drag. Hydrodynamic drag during the traversal of a road puddle in combination 
with loss of traction may have an influence on safety. Gengenbach (9) demonstrated that a drag 
as high as 25 lb could occur in as little as 0.078 inch of water. These were steady-state drum 
tests, however, and much higher values were observed by Gallaway in typical roadway puddles. 
Gallaway found peak hydrodynamic forces encountered by a tire during puddle traversal to range 
from 70 to 330 lb. Hydroplaning, as indicated by loss of traction, occurred at speeds between 40 
and 50 mph. If a peak longitudinal drag force were applied to one vehicle front wheel only, it 
could have a significant destabilizing effect. Such an event might occur in a situation in which 
water collects along a curb because of poor drainage. The opposite effects of hydroplaning and 
hydrodynamic drag require some elaboration. Although full hydroplaning destroys any capability 
of the tires to interact with the pavement surface, and thus no capability to provide directional 
stability, hydrodynamic drag does place a force on the tire surface that provides a resistance to 
movement, in effect a small stopping traction force. 

To obtain a rough estimate of the potential real world effect, some simple computations 
were made by using a hypothetical vehicle weighing about 3,800 lb with a wheel base of 112 
inches and a track width of 60 inches. A conventional American automobile of this size might 
have a vertical load on each front wheel of about 1,000 lb. If the inertial effects were neglected 
and the torque produced about the center of gravity were calculated, it would take a 
corresponding opposing torque to maintain directional stability. Assuming that the opposite front 
wheel was on pavement that was only wetted, with no standing water, this opposing torque 
could be applied by developing a cornering slip angle by steering. Data for a typical tire on 
wetted pavement indicate that a front wheel slip angle of about 2 degrees would be 
required. For a typical steer ratio of about 20:1, this would require a steering wheel 
correction of about 40 degrees. If such a correction were made, and full pavement contact 
was suddenly regained, it could cause movement toward the opposing traffic lane before 
appropriate steering correction is made. 

In the case in which both front wheels are fully hydroplaning, but there is variation 
in water depth laterally, the unequal drag forces could cause yaw instability with little or 
no corrective steering capability available. There is little doubt, considering these 
illustrations, that the drag forces generated by positive water depths could pose a hazard to 
some drivers. 

TRUCK TIRE HYDROPLANING 

Until the 1980’s it had been understood in the highway accident investigation community that 
large truck tires do not hydroplane at highway speeds. There were several reasons why this myth 
developed. In the early 1960’s, Horne and his fellow engineers at NASA discovered and studied 
the phenomenon of hydroplaning as it related to aircraft tires. Because of the way aircraft tires 
are constructed, the shape of the contact patch remains much the same for a fairly wide variation 
of tire load. The NASA group found that one could predict hydroplaning speed as a simple 
function of tire pressure. (See equation on page 58.) This relationship predicted hydroplaning 
speed of tires with 100 psi inflation pressure well above what could normally be achieved by 
trucks. Further work in the 1960’s on automobile tires confirmed that hydroplaning speeds would 



56 TRB Transportation Research Circular E-C134: Influence of Roadway Surface Discontinuities on Safety 

 

be high at high levels of tire pressure. These studies of automobile tires, including research by 
Stocker and Gallaway at Texas Transportation Institute, suggested that tire loads were an 
unimportant variable. Those who interpreted this work to mean that truck tires could not 
hydroplane did not appreciate the following. While an automobile tire for a 4000 lb vehicle may 
have a normal range of loads from 800 to 1200 lbs, a truck tire may be operated with loads 
varying from 600 to 6000 lbs. With this extremely wide load variation, the aspect ratio of a truck 
tire surface contact zone varies spectacularly, leading to hydroplaning conditions for a lightly-
loaded, albeit normally inflated, truck tire at speeds common to highway vehicles. This footprint 
aspect ratio is the ratio of the surface contact zone width to length. 

At the Transportation Research Board’s annual meeting in January of 1984, it was 
suggested to Committee A2B07 (Surface Properties–Vehicle Interaction) that a task group be set 
up to look into the special problems of tractor/trailer loss of control. Shortly after that meeting, 
Horne sent Texas Transportation Institute (TTI) a copy of his forthcoming paper, scheduled for 
presentation a the meeting of ASTM E-17 in April. Horne’s arguments, explanations, and 
predictions were compelling. Intrigued by the possibility of explaining why unloaded tractor/ 
trailers are several times more prone to loss of control during wet weather, (10) engineers at TTI 
constructed a test trailer suitable for truck tires. The resulting test data are summarized in Table 1. 

By gradually increasing speed, the speed was determined, at which the tire began to spin 
down for a particular load and pressure condition. That point was a reduction of tire speed of  
2 mph. By increasing speed beyond that value, large values of spin down were observed. 

Figure 4 shows how the four data points compare to Horne’s predictions. Within the 
range of practical truck tire pressures, 60 to 120 psi, the comparison appears quite good. Horne’s 
prediction is about four mph low (8%) at 60 psi, correct a 75 psi and about 6 mph (10%) high at 
100 psi. Since there was no replication of the data achieved, this may be within the range of 
experimental variation if such factors as tire construction, tire tread depth, water depth, and 
pavement texture are considered. 

A comparison of the curves achieved using the two equations is given by Figure 5. It is 
conclusive that Horne’s theoretical predictions are reasonably accurate and that lightly loaded 
truck tires do hydroplane. 

TABLE 1  Tabulation of Test Conditions 

Truck 
Tire 

Wear 
Condition 

Pressure, 
psi 

Load, 
lbs W/ℓ 

Hydroplaning 
Speed, mph 

10.00.20 New 20 940 1.40 43 

10.00.20 Worn* 40 940 1.40 51 

10.00.20 Worn* 75 940 1.43 58 

10.00.20 Worn* 100 940 1.41 62 

10.00.20 Worn* 700 3600 0.95 Over 62** 

10.00.20 Worn* 100 3600 1.10 Over 62** 
Water depth about ¼ in ±0.1 in 
* Worn to approximately 2/32 in tread remaining 
** 62 was the speed achievable. No spin was detected at this speed.
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FIGURE 4  Comparison of TTI data points and Horne’s predictions at w/ℓ=1.4. 

