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Preface 
 
 

he TRB Traffic Flow Theory and Characteristics Committee held a midyear meeting and 
symposium on the Fundamental Diagram, 75 Years (Greenshields 75 Symposium), July 8–

10, 2008, at the J. Erik Jonsson Conference Center of the National Academy of Sciences in 
Woods Hole, Massachusetts. 

The theme of the symposium was “Celebrating 75 Years of the Fundamental Diagram.” 
The main topics included historical appreciation of traffic flow theory founders; recent 
developments and their influence on current practice; the impact of technological developments 
such as real-time measurements and remote sensing; the current status of traffic flow theory; and 
the identification of gaps in knowledge and development of research topics to address those areas 
that need improvement (or lack sufficient experience). Forty-five individuals participated in the 
symposium and meeting. 

The idea of the Greenshields 75 Symposium was originated by Reihnart Kühne of the 
German Aerospace Center, who championed the importance of commemorating the seminal 
contributions of the founders of traffic flow theory. In particular, it was an occasion to 
commemorate Bruce Greenshields’ studies on traffic flow during the early 1930s, which 
culminated in the first publication on speed-flow curves, A Study of Traffic Capacity, presented 
at the 14th Annual Meeting of the Highway Research Board in 1935 and published in its 
proceedings. The symposium also honored the contributions of Joseph Treiterer. 

A subcommittee headed by Nathan Gartner, University of Massachusetts Lowell 
(UMass), managed the planning and organization of the symposium and meeting, assisted by 
Chronis Stamatiadis and Rahul Deshpande, also of UMass. A call for contributions was 
distributed in late 2007, with a December 15 deadline for abstracts. Subcommittee members 
assembled and screened the abstracts and organized a program consisting of an opening session 
and four technical sessions. The opening session included four invited presentations under the 
title: Foundations of Traffic Flow Theory—The Fundamental Diagram. Kühne and Gartner 
discussed Greenshields’ contributions in highway traffic and urban streets, Benekohal discussed 
Treiterer’s legacy, and Kerner presented modern approaches to traffic flow modeling. The four 
technical sessions were The Fundamental Diagram: From Theory to Practice (seven papers); 
Measurements and Characteristics of Traffic Flow (four papers); Empirical Observations of 
Traffic Flow Characteristics (four papers); and Simulation and Calibration of Traffic Flow 
Models (seven papers). Finally, an invited panel, chaired by Hani Mahmassani of Northwestern 
University, titled their discussion Perspectives on Traffic Flow Theory: Beyond Greenshields. 

Rich Cunard and the TRB staff are acknowledged for their support in the logistical and 
organizational aspects of the symposium and midyear meeting. 
 

—Reinhart Kühne, German Aerospace Center 
Symposium Chair 

—Nathan H. Gartner, University of Massachusetts Lowell 
Symposium Cochair 

 
September 2009 
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FOUNDATIONS OF TRAFFIC FLOW THEORY: THE FUNDAMENTAL DIAGRAM 
 

Greenshields’ Legacy 
Highway Traffic 

 
REINHART D. KÜHNE 

German Aerospace Center, Transportation Studies, Berlin 
 
 
HISTORY 
 

he first beginnings for traffic flow descriptions on a highway are derived from observations 
by Greenshields, firstly shown to the public exactly 75 years ago (Proc., 13th Annual 

Meeting of the Highway Research Board, Dec. 1933). He carried out tests to measure traffic 
flow, traffic density and speed using photographic measurement methods for the first time. A 
short look on his CV shows that Greenshields started his career as a traffic engineering scientist 
with this publication which leads to a PhD thesis at the University of Michigan in 1934.  

How Greenshields performed the measurements is shown in Figure 1. From his original 
paper we read: “The field method of securing data was quite simple. A 16-mm simplex movie 
camera was used to take pictures. An electric motor driven by an automobile storage battery 
operated the camera with a constant time interval between exposures.” Figure 2 shows the 
camera with the motor attachment. Varying the voltage by changing the battery terminals 
controlled the time interval, which might be varied from ½ to 2 seconds. This method was found 
better than rheostat control. The time interval was carefully measured with a stopwatch over a 
period of 40 to 100 exposures and checked by the sweep hand of a photographic timer included 
in the pictures. In order that moving cars might appear in at least two consecutive pictures a field 
of twice the space traveled per time interval was required.  
 
 
Bruce D. Greenshields 
 

 Born in Winfield, Kansas; grew up in Blackwell, Oklahoma; 
 Graduate of University of Oklahoma; earned master’s degree in civil engineering at the 

University of Michigan; 
 1934 doctorate in civil engineering from the University of Michigan; 
 Taught at different universities; 
 Wrote numerous articles on traffic behavior and highway safety; 
 Pioneer in the use of photography relating to traffic matters and in applying mathematics to traffic 

flow; 
 Invented the Drivometer; 
 1956 joined the University of Michigan faculty and was acting director of the Transportation 

Institute there; 
 1966 retirement; 
 Returned to Washington, D.C., and was a traffic consultant to various federal agencies; and 
 Dr. Greenshields received the Matson Memorial Award in 1976. 

 

T 
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FIGURE 1  Greenshields measurement set up in the 1930s. 
 
 
 
 

 
 

FIGURE 2  Camera with Motor Attachment used by Greenshields. 



Kühne  5 

 

 

To avoid photographic blur due to motion, a moving car had to be at least 300 feet from 
the camera. In this case the length of road included in a picture was about 125 feet. The blur 
might have been lessened by using a faster shutter. 

At the beginning of each film, and hourly during a run, there was included a photograph 
of a bulletin board giving the location date, hour, time interval, shutter opening and other 
pertinent information. The white cloth stretched along the opposite side of the road was used to 
keep the vehicles from fading into the dark background. Figure 3 shows three frames of pictures 
taken with the movie camera at this station.   

The vertical lines are added to show how the pictures look when projected upon a screen 
with lines drawn upon it for scaling distance. The measured distance from the camera to the road 
together with the camera characteristics suffices to give the scale of dimensions which is more 
accurately determined if the camera is set at right angles to the road. As a check, however, a 
complete plan of the section of the roadway studied is recorded giving the distances from the 
camera and between objects in the pictures such as fence posts or poles. Where no identification 
exists a 100-foot tape is laid along the pavement and at every 10-foot interval a marker is held 
over the point and photographed. There is thus obtained a definite scale for the picture.  
 
 
 

 
 

FIGURE 3  Three frames pictures taken with the movie camera. 
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THE LINEAR SPEED–DENSITY RELATION 
 
Greenshields postulated a linear relationship between speed and traffic density, as shown in 
Figure 4. When using the relation 
 
Flow = density * speed 
 
the linear speed–density relation converts into a parabolic relation between speed and traffic flow 
(Figure 5). Increasingly even the term “flow” was not known 75 years ago and Greenshields 
called that term “density-vehicles per hour” or density of the second kind.  

In this model some traffic flow characteristics are expressed well. It shows a maximal 
traffic flow with the related optimal traffic density. In the q-v-diagram exists two regimes, 
meaning it’s possible to have two speeds at the same traffic flow. By this the traffic flow is 
classified in a stable and an unstable regime. Greenshields linear relation would be called an 
univariate model, because both regimes are calculated with the same formula.  

Early studies at traffic capacity of motorways had two different approaches. On the one 
side speed–traffic density relations were analyzed. Here a constant (free) speed was implied  
 
q = vf * k  
 
On the other side distance phenomenon at high traffic density were analyzed and as easiest 
approach a constant reaction time tr was implied, which brings you to the gross headway   
 
l = l0 + v * tr    with k = 1/l  
 

0

r
max

l
q=- (k-k )

t
, max

0

1k
l

  

 
 

 
FIGURE 4  Speed–density relation V (Greenshields 1934). 
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FIGURE 5  The first Fundamental Diagram as q-v diagram. 

 
 

Also a linear relationship between q and k—but with a negative congestion broadening 
speed—l0/tr as proportionality constant. Summarizing both regimes creates a triangle function as 
traffic flow–traffic density relation. Lighthill and Whitham as well as Richards preached this 
triangle function as flow–density–curve and the use of the cinematic wave theory on road traffic 
as instrument to combine both fields and to explain the dispersion of shock waves as revertive 
going congestion front (LWR theory). 

Also the q-k-relation established by Lighthill and Whitham has a parabolic curve 
progression and it’s a one field model, too. The maximum stands for the expected road capacity 
of a motorway section. The insights of Greenshields inspired the development of two- and 
multiple-regime models in the aftermath. 
 