FIGURE 5  Comparison of Horne’s and TTI’s curves. 
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Horne’s equation is 

 

compared to an equation based on TTI’s curve fit, normalized at the test aspect ratio of 1.4 (11): 
 

 

A detailed discussion and summary of other equations developed to estimate 
hydroplaning speed is given by Navin (12). 

VISIBILITY 

Research indicates that accident rates increase with the amount of annual rainfall in a roughly 
linear fashion. This effect was demonstrated by Ivey et al. (13) in 1977 and further substantiated 
by Sherretz and Farhar (14) in 1978. These findings were based on National Safety Council 
accident data and National Oceanic and Atmospheric Administration climatological data. 

One factor that influences wet weather accident rates is the decrease in visibility caused 
by splash and spray. Kamm and Wray (15) state that, “passing a vehicle on a wet road requires a 
level of skill much higher than needed in most phases of driving. The maneuver is considerably 
more difficult when the driver’s view is obscured by spray thrown up by the rear wheels of the 
adjacent vehicle.” The phenomenon of splash and spray was described by Weir (16) as follows: 
“Splash tends to be relatively large droplets which move in ballistic trajectories and are 
associated with deep water or low speeds. Spray is composed of the smaller droplets, which tend 
to be suspended in the air and are associated with shallow water or high speeds. Formation 
requires a source of moisture, a hard or smooth surface, and some velocity of both vehicular 
movement and/or flow of air.” 

The degradation of visibility caused by splash and spray can be severe under dense traffic 
conditions when wipers do not clear the windshield effectively. The problem is described as 
follows (17): “Splash and spray create more or less a permanent smear which will be present on 
the glass, making it more difficult to see dim objects to the front of the car. Light emitted from 
headlights of opposing vehicles is refracted irregularly such that objects at some distance in front 
of the car will be considerably distorted in shape creating difficulties in recognition and 
judgment leading to unsafe operations.” 

There are many factors that interact to determine the extent and effect of splash and spray 
produced by water accumulations on pavement. Figure 6 illustrates the effect of splash and spray 
on visibility behind a large truck. Study has concentrated on tire design to remove as much water 
as possible from the tire–roadway contact area; however, this may have led to poorer visibility as 
more water is expelled to the sides and rear of the tire. 

Three significant research efforts have addressed the issue of splash-and-spray reduction 
by pavement design. Maycock (18) conducted studies on six bituminous surfaces—four were 
impervious, one slightly pervious, and one very pervious (porous). The surface dressings 
performed slightly better than the smoother asphaltic surfaces, whereas the very porous 
macadam surface performed extremely well. 
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Brown (19) investigated six experimental open textured bituminous-macadam pervious 
surfaces with nominal top-sized aggregates ranging from 0.40 to 0.75 inch. All 
experimentalsurfaces performed well in reducing spray and retained their spray-reducing 
properties after being subjected to heavy traffic for almost 2 years. Simoncelli (20) studied open 
graded bituminous mixtures developed in many countries, especially in the United Kingdom and 
Scandinavia. These surfaces have proved highly successful in reducing spray, improving 
visibility in rain, and enhancing the safety of the driver. The positive influence of open-graded 
pavement on surface spray reduction was also clearly demonstrated by Gallaway et al. (7). 

Splash and spray can degrade driver visibility and safety. Low places in the pavement 
surface that hold water or flat spots that drain poorly contribute to the splash-and-spray problem. 
Increasing surface texture or providing porous self-draining pavements in favorable climates can 
contribute to better visibility. Maintaining these surfaces may prove to be difficult. Surface 
texture is smoothed by traffic, which may also consolidate porous pavements. Some fender 
systems for trucks have been devised to reduce splash and spray, but they are costly and create 
operational problems. Side skirts and spray-suppressant mud flaps are steps in the right direction. 
However, until a major breakthrough in one of these occurs, the driver must use extreme caution 
when environmental conditions result in reductions in visibility. 
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ICE AND SNOW 

Whitehurst provided a detailed discussion of the influence of snow and ice on available friction 
in the 1983 SOAR No. 1. His observations are still timely and are included here in a more 
concise form. 

In any consideration of ice and snow as a surface contaminant, attention must be given to 
the manner in which ice and snow differ from other roadway surface contaminants. Three such 
differences should be fully understood. 

The first consideration is that of loss of traction. Although many roadway surface 
contaminants result in a loss of traction, the magnitude of the loss experienced when traveling on 
packed snow or ice probably exceeds that of most other contaminants. Dry pavements may 
exhibit skid numbers as low as 25 and still provide adequate surfaces for normal traffic 
operations where traction demands are modest. When the surface is covered with ice and the 
temperature is near the freezing point, the skid number will be on the order of 5 to 7. (Skid 
Number is roughly equal to friction times 100.) 

The second consideration is temperature effect. In most cases variations in temperature 
do not result in large changes in the traction available at the tire–pavement interface. It has been 
reported that in normal wet skid testing, wet skid number variations of 1 to 2 skid numbers per 
10°F temperature change occur. Such changes would rarely be noticed by a vehicle operator. In 
the case of traction on an ice-covered surface, however, the available traction, although always 
low, changes drastically with temperature relative to the general level of available traction. The 
colder the ice on which the vehicle is traveling, the greater are the traction capabilities of the 
vehicle. In fact, in extremely cold weather, when the ice surface temperature is approximately 
0°F, the traction level of the surface will be more than twice that of a surface on which the ice is 
just at the freezing point. The driver is operating under the greatest hazard when the ice is barely 
adhering to the pavement surface. Figure 1 illustrates this ice temperature dependency. For 
example, at temperature of 0oF stopping distance from 50 mph is about 900 ft. At 32o F stopping 
distance from 50 mph may be 1700 ft. 