 
TWO-VARIATE MODELS 
 
Edie showed as one of the first that at the empiric q-k data often in the area of the maximum 
traffic flow and he suggested to describe the q-k-relation with discontinuous curvature. In 1961 
he shows the first two-variate model approach for the Fundamental diagram. Here he 
discriminates the regime of the free traffic and the jammed traffic. His suggestions caused a 
series of analysis specially made by May, which aim was to specify strenghtly the characteristics 
and parameters of this two-field model. May and Keller developed a two-field traffic flow 
model, which based on the vehicle-sequence model of Gazis. In the process emerged that the 
traffic flow in the field of instable traffic is better shown by a hyperbolic function that by a 
parabolic one. Parallel to these developments Prigogine and others established a traffic flow 
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analogy for the kinetic gas theory. They showed a dependency of the velocity distribution of the 
traffic density and indirect of the overhauling probability. Model tests by means of measurement 
data showed that the curves  q(k) only brings a realistic description at low traffic and burst off 
before the capacity limit was achieved. The model was also critically judged concerning the 
description of the effects of a speed impact. After that Prigogine and Herman tested an analogy 
of the traffic flow phases compared to the phase changes on the condition of aggregation of 
water (gas-fluid).  

Two-field models were edited for the practical use of alternative route control with 
changing directing signs. Assuming that there are time and route sector homogeneous conditions 
the traffic situation could be modelized by density waves and shown for the optimization of 
controlling the necessary effects of traffic flow in one end function.  
 
 
FOLLOW-UPS OF AERIAL PHOTOGRAMENTRY TECHNIQUES 
 
Treiterer and Myers made first tests about hysteresis in traffic flow, where the connection of two 
variables depends on the previous history, if one variable grows or falls in relation to the other. 
Thereby a convoy of vehicles airborne observed in an interval of 4 minutes on a route of 5.3 km. 
Seventy vehicles were analyzed, which due to an upstream interference passed through a 
backwards running shock wave. The measurements (see Figure 6) show an asymmetry in driving 
behavior at delay and speed up as resulted in tests of Treiterer and Myers. After they run through 
the shock wave the vehicle convoy speeded up from 40 to 60 km/h and the traffic flow increased 
from 1,800 vehicles per hour to nearly 3,000 vehicles per hour. The traffic density didn’t change 
significantly.  
 
 
INFLUENCE OF GREENSHIELDS ON EUROPEAN AND 
JAPANESE RESEARCH WORK 
 
Greenshields influenced traffic engineers and researchers around the world. Cremer calculated 
the influence of dynamic traffic flow effects on the result of the fundamental diagram on a basis 
of a macroscopic traffic model. Through analysis of traffic data on highways in Japan, Koshi 
postulates that the curve for the field of the free and dammed traffic is not constant concave in 
the q-k diagram, but rather similar to a mirrored lambda. A classification of vehicles for free 
traffic in two groups “only following vehicles” and “leading and following vehicles” followed.  

Kühne and Kerner introduced a phase transition model about the traffic flow in the field 
of capacity and the appropriate parameter for identification of interferences in time. Banks 
studied the traffic flow on the Interstate 8 east of San Diego in view of a capacity drop. Using a 
combination of video recordings and traffic data of measurement loops he analyzed the traffic 
flow over 9 days. The measurement loops provided traffic volume and assignment data in 30-
second intervals. With the video recording the congestion start could be specified 
chronologically accurate and periods of 12 minutes each prequeue as well as queue discharge 
could be chosen. Via these data the existence of a two-capacity phenomenon for this route  
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FIGURE 6  Description of the states of traffic. 
 
section could be proved. Hall and Agyemang-Duah studied the traffic flow on the Queen 
Elisabeth Way west of Toronto over several days. The traffic data existed for 30-second 
intervals. The calculatedcapacity drop was 5% to 6%. Inquiries of Brilon and Ponzlet on German 
motorways showed data between 4% and 12%. 
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FOUNDATIONS OF TRAFFIC FLOW THEORY: THE FUNDAMENTAL DIAGRAM 
 

Greenshields’ Legacy 
Urban Streets 

 
NATHAN H. GARTNER 

University of Massachusetts, Lowell 
 
 

While Greenshields is well known for his development of The Fundamental Diagram in Traffic Flow 
Theory, it is less known that he also made fundamental contributions to the study of traffic behavior at 
signalized intersections. This was done while he was associated with the famed Yale Bureau of Highway 
Traffic at Yale University in New Haven, Connecticut in the mid-1940s and culminated in a seminal report 
entitled Traffic Performance at Urban Street Intersections. Greenshields developed instrumentation for the 
study of traffic behavior at intersections. He then used this instrumentation to study the time–space 
relationships of vehicle movements at intersections. “It is the total time required to pass a given number of 
vehicles through the intersection that is of primary interest to the traffic engineer. In analytical categories, 
this time depends on the integration of individual patterns of reaction time, acceleration, speed and 
spacing.” He went on to determine the famed “Greenshields Numbers” which measure the time required by 
successive vehicles to cross a signalized intersection when starting from a standing queue. This led to the 
determination of signal-controlled approach capacity. Greenshields also studied behavior patterns at 
unsignalized intersections: “In the absence of a signal to control his crossing, the driver selects the gaps in 
opposing traffic that he considers large enough to be safe. The rapidity with which the driver makes up his 
mind and the rate at which he accelerates once he has decided are factors to be considered.” Whence, the 
well-known method of gap acceptance. Greenshields was also a pioneer in the application of probability 
theory to traffic problems. Among the typical problems he analyzed are: traffic delay caused by 
drawbridge, accident exposure due to obscured vision, size of temporary storage space at parking lot 
unnecessary stops at stop sign, and optimum signal timing (1). Another concept that he proposed was “the 
quality of flow index” Q. This index may be defined as a number expressing the desirable ratio of the flow 
factors of time, change of speed, change of direction and distance. Thus Q is a rate per unit distance. The 
quality of traffic flow may be expressed by the equation 
 

 Q = T × S × D/L 
 
where 
 
 Q = quality, 
 T = time, 
 S = change of speed, 
 D = change of direction, and 
 L = distance. 
 
The smaller the Q, the better the travel. 

 
 
REFERENCE 
 
1.  Greenshields, B. D., D. Schapiro, and E. L. Ericksen. Traffic Performance at Urban Street 

Intersections, Technical Report No. 1, Yale Bureau of Highway Traffic, Yale University, New Haven, 
Conn., 1947. 
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FOUNDATIONS OF TRAFFIC FLOW THEORY: THE FUNDAMENTAL DIAGRAM 
 

Treiterer’s Legacy 
Traffic Flow Measurements and Characteristics 

 
RAHIM F. BENEKOHAL 

University of Illinois Urbana–Champaign 
 
 

he highlights of contributions of the late Professor Joseph Treiterer to traffic flow theory, 
characteristics, data collection methods, platoon dispersion, and automated vehicle control 

are presented in this paper. Treiterer was pioneer researcher and about 40 years ago tested the 
application of infrared radar for longitudinal control of vehicles on highways. His collection 
method for the trajectory data that captured the disturbance in traffic flow is still unmatched, 
after 35 years. Treiterer studied the traffic dynamics using aerial photogrammetry techniques and 
developed methods for data reduction and analysis of aerial photos. He continuously recorded 
the traffic movement on I-71 by following platoons of vehicles from a helicopter with an aerial 
camera. His data collections method was unique and enabled him to follow the propagation and 
dissipation of traffic disturbances through platoons of vehicles. He was able to capture the 
hysteresis phenomenon in traffic flow. Treiterer showed that there are loops in q-k curves (A 
loop and B loop) and showed that a rapid “jump” in flow rate (or speed) occurs when state of 
traffic was about to change from congested state to uncongested state. Then, traffic studies on I-
70 were carried out by aerial surveys to obtain further data on the hysteresis phenomenon. He 
found that the shape of the q-k curves and thus the hysteresis phenomenon was not the same for 
single disturbance compared to multiple stop-and-go conditions. Treiterer also found that even 
the marginally safe traffic flow criterion was not satisfied for about 11% of the total observation 
time. Treiterer studied the application of infrared technology for longitudinal control of vehicles. 
He found that speed difference between the lead and trailing vehicles and the acceleration pattern 
of the lead vehicle could be the most useful information to improve traffic safety and increase 
traffic capacity. Treiterer studied the effects of signal spacing on platoon dispersion and 
characteristics as they passed through nine signalized intersection on two urban arterials. This 
comprehensive data included platoon size, lane distribution, lane change maneuvers, and traffic 
breakdowns on 28 platoons. He developed models to predict queue lengths and vehicle delays as 
a function of signal offset and spacing conditions. Treiterer found that platoon size effected 
platoon behavior. Platoon velocity seemed to decrease as platoon size increased. He also found 
that initial acceleration characteristics of the smaller-sized platoons (four to six vehicles) were 
higher that of the larger-sized platoons (10 to 13 vehicles). Treiterer also developed a unique 
technique for collecting simultaneous traffic data on all approaches of an intersection using time-
lapse photography. 
 