The third consideration is that of the effect of vehicle gross weight. On ice stopping 
distance is seriously affected by vehicle weight. The heavier vehicle will require a greater 
distance in locked-wheel stopping from a given speed than will the lighter vehicle. In tests 
conducted by the Committee on Winter Driving Hazards involving locked-wheel stops from an 
initial speed of 20 mph on ice and at an ice surface temperature of 25°F, stopping distances 
averaged 247 ft for a 16,500-lb truck, 257 ft for a 28,360-lb truck, and 333 ft for a 70,880-lb 
tractor/trailer combination (1). During the same test program the average locked-wheel stopping 
distance of a passenger vehicle from 20 mph on ice at 25°F was 154 ft. Thus the heavily loaded 
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tractor/trailer required more than twice the locked-wheel stopping distance of the passenger 
vehicle. It is not completely clear that the weight was the only influence here. Differences in 
braking systems of the different trucks are a complicating factor. Similar relationships for 
vehicles on wet pavement have been reported by Dijks (2). 

The reason for this phenomenon is not currently understood. It has been hypothesized 
that some melting always occurs under the wheels of a vehicle sliding on ice and that the vehicle 
is, therefore, always sliding on wet ice. This hypothesis suggests that more melting would occur 
under wheels with higher contact pressures than under those with lower contact pressures. In this 
case the heavier vehicle would be sliding on wetter ice and would, hence, require a longer 
distance to stop from a given speed. 

The basic relationships have not changed. Major points made by Whitehurst are 

1. The National Safety Council summarizes a number of years of tests to indicate that on 
glare ice at 25°F the locked-wheel stopping distance at 20 mph for a passenger vehicle equipped 
with conventional highway tread tires averages 150 ft. When snow tires are used on the rear 
wheels of the vehicle, the distance is about the same. Repeated tests have indicated that in 
stopping on ice, snow tires provide no advantage, usually performing essentially the same as or 
slightly (1 to 5 percent) poorer than conventional highway tread tires. The use of studded snow 
tires. The use of reinforced tire chains on the rear wheels reduces the average stopping distance 
to 75 ft, an improvement of 50 percent. 

On loosely packed snow a passenger vehicle equipped with conventional highway 
tread tires stops in about 60 ft from 20 mph. The use of snow tires on the rear wheels provides 
some improvement under this condition—about 13 percent—and reduces the stopping distance, 
on average, to 52 ft. When reinforced tire chains are used on the rear wheels, the stopping 
distance is further reduced to 38 ft, an improvement of 37 percent. 

2. Much attention has been given over the years to the development of appropriate 
braking techniques when operating a vehicle over ice-covered surfaces. For many years the 

FIGURE 1  Variation of stopping distance with speed and ice temperature. 
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advice given by the National Safety Council and others was to apply the brakes in a series of 
sharp applications and releases, a procedure generally referred to as pumping. The purpose of 
this procedure was to obtain deceleration through braking without reaching a sustained condition 
of brake lockup, thus retaining steering capability while braking was being accomplished. This 
advice is still sound if the operated vehicle is equipped with drum brakes. 

Most modern automobiles, however, are now equipped with disc brakes on the front 
wheels. Disc brakes do not release as quickly as drum brakes, and if pumped rapidly they may 
not release at all, thus causing a condition of continuous lockup. For vehicles with disc brakes, 
the brakes should be squeezed with a slow, steady pressure until they are close to the point of 
lockup and maintained in that status. If lockup occurs the brakes should be released and, once the 
wheels are rolling again, the procedure should be repeated. 

3. The maintenance of steering capability under adverse roadway surface conditions is 
obviously an important matter. Its importance becomes even greater if the driving capability of the 
vehicle under such circumstances is increased while the maneuvering capability is not. Testing of 
lateral friction involved a circular track on which the test vehicle gradually increased speed. 

The circular course has a radius to the inner edge of the ice of 200 ft and a path width of 
50 ft. A 12 ft lane is delineated on the ice surface by using rubber traffic cones; it has a known 
radius somewhere between 200 and 250 ft. The test vehicle is driven onto the delineated 12-ft 
width and the driver then accelerates until he is maintaining the highest speed possible around 
the course without continually slipping. When such tests were performed on a passenger car that 
has new highway tread tires on front and rear wheels, the average developed lateral coefficient 
was 0.071. When the test was repeated with new highway tread tires on the front wheels and new 
snow tread tires on the rear wheels, the average developed lateral coefficient was 0.072. 

If this value of lateral acceleration is compared to the allowable AASHTO curve design 
lateral acceleration (or developed friction) it is seen vehicles cannot be driven at advisory speed 
levels when snow or ice are present. See Figure 2. 

FIGURE 2  Comparison of available lateral friction on ice at melting point 
with AASHTO curve design allowable values. 
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In summary, it may be stated that a driver operating an automobile over ice- or packed-
snow-covered highways is operating under what is probably the most hostile and least-forgiving 
environment that he is likely to encounter. His primary concern must be to avoid breakaway 
between the vehicle tires and the surface over which it is traveling. Such breakaway can occur 
quickly as a result of excessive cornering. All such maneuvers should be avoided, and the best 
avoidance technique in general is to drastically reduce the speed of operation. 

When breakaway does occur, as it almost inevitably will from time to time under such 
conditions, the driver will find that vastly greater distances are required to complete a desired 
maneuver or to recover control of the vehicle than is the case when operating over bare 
pavements. He should, therefore, greatly increase his following distance from the vehicle ahead 
of him—by a factor of 8 to 10 times that which he would maintain on a dry bare pavement 
surface. The heavier the vehicle that he is operating, the greater should be the following distance 
that he maintains. 

Traction aids such as snow tires and tire chains can be helpful to the driver. He should, 
however, be thoroughly familiar with what kind of assistance and the magnitude of the assistance 
they provide. He should not count on more than they can deliver. 

Finally, the driver should be continually mindful that, even with the best traction aids, the 
total traction available to him to propel his vehicle, stop his vehicle, and perform turning 
maneuvers is drastically less than that available to him when traveling over even a relatively 
poor quality rain-slick highway. 

EARTH, SAND, GRAVEL, AND MUD 

Mud, sand, or gravel on a paved surface can result in losses of control if significant maneuvers—
stopping, accelerating, or cornering—are attempted. Loose sand or gravel on turns is a critical 
hazard to motorcyclists, constituting a common cause of loss of control. It is of lesser 
significance to automobiles, but is still of importance. Under certain circumstances a loose gravel 
surface can contribute to a full loss of control. Mud can have much the same effect. 