 

T 
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INVESTIGATION OF TRAFFIC DYNAMICS BY 
AERIAL PHOTOGRAMMETRY TECHNIQUES 
 
Overview  
 
Treiterer said, “Continued improvement of the design and operation of the highway system 
depends on the understanding of the dynamics of traffic using the system. This understanding 
can only be gained once the critical parameters of traffic flow have been identified and 
measured.” He used aerial photogrammetry technique to collect data on a traffic stream 
continuously, study its behavior and propagation of disturbances. A study of traffic dynamics 
began in 1966 and finished in 1975. It was sponsored by Ohio Department of Transportation in 
cooperation with the FHWA. The work was conducted by the research staff of the Transportation 
Research Center of the Ohio State University under direction of Dr. Joseph Treiterer. A main 
goal of research was to study traffic dynamics using aerial photography with emphasis on 
research in the theory of traffic flow, and utilizing research results to improve traffic flow and 
increase safety.  

There are four interim reports and a final report for the study. Interim Report 1 and 
Interim Report 2 investigated the photogrammetric techniques to be used for automatic data 
reduction from aerial photographs. Computer programs to generate vehicle trajectories were 
developed as discussed in Interim Report 2. Interim Report 3 documented the results of two 
specific studies of traffic dynamics: the use of traffic energy as a parameter of traffic flow and 
characteristics of the traffic stream in the vicinity of traffic bottlenecks. Interim Report 4 
presented the results of multilinear speed–flow models and energy models to describe traffic 
flow.    
 
 
HIGHLIGHTS OF INTERIM REPORT 1 
 
Interim Report 1 was published in August 1967. Aerial photographs were taken from a Bell 
Helicopter flying over Interstate 71. The northbound of I-71 changed from three lanes per 
direction to two lanes near N. Broadway Ave. The reduction led to disturbances in traffic flow 
and generated kinematic disturbances and shock waves that propagated in a southerly direction. 
Two cameras to take the aerial photos were evaluated: the first camera was the Maurer P-2 70-
mm reconnaissance camera, which could cause unpredictable distortions due to any film warping 
since it was not equipped with a vacuum back. The second camera was the KA-62A aerial 
camera that used 5-inch wide film roll with 250-foot film capacity. The latter one was selected 
because it provided better resolution and higher quality photographs.  

A total of six flights and five films were taken from I-71 and over 3,000 frames were 
obtained by August 1967. Initially, a control vehicle with two high-intensity beam lights on top 
of vehicle was used so the helicopter pilot can use it as a guide to follow the platoon and 
communicate with the pilot about the traffic disturbance generation; however, in later flights the 
control vehicle was not used. After a lot of effort, the data reduction process was automated and 
vehicle trajectories were obtained. To plot the trajectories, accumulative distance traveled by 
each vehicle over time was used. The report’s Figure 2.4 shows trajectories of 48 vehicles on the 
median lane of I-71 taken by the Maurer P-2 70-mm camera.     
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Treiterer looked at the spaces between vehicles in car-following situations to determine if 
drivers kept an absolute or marginal safety distance. The absolute safety is when the following 
driver keeps a distance from the leading vehicle that is at least equal to the stopping sight 
distance. The marginal safety is when the following driver leaves spacing equal to the distance 
traveled during his/her reaction time. The above mentioned trajectory data was used and it was 
found that assuming 0.7 s reaction time, about 90 % of the drivers maintained the marginal safety 
distance in car following. 
 
 
HIGHLIGHTS OF INTERIM REPORT 2 
 
Treiterer’s Interim Report 2 was published in June 1969 and it highlights are as follows. Treiterer 
indicated instability in traffic flow can occur for apparent reason. On one of the morning peak 
period aerial surveys of southbound of I-71 he observed that a kinematic wave was generated on 
the median lane and traveled at 19 ft/s against traffic. The disturbance lasted for 110 seconds and 
forced nearly 40 vehicles to stop for a period of time ranged from a few seconds to 12 seconds. 
At the same time no such disturbance was observed on the adjacent outside lane, as shown in the 
report’s Figures 3.2 and 3.3. 

He said that volume–density relationship deduced from the aerial data “indicates a certain 
amount of support for the Lighthill-Whitham Theory describing the variation of the flow-
concentration curve in a bottleneck.”  

Chandler, Herman, Montroll and Newell, as well as Kometani and Sasaki had proposed 
that the variance in the reaction of drivers to changes in behavior of the leading vehicle cause 
instability. Treiterer investigated the stability in car following using the trajectories for 24 
vehicles on I-71. A disturbance caused drivers to slow down to less than 3.2 mph and then 
accelerate to about 30 mph. The stability analysis indicated that the sensitivity parameter λ, in 
the linear relative velocity follower model (GM 1 Model) alone is not a good criterion for 
determining the stability of traffic flow. He indicated that 2λτ value appears to provide a better 
measure of stability than λ alone. The report’s Figure 2.9 shows trajectories for vehicles entering, 
within and leaving disturbance as well as for uniform flow (recovered). Plot of 2λτ values are 
shown in the report’s Figure 2.11 and indicate that for the entering flow there is an increase in 
the frequency of values between 1 and 3, indicating instability in flow. The plot for within-
disturbance shows a high concentration between 0 and 1, indicating stable conditions. The 
stability within the disturbance is expected since most of the vehicles had stopped. For the 
vehicles leaving the disturbance most of the values are greater than one, indicating instability. 
For the uniform flow after recovering from the disturbance, most of the values are one or less. 
He recommended that this was limited data and additional data need to be collected and 
analyzed. 

He preferred lognormal model for headway distribution and stated that “it would seem 
that the use of either the composite exponential or Pearson Type III for predicting headways 
would be of no value when compared with the reliability and accuracy of the lognormal.”  

He examined the speed–density plot and concluded that “it is shown that the single 
continuous curvilinear function does not adequately describe the speed–density behavior of the 
traffic.” He proposed a multilinear speed–density model by dividing it into five regions [with 
threshold <35, 70, 105, 140 and 210 (jam density)] (see the report’s Figure 5.20). The multilinear 
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model provided good fit for speed–density, volume–density, and energy-–density relationships, 
and he suggested further investigation of this idea.   

He identified two groups of vehicles: “before-within” and “within-after” the disturbance. 
Then for each group, speed–density and volume–density relationships were plotted and traffic 
density breakpoints were identified. In addition, plot of the standard deviations of the vehicle 
speeds versus density were obtained and it bore amazing similarity with speed–density plot. The 
standard deviation could indicate the interaction of a group of vehicles and thus a particular 
operating condition. For the free-flow region, there was no data available. At stable flow region 
it seems that density does not have much influence on speed variation and the standard deviation 
showed two dissimilar patterns. In the forced flow region, the σ begins to decrease rapidly for 
both groups of vehicles, indicating that bunching of vehicles restrict speed variation. In the 
forced flow region, σ attains a local minimum. It is because all vehicles are moving slowly and at 
near uniform speed. Traffic is unstable in this region and further increase in density creates more 
disturbance in traffic and higher variation in σ. In the disturbed flow region nearly half of the 
vehicles in platoon were forced to stop. As traffic reaches jam density, σ decrease to near zero 
since speed are uniform and close to zero (see the report’s Figure 5.16 and 5.17).  

To study hysteresis phenomenon, two platoons (see the report’s Figure 5.22 and Figure 
5.23) were followed for approximately two minutes, and average platoon speed and densities 
were calculated at 1-second intervals. The kinetic energy of each platoon was calculated and 
plotted versus the corresponding traffic density (see the report’s Figures 5.24 and 5.25). It was 
noticed that the traffic stream did not recover at the same rate with density as it had entered jam 
conditions, until a certain level of density is reached. That retardation effect was termed traffic 
hysteresis.   

For each platoon σ was computed and plotted against density (see the report’s Figures 
5.26 and 27) and these plots show an interesting relationship. Comparing energy–density plots 
with σ–density plots shows that the point of recovery coincides with the proposed breakpoint 
between stable and forced flow. Low σ values were generally associated with high kinetic energy 
values, thus, σ may be a good indicator of internal energy. Treiterer concluded that the energy-
change parameter, though he did not quantify its parameters, holds much promise as a valid 
measure of the quality of freeway flow, and he suggested continued empirical investigations of 
it. 
 