In 1981 Ivey and Zimmer conducted a series of locked-wheel stopping-distance tests by 
using a 1976 Ford custom pickup. The road surface was a rounded gravel chip seal with a texture 
of approximately 0.04 inches This surface was coated with about 1 inch of east Texas silty clay 
and thoroughly wet. The results of the tests of stopping distance are shown in Figure 3. By 
observing the position of the test curve and comparing that position with the calculated curves of 
f = 0.3, 0.4, and 0.6, it can be seen that the average stopping coefficient decreases with speed, 
from 0.6 at 20 mph to 0.3 at 50 mph. Because of the relatively high texture of the paved surface, 
these coefficients may be high compared to what mud would normally allow. At speeds up to 50 
mph, a nonprofessional test driver used abrupt steering maneuvers and made lane changes 
without losing control. In only one of the stopping-distance tests did the vehicle spin-out. The 
spin was approximately 90 degrees. 

Extensive data was presented in a paper published in 1924 by Agg (8). Agg gives values 
of locked-wheel friction on gravel, natural soil, and sandy soil. The values vary from 0.26 to 
0.34. Further work by Professor Agg (9) was presented in 1928. 

R. A. Moyer extended Agg’s work through the 1930s. From a definitive work by Moyer 
(10), the findings are shown in Figure 3. 
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MUD ON PAVEMENTS 

Tests on a mud-covered pavement clearly indicate how slippery such surfaces can be, the 
coefficients ranging from 0.2 to 0.3. These coefficients are only slightly higher than those 
obtained on ice, which is an indication that muddy pavements may be considered practically as 
hazardous as ice. The placing of gravel, shale, cinders, or crushed rock on the shoulders and at 
the approaches to all pavements would not only correct a dangerous skidding condition, but 
would provide greater road widths for use in an emergency. 

It should be understood that simply the classification mud will not suffice to estimate 
available friction. Although it has not been experimentally verified, many things influence the 
available friction on a muddy paved surface. The most obvious are (a) the mineral constituents of 
the soil, (b) the degree of wetness and compaction, and (c) the texture of the underlying paved 
surface. One thing almost all have in common is that the available friction is reduced, and thus 
the potential for accidents by imprudent drivers is increased. 

More recent work by Koppa is given in Friction Variations. In Table 2, page 48 Koppa 
measured locked wheel friction on unpaved shoulders and compared them to friction on the 
adjacent pavements. His test sections included shoulders of limestone, gravel/sand/clay, silty 
sand and peat/gravel. SN values ranged from low 20s wet to the 80s dry. The friction values 
determined on gravel shoulders were surprisingly high. Problems might be expected on wet soil 
with a high clay content and on wet vegetation. 

LIME 

In 1998 there were reports of lime deposited or tracked inadvertently on an asphaltic concrete 
surface in areas associated with wet weather accidents. A state DOT had taken steps to remove 
lime deposits and the owners of the lime plant initiated washing of the 18W lime transports 
before they entered the highway surface. It was initially suggested that the lime itself created 
slipperiness during periods of rainfall. Since either hydrated lime or quicklime is chemically 

FIGURE 3  Stopping distance on wet clay-coated surface. 
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much less active than clay it was unlikely that lime deposited on open highway surfaces would 
cause friction losses of the same order as clay. What those that investigated the highway 
expected was to find the lime deposits reduced the surface macro texture, thus decreasing critical 
hydroplaning speeds. While this would seem to be the case on surfaces that began with 
significant macro texture it was not the case in the area associated with accidents since the 
“before lime” macro texture seemed to be so low (e.g., less than 10/1000th’s inch) that 
hydroplaning speed was affected only modestly. 

ASTM E 274 skid numbers were in the low 30s. This means lime is not as influential as 
clay in reducing wet weather friction. 

DIESEL FUEL 

A relatively uncommon but extremely dangerous road surface contaminant is diesel fuel. This 
section relates specifically to this product, although many types of petrochemicals are at times 
deposited in small amounts on highway surfaces. 

Even small amounts of diesel fuel on a wet surface can cause a precipitous loss of 
available friction. Based on the extrapolation of British pendulum numbers to account for speed 
sensitivity, B. M. Gallaway conducted tests on wet road surfaces contaminated by diesel fuel. 
Four different asphalt concrete (AC) pavements were included in the testing. These tests showed 
available friction may be reduced from 48 to 92 percent when diesel fuel is placed on a wet 
pavement. In the case of the worn pavement, the resulting friction is on the same order as wet 
ice. 

On the Calcasieu River Bridge over Lake Charles, a 26 car and truck accident took place 
on August 27, 1981 (11), when 75 gallons of diesel fuel spilled from a ruptured tractor/trailer 
fuel tank. The spill occurred on the downhill eastbound side of the bridge, thus maximizing the 
need for friction by oncoming vehicles. Statements of the drivers involved in the accident verify 
the extreme slipperiness of the road surface in this condition. Although spills of this magnitude 
are rare, this event emphasizes the extremely hazardous nature of pavement so contaminated. 
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Small and Large Vehicles 

LINDSAY I. GRIFFIN III 
THOMAS D. GILLESPIE 

SPECIAL CONSIDERATIONS FOR SMALL VEHICLES 

An increased sensitivity of the small automobile to road surface discontinuities is indicated from 
accident data and increased probability of injury to the occupants of such vehicles. A recent 
study by Griffin (1) indicates that lighter-weight cars may be more likely to be involved in curb 
accidents than are heavier cars. In a study on tire defects, Campbell (2) presents data that suggest 
that small cars may be disadvantaged by roadway discontinuities and disturbances. In his article, 
Campbell demonstrates that accident-involved subcompact cars are far more apt to be cited for 
tire defects than are accident involved large cars. Furthermore, this phenomenon is upheld when 
controlling simultaneously for vehicle age and driver age. Whether this phenomenon results from 
higher rates of rotation for smaller tires or from greater abuse suffered by smaller tires when 
striking ruts, potholes, edge drops, foreign objects, and so forth remains to be seen. Simply 
concluding that small vehicles are more sensitive to all surface problems does not appear to be 
warranted. In the chapters on positive effects of road surface discontinuities and pavement edges 
(3, 4) it was demonstrated by tests that a small vehicle could handle pothole traverses less 
effectively than a large car, but that it was no more sensitive to pavement edges than some larger 
vehicles. 

Stewart and Carroll (5) have noted that crash involvement rates for smaller cars are 
greater than for larger cars. Why this disparity in rates exists is not commented on. Perhaps 
smaller cars are driven by younger drivers, at higher speeds, or in different circumstances; or 
perhaps roadway disturbances (e.g., inadequate friction) pose more severe problems for smaller 
cars than they do for larger cars. 

A recent analysis by L. I. Griffin (unpublished data) suggests that smaller, lighter-weight 
cars may be more susceptible to skidding accidents than larger cars (see Figure 1). In this 
analysis single-vehicle accidents involving passenger cars of known curb weight were coded 1 if 
they resulted from skidding and 0 otherwise. Logistic regression procedures were then applied to 
estimate the influence of curb weight on the probability of an accident being classified as a 
skidding accident. A logistic regression equation of the following form was built: 

y = exp(a + bx)/[1 + exp(a + bx)] 

where y = probability of an accident being coded as a skidding accident, 
x = vehicle curb weight, and 

a,b = regression coefficients. 

The maximum likelihood estimates of a and b are a = 2.17760701 and b = 0.00024691. A 
chi-square test was carried out to determine if the two variables (x and y) are independent. The 
resulting chi square was 59.34 (p < 0.0001), which indicates they are not. 

Whether the relationship depicted in Figure 1 results from the simple physical interaction 
of road surface characteristics and passenger car curb weight or other spurious factors that vary 
with vehicle weight (e.g., driver age, speed) will require further research. The fact that vehicle 
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wheelbase and track width are smaller with the lighter vehicles implies reduced directional 
stability, which provides a relatively direct explanation of the apparent susceptibility of these 
smaller vehicles to slick surface accidents. 

SPECIAL CONSIDERATIONS FOR LARGE VEHICLES 

Thus far the geometry of the roadway surface has been discussed largely from the perspective of 
how it influences safety of passenger cars. In this section the attention turns to the larger vehicles 
used for commercial transportation. Commercial vehicles range from the two-axle medium truck 
with a gross vehicle weight of 15,000 lb to the heavy-class articulated tractor–trailer combina-
tions that may have from 3 to 11 axles and may operate at gross combination weights of 72,000 
to more than 150,000 lb. Likewise, the commercial vehicle class includes buses used for 
transporting passengers that fall in the midrange of the sizes just described. In total, commercial 
vehicles represent about 20 percent of the vehicles on the highway; of these, approximately one-
half are the common tractor/semi-trailers, which are the primary focus in the following 
discussion. 

Accidents involving commercial vehicles risk injury or death not only to their own 
occupants but especially to other motorists. Because of their weight disparity with other vehicles 
on the road, occupants of other vehicles are more frequently killed in collisions with combination 
vehicles. Perhaps this disparity in survivability is the source of the myth that big trucks are the 
primary problem in traffic safety. 

AASHTO’s strategic highway safety plan states the following: 

Yet drivers of heavy trucks appear to engage in fewer unsafe driving practices than do 
drivers in general. Analysis of driver-related factors in crashes between large trucks and 
passenger vehicles indicates that passenger vehicle driver errors or other driver factors 
are cited in more than two-thirds of these crashes, whereas truck driver errors are cited in 
less than one-third (FHWA, 1999c; Blower, 1999). Studies of vehicle highway speeds in 

FIGURE 1  Probability of involvement in slick surface 
accidents as a function of passenger car weight. 
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North America indicate that drivers of heavy vehicles generally exceed posted speed 
limits less often, and by smaller margins, than drivers of light vehicles (Tardif, 2003; 
NTSA, 1991). In addition, crash-involved truck drivers are much less likely than 
passenger vehicle drivers to drive under the influence of alcohol. In crashes involving a 
heavy truck and a passenger vehicle (80 percent of all fatal truck crashes), it appears that 
the principal culpability most often lies with the driver of the other vehicle. (6) 

In 1998, Blower analyzed more than 5,400 fatal car-crashes from 1994–95, 
examining Fatality Analysis Reporting System (FARS) records of driver-related factors, 
pre-crash movements, and vehicle positions. According to this analysis the car driver’s 
behavior was more than three times as likely to contribute to the fatal crash than was 
solely responsible for 70 percent of the fatal crashes, compared to 16 percent for the truck 
drivers. (7) 

Because of their size and design, large commercial vehicles have characteristics that are 
uniquely different from passenger cars, which affects their sensitivity to roadway discontinuities. 
Those differences are seen in the roadway characteristics relating to the response to roughness 
discontinuities in the roadway and to tire–road friction coupling. 

Discontinuities in the surface of a road that would fall in the classes of generalized 
roughness, potholes, edge drops, or other special features will affect commercial vehicles 
differently than passenger cars. Because of the larger tires used on these vehicles, the abrupt 
features are normally not as significant as an input to large vehicles. That is, a truck tire running 
through a pothole or over a curb edge, because of its size, is able to negotiate the feature with 
less disturbance to the vehicle. Such discontinuities impose a vertical and a longitudinal force on 
the wheel, the relative magnitude of which is inversely proportional to tire size. This relationship 
holds because trucks have larger tires that tend to smooth out the abrupt discontinuities, and they 
have more deflection distance available within the tire to absorb the disturbance. 

Counterbalancing the advantage gained from the larger size of truck tires is the reduced 
isolation provided by their typical suspension systems, stiffer springs, and higher tire pressures. 
In order to maintain appropriate vehicle positions over a broad range of load conditions, the more 
common suspension types must have a high effective stiffness. As a consequence, those 
disturbances imposed through the tire are more directly transmitted to the vehicle chassis. 

No definitive research has been done to quantify the sensitivity of large vehicles to the 
more abrupt features in the nature of potholes, curbs, or pavement edge drops. From the 
knowledge of truck dynamic properties, it may be expected that certain types of these road 
features can create a greater vibration disturbance to trucks than to cars. In addition, there exists 
the concern that such road features may produce a steering disturbance, with potentially greater 
consequence to a truck. 