 
HIGHLIGHTS OF INTERIM REPORT 3 
 
Interim Report 3 was published in June 1970 and its highlights are listed below. Data reduction 
system consisted of three basic components (the report’s Figure 2.1): 
 

 Mann Type 829D Comparator, 
 Mann Type 1945 Data Logger, and 
 IBM 026 Printing Card Punch. 

 
The Mann Type 829D Comparator was a high-precision device to measure distances on 

photographic films or plates to an accuracy of 0.001 mm. The x and y coordinate of the vehicles 
on the photographs were measured by moving plates of film. The Mann Type 1945 data logger 
was utilized to provide digital display and tabulation of coordinate values and identifying data. 
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Then, a hand-activated switch transferred the data from the logger to IBM 026 Printing Card 
Punch output device. With this system an aerial survey film containing 300 usable frames could 
be completed in 150 hours. This was a significant achievement in data reduction at that time.  

The data was extracted from aerial traffic survey that was carried out on July 25, 1967 on 
southbound I-71 during morning peak hour (around 7:45 a.m.). The photos were taken from a 
helicopter at time intervals of once second. Data for eight platoons were processed and analyzed 
(see the report’s Figure 3.1-3.4). Platoon 122 contained a group of vehicles that proceeded from 
low-density, high-speed conditions through a disturbance into rather stable conditions. Platoon 
123 was unique since no vehicles entered or left the platoon. Platoon 126 had a large range of 
density in a rather short period of time. Platoon 127 showed the maximum observed density. 
Platoons 141 to 144 were selected because they contained mutually exclusive groups of vehicles. 
The report contains the analyses for Platoon 142 since it represented the entire study.    

The best fit to the speed-density plot of “before-within” disturbance traffic was three 
linear regime model (one for each low, mid, and high density) for all eight platoons. For within-
after condition, two-regime model was used since none of the platoons returned to low-density 
region. The breakpoints at 55 vpm and 95 vpm provided the optimum overall situation.  

When a platoon was released from the maximum density conditions, the resulting values 
of speed, volume and kinetic energy (α * k * u2 where α is a dimensionless constant) were 
retarded compared to the “before” conditions at respective densities. The existence of the 
hysteresis phenomenon did not depend on the maximum density reached. The kinetic energy of a 
traffic stream was defined as α. * k. *u2 where α is a dimensionless constant, k is the density and 
u is the speed. Drew (1968) introduced the concept of energy into traffic flow analysis by 
considering the traffic stream as analogous to the flow of a compressible fluid in a constant-area 
duct. Drew proposed that the total energy of a traffic stream consist of kinetic energy and the 
internal energy. The internal energy was thought to be related to the interactions among vehicles 
and Drew suggested “acceleration noise” as a measure of internal energy. Acceleration noise is 
the standard deviation of acceleration distribution of one vehicle along a road. However, 
Treiterer using the aerial data proved that this term cannot represent the internal energy and 
proposed using coefficient of variation of speed as indicator of internal energy. 
 
 
HIGHLIGHTS OF INTERIM REPORT 4 
 
Interim Report 4 was published in Oct 1972. And it highlights are as follows. Two platoons 
(Platoon A and B) that went through a kinematic disturbance were selected from the trajectory 
data collected on I-71. This report investigated how multilinear model fit into the data and how 
different energy density models could explain the internal energy of traffic. Data for Platoons A 
and B confirmed that the hysteresis phenomenon happened. Then, they looked at the 
relationships for the queue-forming part (going in to congestion) of the two platoons. Similar to 
the study by Drake, Schofer, and May (1967), this study examined how different speed–density 
models fits the queue forming part of the data. The major difference between the two studies is 
that Drake’s data came from measurements at point, but Treiterer’s study was based on data for 
platoon that traveled a section of the road. Treiterer divided the speed–density curve into six 
regions and proposed a linear model for each region. The platoon data covered only four of the 
six regions. They concluded that it is possible to fit such linear models. Then they compared their 
six regions to the six levels of service (LOS) given in the 1965 Highway Capacity Manual. It 
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should be noted that Treiterer established the levels of service based on density whereas the LOS 
in the 1965 Manual were established based on speed. Treiterer proposed using density to 
determine quality of service and suggested the density threshold for those levels. For each 
platoon going into queue, they looked at speed, absolute safe spacing, average headway and 
standard deviation of speeds average spacing, headway, and speed dispersion for each region 
(see the report’s Figures 1-28 and 1-29). There were no data points in the first two regions of the 
initially proposed six regions and data points in the fifth and sixth regions were rather scarce. So 
they verified their model for only four regions. The report also examined the idea of platoon 
speed change and platoon length change as indications of external and internal energy of traffic 
stream.    

A new concept of level of service based on density as the fundamental parameter was 
proposed. Based on the results of the multilinear speed–density model, six subregions were 
classified according to the operating characteristics as follows: 

 
 Free-flow region: 0 to10 vpm; 
 Semi-free flow region: 10 to 30 vpm; 
 Capacity flow region: 30 to 60 vpm; 
 Restricted flow region: 60 to 105 vpm; 
 Disturbed flow region: 105 to 145 vpm; and 
 Forced flow region: 145 vpm and more. 
 

The last three regions were combined and were labeled as Level D. Thus, the following 
levels were proposed: 
 

 Level A: 0-10 vpm; 
 Level B: 10-30 vpm; 
 Level C: 30-60 vpm; and 
 Level D: 60 vpm and more.  

 
Based on the findings of the study, they implemented a ramp-metering scheme for three 

ramps on southbound of I-71. After the implementation, traffic volumes on I-71 increased by 6% 
without a noticeable decrease in overall travel speeds. This resulted in an 8,000 vehicle per hour 
increase in the throughput (q.u) of the metered section. Treiterer recommended similar analysis 
of traffic flow, focusing on after-disturbance behavior in hysteresis phenomenon. 
 
 
HIGHLIGHTS OF FINAL REPORT  
 
The data was collected on Interstate 71 from the downtown area of Columbus, Ohio, north to 
Route 161 in Worthington, Ohio, and on Interstate 70 from downtown to James Road. A KA 
62A aerial reconnaissance camera and a 3-inch lens with an aperture of range f/4.5 to f/11 was 
used to provide a coverage of about 6,360 ft by 4,500 ft at an altitude of about 30,000 ft. The 
photographs were taken from a Bell 4752 helicopter at an altitude of 3,000 feet. Photographs 
were taken at nominal scale of 1:12,000 to provide an accuracy of measurement better than the 
required ± 1 foot. Photographs were taken as at intervals of 1 second. In order to construct the 
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vehicle trajectories from the aerial photographs, Treiterer utilized a new data reduction method 
and obtained the following information: 
 

 Vehicle number, 
 Photo coordinate, 
 Ground coordinate, 
 Accumulative distance, 
 Spacing, 
 Headway, and 
 Velocity. 

 
He used this information to plot trajectories of vehicles. The report’s Figures 3.5 and 3.6 (of 
Final Report) are good examples.  

He suggested dividing traffic flow into five operational regions based on density: free 
flow, stable flow, forced flow, disturbed flow, and jammed flow (see Figure 3.21, Final Report). 
The density thresholds for them are 35, 70 105, 140, and 210 (jam density).  

He investigated different traffic patterns between queue forming and queue releasing 
conditions. The two platoons observed are shown in the report’s Figure 3.23 and 3.24. Plot of the 
kinetic energy of the platoon versus density are shown in the report’s Figure 3.25 and 3.26. He 
observed that traffic stream did not recover at the same rate as it entered the jam conditions. He 
called this retardation the hysteresis phenomenon of traffic flow. He also computed the standard 
deviation of the speed of vehicles in platoon (sigma) and plotted it against density (see the 
report’s Figures 3.27 and 3.28). The energy–density and sigma–density relationships showed that 
“when the queue releases at a point where the hysteresis effect recovers, the platoon remains at 
that density and no further decrease in density occurs. Furthermore, the point of recovery 
coincides with the point proposed as a breakpoint, in the previous section, between stable and 
forced flow.” They also noted that low sigma values were generally associated with the higher 
kinetic energy values, thus indicating that sigma can be representative of internal energy.  

Treiterer used the aerial photogrammetric data to solve the problem of recurrent 
congestion on I-71 north of Columbus, Ohio (from North Broadway to Hudson Street). After 
determining the cause of the congestion, he proposed a ramp-metering technique for Broadway-
to-Hudson Street section to alleviate congestion during the morning peak hour.  