Perhaps the one area of possible influence that has not been well addressed in the 
literature is the significance of special wavelengths of road roughness to which trucks may be 
sensitive. It is known among experienced truck drivers that certain long wave road undulations, 
as typified by pavement settlements in bridge approach areas, may be peculiarly difficult to 
negotiate with commercial vehicles, particularly tractor–semitrailers. These features tune to the 
low-frequency rigid-body bounce and pitch modes of these vehicles. Because the drivers are 
located near the extremities of the vehicle (far from the center of gravity), large displacement 
vertical and fore-aft motions can be imposed on the driver, thus complicating the task of 
maintaining control when negotiating these road features. There is anecdotal evidence that truck 
drivers have experienced control problems reflecting on safety due to these effects, but there has 
been no known effort to compile statistics quantifying the magnitude of this particular problem. 
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Unfortunately, available accident data are not specific enough in their recorded detail to provide 
that answer. 

It must be concluded that the knowledge is deficient to state with confidence which road 
features constitute peculiar safety problems for large vehicles. Relying on the general knowledge 
of such vehicles, however, points to the need to better understand certain long wavelength 
roughness qualities in roads as potentially unique problems for such vehicles. 

One area recently studied is the sensitivity of unloaded or lightly loaded commercial 
vehicles to hydroplaning. As noted in the chapter on roughness, holes, and bumps and explained 
in the chapter on water accumulations, the unloaded commercial vehicle has a short contact 
patch resulting in critical speeds of the 50 to 70 mph range. The fact that unloaded rigs are often 
capable of higher speeds and possibly that truckers are not making money while “dead heading” 
may be part of the extreme over representation of unloaded commercial vehicles in wet weather 
loss-of-control accidents. 

Commercial vehicles achieve their greater load carrying capacity not only by the use of 
more axles but also by the use of larger tires operated at higher inflation pressures. The higher 
road-tire contact stresses thus obtained are also cause for the use of tread rubber compounds that 
differ from those commonly used on passenger-car tires. Thus it is not surprising to find that 
truck tires exhibit traction qualities distinctively different from passenger-car tires. 
Quantitatively, truck tires exhibit lower peak tractive force coefficients of friction on a given 
surface (8), the sliding coefficient of friction is proportionately even lower (8, 9), and truck tire 
traction qualities are more linear with load (10). 

The traction differences of truck tires, either on dry or wet roads, do not appear to have a 
major safety significance because the vehicles’ accident avoidance capabilities are not as 
uniquely traction limited as with passenger cars. Intuitively, it would seem that commercial 
vehicle safety would be linked to emergency braking capability and to limited cornering 
capability. 

Studies of the safety benefits accrued from higher performance airbrake systems (11), 
however, fail to demonstrate any benefit from improved stopping-distance performance. Thus it 
would be inferred that the nominal traction limits of current truck tires on the road are not 
significant to safety in braking situations. Although this conclusion has broad implications, it can 
be rationalized for some situations, but not others. On dry pavements truck braking capability is 
normally more limited by vehicle design than by road friction characteristics. On lightly wetted 
roads truck tire traction is not severely disparate from that of passenger-car tires, and in the case 
of heavy water accumulations, the higher contact pressures under truck tires undoubtedly result 
in greater resistance to hydroplaning, except in the case of lightly loaded tires. 

Ice- and snow-contaminated conditions are most critical for commercial vehicles (12). 
The more critical nature arises from several key differences: articulated vehicles have unique 
modes of instability (e.g., capability to jackknife), accidents are more severe because of greater 
size and mass, and these vehicles are more prone to rollover, even in the absence of a collision. 

The higher tire contact pressures that resist hydroplaning on wet roads for heavier 
loaded commercial vehicles can be a detriment on ice- or snow-covered roads. Except at 
extremely low temperatures, the low friction coupling on ice-covered roads is dominated by 
the water film developed on the surface caused by frictional heating (13) and the contact 
pressure of the tire. Inasmuch as truck tires have higher loads and contact pressures, the low 
friction level is likely to prevail over a much wider temperature range than occurs with 
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passenger-car tires. The combination of all these factors is then cause for greater concern for 
the safe operation of large commercial vehicles on snow- and ice-covered roads. 

The cornering performance limits of commercial vehicles are established by two 
predominant modes—rollover and yaw instability (13). Rollover, in and of itself, is not an 
accident-causation factor that is aggravated by deficient road surface conditions. The rollover 
limit has a first-order relationship to the ratio of center-of-gravity height to track width, thus 
making it specific to the vehicle. Road friction is only significant in the sense that its nominal 
level will determine whether rollover is possible while the vehicle remains on the road. That is, 
the rollover limits for many commercial vehicles are low enough that rollover (rather than simple 
spin-out) is possible with loss of control on dry roads, although not as certainly on wet roads. At 
the same time the risks of loss of control are also greater on wet roads. Of course, once a 
combination vehicle has left the road, the probability of rollover is greatly increased by roadside 
cross slopes and soft soil conditions. 

The second limit mode—yaw instability—is a technical term describing the onset of 
jackknife with articulated vehicles or spin-out with straight trucks (13). By the nature of the way 
in which the load is carried, and the way in which the roll resistance is shared among axles on 
commercial vehicles, their turning performance is most often limited by loss of cornering force 
on the rear axles of a truck or tractor. When this occurs, spin-out follows, with a subsequent risk 
of rollover. The loss of cornering force is, in part, a function of the road surface and its friction 
level. In pure cornering maneuvers, the threshold of instability occurs at rather moderate slip 
conditions (3 to 5 degrees of slip angle), where the cornering force properties are much more 
dependent on the stiffness of the tire carcass than on the tire–road coefficient of friction. 
However, when braking is also combined with cornering, brake slip at the rear wheels will 
contribute to loss of cornering force and subsequent jackknife. Consequently, the potential for 
this type of accident is greatest when the vehicle is unloaded or when the tire–road coefficient of 
friction is low. 

From the standpoint of tire–road friction the safety performance of large commercial 
vehicles is uniquely critical on roads contaminated with water, ice, or snow. The threat to large 
vehicles under these conditions arises from the potential for loss of control, thus leading to more 
severe accidents; even at relatively low speeds, jackknife or rollover accidents are possible. 

In 1983 the subcompact seemed destined to become the dominant vehicle size, perhaps 
due to the consideration of aid availability and fuel prices. That did not occur. 2002 sales data, 
shown by Figure 2, illustrates the dominance of mid-sized vehicles. A major contributor to that 
dominance is the light truck category. Figure 3 shows light trucks, which include TUVs, SUVs 
and vans reaching a parity in sales with passenger cars. 

In 2001 of the 2.8 trillion total vehicle miles traveled, passenger cars accounted for 1.6 
trillion (57%). Other two-axle, four-wheeled vehicles accounted for 943 billion (34%). 
Automobiles and light trucks accounted for 2.54 trillion vehicle miles. Heavy trucks, including 
18-wheelers, accounted for 137 billion. 

With these major changes occurring, which influence both the creation of road surface 
discontinuities and the sensitivity of vehicles to them, far more effort may be warranted to 
determine the interactions between vehicle size and the roadway surface problems that influence 
traffic accidents. 
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Summary 

FORREST M. COUNCIL 
DON L. IVEY 

he analysis of 15,968 single-vehicle accidents in North Carolina conducted in 1974 yielded 
the first statistical indication of the influence of road surface discontinuities on highway 

safety. Narratives containing 1 of 19 key words (e.g., dip, rocks, rut, edge) were examined and 
reviewed to determine if an accident resulted from, or was aggravated by, a roadway 
discontinuity. Some 566 (3.5 percent) of the 15,968 accidents were associated with roadway 
irregularities. Other reviews of accident data from three sources—California accident data 
(police reports), collision performance and injury report (CPIR) data provided by the Highway 
Safety Research Institute of the University of Michigan, and Indiana accident data (levels II and 
III) provided by Indiana University—indicated that the roadway disturbances shoulder drop off 
and loose material on roadway had a significant influence on safety. Other irregularities such as 
potholes, rough roads, and dips have been identified as potential problems. 

In the opinion of the authors, a summary of the main points from the task group revision 
efforts to SOAR 1, concerning specific types of roadway surface discontinuities, are as follows: 

TIRE–PAVEMENT FRICTION 

• The influence of surface friction has been a favorite subject of researchers for many 
years. To assume that traffic accidents, or a given subset of traffic accidents (e.g., accidents that 
result from inadequate surface friction), can be accurately predicted on the basis of one condition 
(such as skid number) is wishful thinking. It should be recognized that the frictional properties of 
a road surface are not inherently adequate or inadequate, but can only be so classified in terms of 
specific vehicle maneuvers—stopping, turning, or accelerating (i.e., vehicle demand for friction). 
This fact has been recognized directly or indirectly in a number of studies. 

• Variations in friction coefficients within and between wheel paths may produce 
difficulties in controlling a vehicle when brakes are applied. This phenomenon was first 
described theoretically in 1959. It was concluded that a difference in the friction coefficients of 
the wheel paths could be potentially hazardous, even though the average surface friction is 
relatively high. Severe vehicle response may occur when a driver releases his brakes after his 
vehicle has begun to spin. The rotating vehicle may run off the pavement or into other vehicles. 

• Variations in the friction properties of pavement surfaces in the direction of travel 
occur frequently. Whether drivers judge changes in friction properties correctly, or even realize 
the existence of such changes, is debatable, as is whether they adjust their driving pattern to 
perceived changes. Because all changes are not perceived, and others are likely to be judged 
incorrectly or ignored, they can constitute a potential hazard. 

• Marking materials generally lower the skid resistance of a pavement. When applied 
over large sections, skid stopping distances are increased. Differential friction caused by the 
application of marking materials may also give rise to hazardous situations, such as excessive 
vehicle yaw during locked-wheel skids, loss of control during motorcycle or bicycle turning and 
braking maneuvers, and slipping and falling by pedestrians on crossings. Single and double 
delineation stripes do not appear to be a problem. 

T 
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• Single-vehicle loss of control resulting from the inability of some drivers to deal with 
a lower friction shoulder surface causes some accidents. After running off the paved surface, if a 
driver reacts quickly with too much steering input, a large steering force may result when the 
offside front wheel strikes the paved surface. Collision or rollover may result. The high lateral 
acceleration produced by this maneuver further complicates recovery by an unbelted driver, who 
may be thrown out of position to properly control the vehicle. 

ROUGHNESS, HOLES, AND BUMPS 

• It is apparent that a hole must be relatively large to constitute a significant safety 
influence. At common highway speeds a hole must be in excess of 60 inches long and 3 inches 
deep to constitute a threat to the smallest automobile. On urban streets, with traffic speeds as low 
as 20 mph, holes must be 30 inches long and 3 inches deep to have the potential of damaging 
tires and rims. Damage to tires and rims, with the potential for an air-out, is the significant 
safety-related influence of holes identified in vehicle handling studies. It is highly probable 
recent styling trends toward plus-sized rims for automobiles and light trucks have rendered tire–
rim combinations significantly more vulnerable to damage. Problems can arise if a driver reacts 
to the hole inappropriately. For example, it is usually counterproductive to react with braking or 
extreme cornering to a hole in a vehicle’s path. 

• A prudent driver recognizes the problem of a rough road and adjusts his speed to 
meet the conditions encountered. Consistent roughness is not necessarily a negative influence on 
safety. Violation of driver expectancy by precipitously going from a smooth surface condition to 
extremely rough conditions may constitute an unsafe condition. 

• Under certain conditions curbs may have a negative influence on safety. 
Recommendations have been made regarding barrier height as a function of barrier setback from 
the curb. Highway Research Board Special Report 81, published in 1964, alluded to possible 
problems if high curbs are used in front of guardrails. A subsequent study (NCHRP Report 150, 
1974) states: “It has been found that curbs offer no safety benefit on high-speed highways from 
the standpoint of vehicle behavior following impact.” The AASHTO Barrier Guide of 1977 
recommended that a curb should not be used as a redirective device, and if used with a barrier 
the face of the curb should be no closer to the traveled way than the face of the barrier. 