A constant-rate ramp metering was implemented on I-71, and data showed a 6% increase 
in traffic volume (equivalent to an increase of 8,000 vehicle miles per hour) without a noticeable 
decrease on speed on Interstate 71. He suggested a more sophisticated ramp-metering technique 
that used freeway traffic condition to determine the rate of ramp metering.  
 
 
DATA FROM I-70   
 
Treiterer indicated that density is a better measure of traffic flow conditions on a roadway. He 
investigated the feasibility of real-time measurement of traffic density using inductive loop 
detectors. He used a 158-foot-long multiple Figure 8 loop configuration with 18-feet section 
lengths in the field (see the report’s Figure 5.13). The 158-foot-long loop detector was installed 
on the rightmost lane of I-70 where it splits from the northbound of I-71. The multiple Figure 8 
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loop detector performed very well in the field and provided speed and density data that can be 
used for real-time traffic control. However, the field tests produced some significant differences 
from the lab tests conducted at Ohio State University. The results from field test showed that the 
loop detector output varied in shape and magnitude for different types of vehicles particularly at 
low density condition, but at high density traffic it was not sufficient to evaluate the influence of 
traffic composition on density measurements. Another difference between the lab and field 
results was that the detector, consisting of six fields, produced only two distinctive peaks, 
enough for speed measurement, but more uniform and more pronounced peaks are desirable. 
Further research was recommended to understand the causes for the difference in field and lab 
results and to improve the system. Study of hysteresis phenomenon traffic studies on I-70 were 
carried out by aerial surveys to: a) obtain traffic density distributions for inbound and outbound 
traffic on I-70 during peak traffic hours; b) evaluate traffic conditions (travel times) for peak-
hour traffic, c) collect more data on the hysteresis phenomenon of traffic flow that had been 
observed on I-71. 

Data showed that traffic density during the evening peak hour was more uniformly 
distributed, and its peaks were less than the peak densities in the morning peak hour. Speed–
distance profiles for peak traffic hours were obtained using moving vehicle method. The study 
section on I-70 was divided into 16 subsections and the most critical locations were determined. 
It was found that the morning peak traffic (inbound) posed more serious problems than the 
evening peak traffic that was outbound (westbound). 

Conditions for aerial traffic survey on I-70 were different than those on I-71 because I-70 
is close to Columbus Airport and that restricted the flying altitude to 2,000 ft. That in turn 
reduced the coverage to about 3,000 ft. I-70 had three lanes per direction while I-71 had two 
lanes per direction at the time of data collection. Trajectory data for two adjacent lanes on I-70 
between Nelson Rd. and 18th S.t are shown in the report’s Figure 7.27 and 28. Traffic flow was 
disturbed more on the middle lane than the shoulder lane, so the middle lane data was used to 
study hysteresis phenomenon. Traffic was operating in stop-and-go condition because of 
multiple disturbances in that section. Due to the tailwind, the helicopter could not follow a 
platoon of cars though the disturbances. Thus, the data collected on I-70 was not as extensive as 
the I-71 and it only represented small platoons of about seven to 11 vehicles over a limited 
distance. 

Similar to I-71, the disturbance forced the vehicles to stop for 14 s on I-70. However, for 
the I-70 data presented only the A hysteresis loop, and not the Ba loop. Maximum density on I-
70 was higher than on I-71 and it reached as high as 280 vph. The most important difference 
between I-70 and I-71 data is that the A loop is reversed. Traffic entered the disturbance at much 
lower speed than in the speed in recovery phase. The deterioration occurred at density of 125, but 
recovery happened at 80 vpm. The data seems to be a typical case of recycling around A-loop 
which resulted in stop-and-go operation. This was supported by the speed data for A-loop which 
was from zero to 25 mph. Data for other platoon supported this reversed A-loop observation as 
shown in the report’s Figures 7.31 thru 7.35. One platoon in I-70 showed a gradual decrease in 
speed over a density range of 70 to 200 vpm (see the report’s Figure 3.38).    

I-71 data showed the hysteresis phenomenon for a cycle of a single disturbance, but I-70 
data if a multiple disturbance that resulted in stop-and-go conditions. The drop in speed for 
multiple disturbances occurs at 120 to 150 vpm which is much higher than the density for single 
disturbance (around 80 vpm). Higher peak densities were observed for the stop-and-go operating 
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conditions. In stop-and-go condition there is no B loop. More data is required to have a better 
understanding of hysteresis phenomenon. 
 
 
APPLICATION OF INFRARED TECHNOLOGY TO CONTROL  
VEHICLE MOVEMENT IN A PLATOON OF CARS 
 
Treiterer published this report after 1966 (no exact date on the report). He was concerned with 
rear-end collisions on highways. He examined the spacing between vehicles using the aerial 
photos from I-71 and found that about 11% of the observation time the spacing was below the 
marginal safe distance (assuming a reaction time of 0.7 seconds for all drivers), indicating a 
safety concern for vehicles in platoon on freeways. Marginal safe distance was defined as the 
distance traveled during reaction time of a driver. He looked at the promising technologies to 
help with safety and capacity, and selected infrared as the most economical and promising 
technology. He determined that speed difference between the lead and following vehicles and the 
acceleration pattern of the lead vehicle should be used in longitudinal control of vehicles with 
infrared technology.  

He developed two infrared systems (a self-contained one and a source-sensor system).  
He used the source-sensor one over 1,000 miles on freeway. The source-sensor system had two 
main components. The first component was the source which was placed at the rear of the 
leading vehicle. The source was an infrared beam with a pulse frequency that depended on speed 
of vehicle. The second component was the sensor unit that was mounted under the front bumper 
of the following vehicle. It detected pulses emitted by the source on lead vehicle and converted it 
speed. The speed was compared to speed of the following car and the speed difference between 
the lead vehicle and the following vehicle was displayed on a meter in the following vehicle.  

The self-contained sensing system did not require any active equipment in the leading 
vehicle. An infrared source-sensor unit was mounted on the front bumper of the vehicle which 
emitted a frequency modulated infrared signal in the direction of travel. The emitted signal was 
reflected back to the source by the lead vehicle that had a special rear license plate with corner 
reflectors. Since license plates were changed every year in most of the states, the introduction of 
corner reflectors on license plates would not have imposed an unreasonable demand on public.  

Treiterer suggested a step by step introduction of this system to public. In step one it 
would be a driver aid to improve efficiency and safety. Then it would provide semiautomatic 
control for car following situation in high density traffic. And finally it would provide fully 
automatic control in steering and spacing of vehicles on freeways. He suggested that the capacity 
would exceed 3,000 vph per lane by using this technology.  
 
 
EFFECT OF SIGNAL SPACING ON PLATOON DISPERSION 
 
This study determined the characteristics of platoon of vehicles as they traveled through a series 
of signalized intersections and used them in developing a simulation model. Aerial photographs 
of 28 platoons on two one-way parallel arterial (Summit and 4th Streets in Columbus, Ohio) 
were taken in April, 1968. Summit St. was a southbound and North Fourth Street was a 
northbound arterial each with nine signalized intersections. The trajectories of the vehicles of the 
28 platoons were constructed using approximately 28,000 time-space positions. Treiterer found 
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that in addition to signal spacing and signal offset, the platoon size had appreciable effects on 
platoon behavior. He also found that platoon velocity tended to decrease with increasing platoon 
size. The initial acceleration characteristics of the smaller-sized platoons (four to six vehicles) 
were generally higher than those of the larger-sized platoons (10 to 13 vehicles). He concluded 
that the patterns of mean velocity or mean spacing, the coefficient of variation of velocity and 
traffic density could best characterize platoon movement along an urban arterial. 
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Three-Phase Traffic Theory 

 
BORIS S. KERNER 

Daimler AG 
 
 

In this paper, a brief review of some of the hypotheses of three-phase traffic theory introduced by the 
author in 1996–2004 and their applications for traffic modeling are presented. The basis of this paper is 
the presentation made on “Greenshields 75 Symposium,” organized by TRB’s Traffic Flow Theory and 
Characteristics Committee (AHB45) July 8–10, 2008, in Woods Hole, Massachusetts. 

 
 

he understanding of empirical traffic congestion occurring on unsignalized multilane 
highways and freeways is a key for effective dynamic traffic management, control, 

organization, and other applications of transportation engineering. However, the traffic flow 
theories and models (see references 1–6) that dominate up to now in transportation research 
journals, scientific conferences, and teaching programs of most universities cannot explain either 
traffic breakdown or most features of the resulting congested patterns. These theories are also the 
basis of most dynamic traffic assignment models and freeway traffic control methods, which 
therefore are not consistent with features of real traffic.  

For this reason, the author introduced in 1996–2002 an alternative traffic flow theory 
called three-phase traffic theory, which can predict and explain the empirical spatiotemporal 
features of traffic breakdown and the resulting traffic congestion. There are three phases in this 
theory: 
 

1. Free flow (F), 
2. Synchronized flow (S), and 
3. Wide-moving jam (J). 

 
The synchronized flow and wide-moving jam traffic phases are associated with congested traffic. 

In this article, a brief review of hypotheses of three-phase traffic theory and their 
applications for traffic modeling is presented. A much more detailed account of three-phase 
traffic theory, traffic flow control methods based on this theory, and the criticism of earlier 
traffic flow theories, models, and traffic control methods can be found in the books The Physics 
of Traffic (7) and Introduction to Modern Traffic Flow Theory and Control: The Long Road to 
Three-Phase Traffic Theory (8) and reviews by Kerner (9–11).  
 
HISTORY AND MOTIVATION 
 
The history of three-phase traffic theory began in 1992 when the author joined the former 
Daimler-Benz Company (now the Daimler Company) in Stuttgart, Germany. At that time, the 
author finished previous investigations of complex spatiotemporal self-organization effects 

T 
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associated with phase transitions and pattern formation observed in physical, chemical, and 
biological systems (12). This experience with complex systems of diverse nature helped very 
much in finding and understanding mathematical nonlinear solutions of earlier traffic flow 
models and their sense (13):  
 

 A traffic flow instability of the General Motors model class associated with a driver 
reaction time, which should explain traffic breakdown in vehicular traffic (1–6), leads to the 
emergence of a wide-moving jam in free flow (F J transition) (Figure 1). 

 The Lighthill-Whitham-Richards (LWR) model class (1–6) cannot explain empirical 
features of traffic breakdown as well as wide-moving jam emergence found in real measured 
traffic data. 
 

The authors found (13) that the wide-moving jam exhibits some characteristic parameters 
(e.g., the flow rate outq  in the jam outflow, if free flow is formed in this outflow and the mean 
velocity of the downstream front of the jam, gv ), which are the same for different wide-moving 
jams (Figure 2); however, this is only true under the same traffic parameters (e.g., weather, the 
percentage of long vehicles, etc). 
 
 
 
 
 

 
 

 
FIGURE 1  Wide-moving jam emergence in free flow in the GM model class (13). 
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FIGURE 2  Explanation of jam characteristic parameters: Qualitative space distributions 

of speed, flow rate and density within a wide-moving jam 
shown in Figure 1 at a given time instant (13.) 

 
 

The characteristic jam parameters can be presented in the flow-density plane by a line J 
whose slope is equal to the mean velocity of the downstream front of the jam gv  (Figure 3). The 
authors found (13) also that states of free flow (F) that are related to the flow rates (Figure 3) 
 
 outqq   (1) 
 
are metastable states with respect to an F J transition, i.e., to the emergence of a wide-moving 
jam in free flow. This means that if a local disturbance of a great enough amplitude occurs in an 
initial free flow, the jam can emerge in the free flow. 

The study of earlier traffic flow models and theories made by Kerner and Konhäuser (13) 
and some later papers have forced the author to begin an empirical data analysis. This was 
possible to do because from 1995 to 1996 the author worked at the Heusch/Boesefeldt traffic 
consulting and software company, which dealt with the development of software for the 
management of traffic data measured on German and Dutch highways. Thus the author had an 
opportunity to work with a huge amount of real traffic data measured during many years on 
many different highways. 
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FIGURE 3  Explanation of the line J and metastable free flow with respect to 
wide-moving jam emergence (F – free flow, J – the line J) (13). 

 
 

The empirical data study whose results can be found in the book The Physics of Traffic 
led to the following conclusions about the earlier traffic flow theories and models:  

 
1. The line J firstly found in work by Kerner and Konhäuser (13) is the only result of earlier 

traffic flow models, which is in accordance with spatiotemporal features of empirical traffic 
congestion. 

2. None of the known earlier traffic flow models and theories can explain and predict the set 
of fundamental empirical (measured) features of traffic breakdown. 
 
This empirical data study inspired the author for an alternative traffic theory later called “three-
phase traffic theory” that explains traffic breakdown and the resulting congested patterns (7–11, 
14). 
 
 
TRAFFIC PHASE DEFINITIONS AND THEIR SENSE 
 
The empirical study of real measured traffic data mentioned above shows that (7) 
 

 There are common pattern features that are qualitatively the same independent of traffic 
parameters, i.e., they are qualitatively the same on different highways in various countries over 
many days and years of measurements and they are qualitatively the same for different network 
infrastructure and highway bottleneck types, weather, percentage of long vehicles, other road 
conditions, and vehicle technology. Moreover, these common spatiotemporal pattern features are 
qualitatively independent of day time, working day or weekend, whether the day is sunny or 
rainy or else foggy, dry or wet road, or even with ice and snow on road, etc. 

 The empirical traffic phase definitions (S) and (J) for the synchronized flow and wide-
moving jam phases in congested traffic made in three-phase traffic theory are these common 
empirical pattern features. 
 

The definition of the wide-moving jam phase (J): A wide-moving jam is a moving jam 
that maintains the mean velocity of the downstream jam front gv , even when the jam propagates 
through other traffic phases or bottlenecks.  
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The definition of the synchronized flow phase (S): In contrast with the wide-moving jam 
phase, the downstream front of the synchronized flow phase does not exhibit the wide-moving 
jam characteristic feature; in particular, the downstream front of the synchronized flow phase is 
often fixed at a bottleneck.  

Recall that a moving jam is a propagating upstream localized structure of great vehicle 
density and very low speed spatially limited by two jam fronts. In the downstream jam front 
vehicles accelerate escaping from the jam; within the upstream jam front, vehicles slow down 
approaching the jam.  

The empirical traffic phase definitions (S) and (J) are explained in Figures 4 and 5 in 
which real measured traffic data are presented. In Figure 4, traffic breakdown is induced by a 
moving jam propagating upstream through an on-ramp bottleneck (labeled by “bottleneck 1B ”). 
The downstream front of congested traffic resulting from traffic breakdown is fixed at the 
bottleneck, i.e., in accordance with the definition (S) this congested traffic is associated with the  

 
 

 
 

FIGURE 4  Empirical data explaining the traffic phase definitions (J) and (S) (7). 
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FIGURE 5  Empirical data explaining the traffic phase definition (S): Top: A moving 
synchronized flow pattern (MSP) that has initially occurred at an off-ramp bottleneck 

(labeled 1B ) propagates upstream and causes an induced traffic breakdown at an 
upstream on-ramp bottleneck (labeled 2B ). Bottom: Average speeds (left) and flow rates 
(right) as time-functions at two road locations, specifically downstream of the on-ramp 

bottleneck ( x  17.9 km) and at the bottleneck ( x  17.1 km) (7). 
 
synchronized flow phase. Synchronized flow is self-sustaining for a very long time (more than 
an hour) upstream of the bottleneck. In contrast with synchronized flow, the moving jam 
propagates through this bottleneck with the mean velocity of the downstream jam front 
remaining unchanged (Figure 4). Thus in accordance with the definition (J), this moving jam is 
associated with the wide-moving jam phase. 

Another empirical example of an induced traffic breakdown at an on-ramp bottleneck 
(labeled by 2B ) is shown in Figure 5. In this case, rather than a wide-moving jam a moving 
synchronized flow pattern (MSP), i.e., a moving congested pattern consisting of the 
synchronized flow phase only propagates upstream of an off-ramp bottleneck (the off-ramp 
bottleneck is labeled by 1B  in Figure 5). Indeed, rather than propagating through the on-ramp 
bottleneck while maintaining the downstream front velocity, the MSP is caught at the bottleneck. 



28 Transportation Research Circular E-C149: 75 Years of the Fundamental Diagram for Traffic Flow Theory 
 

 

This catch effect is inconsistent with the traffic phase definition (J). In other words, the MSP 
satisfies the traffic phase definition (S), i.e., the MSP is indeed associated with the synchronized 
flow phase. Another important feature of the MSP is as follows: the speed within the MSP is 
lower than in free flow (bottom, left in Figure 5) but the flow rate is almost as great as in the free 
flow (bottom right in Figure 5). The downstream front of a congested pattern resulting from the 
induced traffic breakdown is fixed at the on-ramp bottleneck 2B , i.e., in accordance with the 
definition (S) the resulting congested pattern is also associated with the synchronized flow phase.  

In some averaged, i.e., macroscopic traffic data of congested traffic, in particular which 
are measured outside of bottlenecks, the traffic phase definitions (S) and (J) cannot be applied to 
perform an accurate identification of traffic phases. Thus a question arises: What is the sense of 
the traffic phase definitions (S) and (J), if the definitions cannot be used for the identification of 
traffic phases in some real macroscopic data of congested traffic? 