• Smaller cars are more likely to be involved in curb accidents than are larger cars. 
Handling and stability problems associated with car-curb involvements are probably inversely 
related to car size. 

POSTIVE EFFECTS OF ROAD SURFACE DISCONTINUITIES 

• Surface discontinuities intentionally placed such as continuous shoulder rumble 
strips, centerline rumble strips, transverse in lane rumble strips and bumps provide valuable 
vibrational and noise notice of either a need to change vehicle lateral position or a need to stop or 
slow. 

• These intentional discontinuities normally result in positive effects on the order of 
20% reductions in run of road crashes for shoulder treatments and similar improvements in head-
on and side swipes due to centerline treatments. 
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WATER ACCUMULATIONS 

• Hydroplaning is a low-probability event, primarily because high intensity rainfalls 
necessary to flood a pavement are low-probability events. When hydroplaning does occur, it can 
result in loss of steering and directional instability. Criteria for surface design to further reduce 
the probability of hydroplaning have been developed and are cited. The main change in 
hydroplaning speed predictive equations since 1983 has been inclusion of the tire contact patch 
aspect ratio, w/ℓ. This consideration derived from Horne’s observation that in large trucks this 
value varies greatly from the unloaded to loaded condition. A predictive equation suitable for 
trucks is now included. Unloaded tractor semi-trailers can hydroplane at speeds between 50 and 
70 mph when significant water depth is encountered. 

• Splash and spray can affect driver visibility and thus safety. Low places in the 
pavement surface that hold water or flat spots that drain poorly contribute to the splash and spray 
problem. Increasing surface texture or providing porous self-draining pavements (in favorable 
climates) can contribute to better visibility; but maintaining these surfaces may be difficult. 
Some fender systems for trucks have been devised to reduce splash and spray, but these can be 
costly and can create operational problems. Side skirts and spray-suppressant mud flaps are steps 
in the right direction. However, until a major breakthrough occurs, the driver must use extreme 
caution when environmental conditions result in visibility reduction. 

SURFACE CONTAMINANTS 

• The primary influence of ice and snow is loss of traction. Although many roadway 
surface contaminants result in reduced tire–pavement friction, the magnitude of the loss 
experienced when traveling on packed snow or ice exceeds that of most other contaminants. 
Most dry pavements will exhibit friction coefficients in excess of 0.7. The same pavements when 
wet may exhibit friction values as low as 0.25 and still provide adequate surfaces for normal 
traffic operations where traction demands are modest. When the surface is covered with ice and 
the temperature is near the freezing point, the available friction may be as low as 0.05. The 
capability of the vehicle to move, corner, or stop is greatly reduced. A driver operating an 
automobile on highways covered with ice or packed snow is operating under a most hostile and 
least-forgiving environment. His primary concern must be to avoid breakaway between the 
vehicle tires and the surface over which he is traveling. Such breakaway can occur quickly as a 
result of modest braking or cornering, which should be avoided. Prudent drivers familiar with ice 
and snow conditions reduce speed radically. 

• Mud, sand, or gravel on the paved surface can produce loss of control if significant 
maneuvers involving stopping, accelerating, or cornering are attempted. Loose sand or gravel on 
turns is a critical hazard to motorcyclists, perhaps constituting the most common cause of control 
loss. It is of lesser significance to automobiles, but it is still of importance. 

PAVEMENT EDGES 

• Studies consistently reveal a significant influence of longitudinal pavement edges on 
vehicle safety. Loss of vehicle control may occur at speeds greater than 30 mph under certain 
circumstances, where inattentive or inexperienced drivers return to the traffic lane by 
oversteering. This safety problem is minimized where the pavement edge drop does not exceed 
2 inches in height or the edge is sloped. FHWA now recommends a safety bevel slope of about 
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2 to 1 to prevent an unsafe interaction between the tire and the edge. Testing since 1983 has 
shown that type A (90o) edges higher than 3 inches deemed “reasonably safe” originally may 
actually be only “marginally safe” for a small percentage of drivers and for vehicle speeds in the 
70 mph range. Pavement edges 5 inches or more in height can interfere with the underneath 
clearance and thus create safety problems for small automobiles. The safety edge recommended 
by FHWA is rapidly gaining acceptance. 

SMALL AND LARGE VEHICLES 

• Vulnerability of small automobiles to road surface discontinuities is indicated by 
accident data. The probability of injury during a collision is also increased for small vehicles. 
Crash involvement rates for smaller cars are greater than for larger cars. Smaller cars may be 
driven by younger drivers, at higher speeds, or in different circumstances, or roadway 
disturbances may pose more severe problems for smaller cars than for larger cars. 

• Large commercial vehicles, because of their size and design, may be more sensitive 
than passenger cars to some surface discontinuities. Those differences are seen in roughness 
response and sensitivity to low tire–road surface friction. 

• No definitive research has been done to quantify the sensitivity of large vehicles to 
more abrupt features such as potholes, curbs, or pavement edges. From the knowledge of truck 
dynamic properties, it may be expected that certain of these road features can create a greater 
vibration disturbance to trucks than to cars. 

• Ice and snow on road surfaces are more critical for certain commercial vehicles. The 
critical nature arises from several differences between commercial vehicles and passenger cars: 
articulated vehicles have unique modes of instability (e.g., capability to jackknife), accidents are 
more severe because of greater size and mass, and these vehicles are more prone to rollover, 
even in the absence of a collision. 

Most drivers are capable of adapting to adverse circumstances. Because of this capability, 
many potentially dangerous surface problems never cause a serious accident. The danger, 
however, is sometimes critical with respect to the unwary, the impaired, the distracted, or the 
imprudent driver. Engineers have traditionally constructed and maintained reasonably safe 
highways, and most drivers expect satisfactory surface conditions. Road conditions that were 
acceptable when the U.S. highway transportation system was developing are not acceptable to 
the public today because of this driver expectancy. Complicating the problem is the fact that 
responsible government entities do not have the funds available to maintain all highways in as-
constructed condition. There is a need for highway engineers to assess their maintenance policies 
as the best information becomes available, and prioritize limited funds cost effectively. The task 
group trusts that this report provides much of the required information. 
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