A response on this question is: Rather than to distinguish traffic phases in real measured 
macroscopic traffic data, the main sense of the traffic phase definitions (S) and (J) is that the 
definitions result from and, therefore, distinguish qualitatively different common spatiotemporal 
characteristics of congested traffic patterns found in real measured traffic data. 
 
 
NATURE OF TRAFFIC BREAKDOWN AT BOTTLENECKS 
 
In three-phase traffic theory, the nature of traffic breakdown at a bottleneck is explained by a 
competition between two opposing tendencies occurring within a random local disturbance 
localized at the bottleneck in which the speed is lower and density is greater than in an initial free 
flow at the bottleneck (7): 
 

1. a tendency toward synchronized flow due to vehicle deceleration associated with a speed 
adaptation effect (Figure 6a) and 

2. a tendency toward the initial free flow due to vehicle acceleration associated with an 
overacceleration effect (Figure 6b). 
 
 

 
 

FIGURE 6  Explanation of (a) speed adaptation and (b) overacceleration (7, 8). 
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To explain this, the authors use the following two hypotheses of three-phase traffic theory (14): 
 

 Steady states of synchronized flow cover a 2-D region in the flow-density plane (Figure 
7). The multitudes of free-flow states overlap steady states of synchronized flow in the vehicle 
density (Figure 7, left). On a multilane road, at each given density the synchronized flow speed is 
lower than the free-flow speed.  

 At each given density , probability of passing P from car following is smaller in 
synchronized flow than in free flow: )(P   is a discontinuous density function, in particular it is a 
Z-shaped density characteristic (Figure 8). 

 
The low boundary of the 2-D region for the steady states of synchronized flow (Figure 7, 

left) is associated with a synchronization space gap G between vehicles (Figure 7, right). 
Because in any steady state of synchronized flow the speed v is time-independent and 0v  , a 
space gap (net distance) between vehicles  vg , where   is a time headway, and therefore the 
space gap G is associated with the synchronization time headway v/GG  . The existence of 
this boundary of the 2-D region means that at the space gap Gg  , i.e., at the time headway 

G a vehicle accelerates (Figure 9).  
The upper boundary of the 2-D region (Figure 7, left) is associated with a safe space 

gap safeg  (Figure 7, right), i.e., with a safe time headway v/gsafesafe  . The existence of this 
boundary of the 2-D region for steady states of synchronized flow means that at safegg  ; i.e., at 

safe  the vehicle decelerates (Figure 9).  
 
 

 
 
FIGURE 7  Fundamental hypothesis of three-phase traffic theory in the flow-density plane 

(left) (F – free flow) and in the gap-space-speed plane (right) (7, 14). 
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FIGURE 8  Qualitative probabilities of passing and overacceleration 
as a density (occupancy) function (7, 14). 

 
 

 
 

FIGURE 9  Explanation of speed adaptation effect (7).  
 
At a given steady speed there is the infinite number of space gaps g within the range (Figure 7) 
(7) 

 
 Gggsafe   (2) 
 
which is equivalent to  
 
 Gsafe    (3) 
 

The speed adaptation effect is vehicle deceleration within the gap G (i.e., within the time 
headway G ) occurring if a vehicle approaches the slower preceding vehicle and the vehicle 
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cannot pass it (Figure 6a). In a general case, when speeds of the vehicle and the preceding 
vehicle are not time-independent, the speed adaptation effect leads to car following without 
caring of the space gap g as long as it satisfies Equation 2: under Equation 2, the vehicle 
accelerates when it is slower than the preceding vehicle, and decelerates when it is faster than the 
preceding vehicle. 

In general, the overacceleration effect is defined as follows: the overacceleration effect is 
driver maneuver leading to a higher speed from initial car-following at a lower speed occurring 
under Equation 2.  

To understand the term overacceleration, the authors consider a scenario in which a 
vehicle moving in free flow on a multilane road approaches a slower moving preceding vehicle. 
If the vehicle cannot pass the preceding vehicle, then the vehicle decelerates due to speed 
adaptation leading to car-following of the slow preceding vehicle (Figure 6a). The authors 
assume that later the vehicle can pass this slow preceding vehicle. To pass the preceding vehicle, 
the vehicle should change lanes and accelerate. The vehicle acceleration takes place, even if the 
vehicle is not currently slower than the preceding vehicle; this explains why this vehicle 
acceleration is called overacceleration. Thus in the case, overacceleration is vehicle acceleration 
for passing from car-following, i.e., lane changing to a faster lane (Figure 6b). As a result, 
probability of overacceleration denoted by OAP is equal to passing probability P from car 
following:  
 

 ,PPOA      (4) 
 
i.e., probability for overacceleration is a Z-shaped density function (Figure 8).  

The Z-shaped function (Figure 8) explains traffic breakdown as follows (7). Free flow 
remains on a multilane road as long as the overacceleration effect, which describes the tendency 
toward free flow, is stronger than the speed adaptation effect that describes the tendency toward 
synchronized flow. However, the greater the density in free flow, the smaller the probability of 
overacceleration, i.e., the weaker the overacceleration effect.  

There is a critical probability of overacceleration (dashed curves between states F and S 
in Figure 8) associated with a critical speed denoted by )B(

FS,crv  (critical density denoted by 
)B(
FS,cr ) within a local disturbance in free flow at a bottleneck. This means that when probability 

of overacceleration is equal to the critical probability of overacceleration, then the tendency 
toward free flow due to overacceleration within the disturbance is on average as strong as the 
tendency toward synchronized flow due to speed adaptation. 

When the speed within the disturbance is lower than )B(
FS,crv  (density is greater than 

)B(
FS,cr ), then probability of overacceleration within the disturbance is smaller than the critical 

probability. This means that the overacceleration effect is weaker within the disturbance than the 
speed adaptation effect. In this case, the tendency toward synchronized flow due to speed 
adaptation overcomes the tendency toward free flow due to overacceleration that results in traffic 
breakdown. 

Otherwise, if the speed within the disturbance is higher than )B(
FS,crv  (density is smaller 

than )B(
FS,cr ), then probability of overacceleration within the disturbance is greater than the 
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critical probability. This means that the overacceleration effect is stronger within the disturbance 
than the speed adaptation effect. In this case, the tendency toward free flow due to 
overacceleration overcomes the tendency to synchronized flow due to speed adaptation. As a 
result, no traffic breakdown occurs and free flow remains at the bottleneck.   
 
 
INFINITE NUMBER OF HIGHWAY CAPACITIES OF FREE FLOW 
AT A BOTTLENECK  
 
As is well known, traffic breakdown at a bottleneck limits a highway capacity in free flow at the 
bottleneck (1, 2). However, at the same bottleneck traffic breakdown can be either spontaneous 
or induced (Figures 4 and 5). The nature of traffic breakdown at a bottleneck disclosed in three-
phase traffic theory leads to the following conclusion about highway capacity of free flow at the 
bottleneck (7, 8): the infinite number of the flow rates in free flow downstream of the bottleneck 
at which traffic breakdown can be induced at the bottleneck are the infinite number of highway 
capacities of free flow at the bottleneck.  

Thus in three-phase traffic theory there are the infinite number of highway capacities of 
free flow at the bottleneck between some minimum and maximum capacities (Figure 10). The 
definition of highway capacities and their sense can be found in The Physics of Traffic (7). A 
critical discussion of well-known capacity definitions as a particular fixed or stochastic 
(probabilistic) value can be found in Introduction to Modern Traffic Flow Theory and Control: 
The Long Road to Three-Phase Traffic Theory (8). 
 
 

WIDE-MOVING JAM EMERGENCE IN SYNCHRONIZED FLOW  
 
In real measured traffic data, wide-moving jams can emerge spontaneously in synchronized flow 
only. No spontaneous emergence of wide-moving jam in free flow has been observed (7). This is 
consistent with real measured data in which traffic breakdown is governed by an FS 
transition, i.e., synchronized flow emergence in an initial free flow as explained above. 
 
 

 
 

FIGURE 10  Infinite number of highway capacities of free flow at a bottleneck (7). 
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A spontaneous emergence of a wide-moving jam in synchronized flow (S J transition) is  
explained in three-phase traffic theory as follows (7, 14): 

The line J, which represents in the flow-density plane the propagation of a wide-moving 
jam while maintaining the mean velocity of the downstream jam front, divides the 2-D region of 
steady states of synchronized flow into two different classes (Figures 11–13):  

 
 States below the line J are stable with respect to wide-moving jam formation. These 

states are associated with homogeneous synchronized flow in which no wide-moving jams can 
emerge or persist over time (Figure 12). 

 States on and above the line J are metastable synchronized flow states with respect to 
wide-moving jam emergence, i.e., in metastable synchronized flow wide-moving jams can 
emerge and exist (Figure 13). 
 
 

 
 

FIGURE 11  Fundamental hypothesis of three-phase 
traffic theory together with the line J (red line) (7, 14). 

 
 

 
 

FIGURE 12  Explanation of stable homogeneous synchronized flow (7, 14). 
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To explain this hypothesis, the authors assume that a state of synchronized flow directly 
upstream of a wide-moving jam (black line upstream of the upstream jam front in Figure 12, 
right) is associated with a point in the flow-density plane that is below the line J (black point in 
Figure 12, left). The velocity of the upstream front of the wide-moving jam )up(

gv  equals the 
slope of the line in the flow-density plane between this point below the line J and the point 
related to the jam density max  (Figure 12, left). The absolute value of this velocity satisfies the 
condition 
 
 g

)up(
g vv       (5) 

 
where gv  is the mean velocity of the downstream jam front (red in Figure 12, right) given by the 
slope of the line J (red line in Figure 12, left). Thus the width of the wide-moving jam shown in 
Figure 12, right, gradually decreases and the jam dissolves. This means that no wide-moving 
jams can persist continuously: i.e., all steady states of synchronized flow below the line J are 
stable with respect to wide-moving jam emergence. These states are homogeneous synchronized 
flow states, which exist at any density that is possible in synchronized flow, including very great 
density values. In three-phase traffic theory, stable homogeneous synchronized flow of great 
density is possible. 

In contrast, the authors assume that a state of synchronized flow upstream of another 
wide-moving jam (Figure 13, right) is associated with a point in the flow-density plane, which is 
above the line J (black point in Figure 13, left).  In this case, the velocity of the upstream front of 
the wide-moving jam  )up(

gv  equals the slope of the line in the flow-density plane between this 
point above the line J and the point related to the jam density max  (Figure 13, left). The 
absolute value of this velocity satisfies the condition  
 

 g
)up(

g vv       (6) 
 

i.e., it is always greater than that of the downstream jam front gv . Therefore, the width of the 
wide-moving jam in Figure 13 (right) should gradually increase. For these reasons, wide-moving 
jams can be formed and persist in states of synchronized flow that lie on or above the line J.  
 
 

 
 

FIGURE 13  Explanation of metastable synchronized flow with respect to  
wide-moving jam emergence (S J transition) (7, 14). 
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Thus there should be some time-limited disturbances in the states of synchronized flow 
that can lead to the emergence of wide-moving jams: i.e., the states are metastable ones with 
respect to wide-moving jam emergence. 

Thus in three-phase traffic theory at the same given vehicle density depending on the 
vehicle speed either homogeneous synchronized flow (at lower speeds), in which wide-moving 
jams do not emerge, or metastable synchronized flow (at higher speeds), in which wide-moving 
jams can emerge spontaneously, can exist. This explains a great complexity of real traffic 
congestion observed at highway bottlenecks (7, 15). 
 
 
FUNDAMENTAL HYPOTHESIS OF THREE-PHASE TRAFFIC THEORY AS THE 
RESULT OF THE TRAFFIC PHASE DEFINITIONS (J) AND (S) 
 
The fundamental hypothesis of three-phase traffic theory (Figure 7) discussed above results from 
the phase definitions (J) and (S) as follows (8, 9): 
 

 The line J in the flow-density plane results from the definition of wide-moving jam (J). 
Any point on the line J can be a final steady traffic state for vehicles accelerating at the 
downstream front of a wide-moving jam. If the speed in this state is lower than the minimum 
speed that is possible in free flow, the state is a synchronized flow steady state that lies on the 
line J. Thus there should be infinite synchronized flow states lying on the line J (Figure 11). 

 The definition of synchronized flow (S) means that downstream fronts of synchronized 
flow regions do not exhibit the jam characteristic feature (J). For this reason, in addition to 
synchronized flow steady states lying on the line J there should be synchronized flow steady 
states that are outside of the line J in the flow-density plane. Indeed, only in this case the 
downstream front between two different states of synchronized flow does not exhibit the 
characteristic jam velocity given by the slope of the line J. Thus there should be also 
synchronized flow steady states outside of the line J, i.e., that there is a 2-D region of the steady 
states in the flow–density plane. This explains the fundamental hypothesis of three-phase traffic 
theory about the 2-D region of the steady states of synchronized flow (Figure 7).  
 
 
DOUBLE Z–CHARACTERISTIC FOR PHASE TRANSITIONS 
 
As explained above, in three-phase traffic theory, traffic breakdown is a phase transition from 
free flow to synchronized flow (FS transition). Wide-moving jams can occur spontaneously in 
synchronized flow only (S J transition), i.e., due to a sequence FS J transitions. The  
FS and S J transitions are described in the speed-density plane by a double Z–characteristic 
(Figure 14) (7).  

The first Z-characteristic consists of free-flow states (F), a branch for a critical speed 
required for breakdown (dashed curve between states F and S), and synchronized flow states (2-
D region labeled by S).  

The second Z-characteristic consists of the synchronized flow states, a branch for a 
critical speed required for an S J transition (dashed curve between states S and J), and states 
within wide-moving jam (J). 
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FIGURE 14  Qualitative double z–characteristic for phase transitions (7). 
 
 

It must be stressed that the FS and S J transitions shown in Figure 14 occur at 
different road locations. Therefore, they cannot be distinguished from each other without 
knowledge of the whole spatiotemporal dynamics of a congested pattern. It can be concluded 
that, in general, a solely analysis of different congested traffic states and phase transitions in the 
flow-density plane (as well as in speed–density, space–gap–density planes, etc.) is not adequate 
with empirical features of congested traffic. This is because most of these empirical 
spatiotemporal features are lost in this congested traffic analysis. Thus an initial study of the 
whole spatiotemporal dynamics of the congested pattern is needed.    
 
 
CLASSIFICATION OF EMPIRICAL SPATIOTEMPORAL CONGESTED PATTERNS 
 
In three-phase traffic theory, in accordance with common empirical features of congested 
patterns, there is the following classification of congested traffic patterns at a bottleneck (7): 
 

1. A synchronized flow pattern (SP) is a congested pattern that consists of the synchronized 
flow phase only (Figure 15a). 

2. A general congested pattern (GP) is a congested pattern that consists of the synchronized 
flow and wide-moving jam phases (Figure 15b). 

 
Because on real roads there are usually many adjacent bottlenecks at which traffic 

breakdown is possible, the authors use also the term expanded congested pattern (EP). An EP is a 
congested traffic pattern whose synchronized flow affects at least two effectual adjacent 
bottlenecks. 
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B

B

(a) Synchronized flow pattern (SP)

(b) General congested pattern (GP)

 
 

FIGURE 15  Empirical examples of (a) synchronized flow pattern (SP) and (b) general 
congested pattern (GP) at an on-ramp bottleneck labeled by B (7). 

 
 

The terminology “expanded congested pattern” emphasizes only that rather than the SP 
or the GP occurring at an isolated effectual bottleneck, i.e., an effectual bottleneck at which 
traffic breakdown is observed on many different days (Figure 15), the synchronized flow of the 
SP or the GP affects two or more adjacent effectual bottlenecks. To emphasize this point, the 
authors use for these different EPs two terms—“ESP” and “EGP.” 
 

 ESP (an expanded synchronized flow traffic pattern) is an SP whose synchronized flow 
affects two or more adjacent highway bottlenecks. 

 EGP (an expanded general congested traffic pattern) is a GP whose synchronized flow 
affects two or more adjacent highway bottlenecks. An empirical example of an EGP is shown in 
Figure 16. 
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Expanded general pattern (EGP)

 
FIGURE 16  Empirical expanded general pattern (EGP) (7). 

 
 

Thus a GP is always a general case of a congested pattern. This is because in three-phase 
traffic theory there are only the synchronized flow and wide-moving jam traffic phases in 
congested traffic and, in accordance with the GP definition made above, any GP consists of both 
phases. This is independent of whether a GP appears at an on-ramp bottleneck, an off-ramp 
bottleneck, or else the GP is caused by a combination of several on- and off-ramps, etc. A GP is 
a generic term for many species, i.e., subordinate terms of different types of GPs like an EGP 
whose synchronized flow affects two or more effectual bottlenecks, or a dissolving GP (7), or 
else a GP with a nonregular pinch region (15). 

Respectively, an SP in which congested traffic consists of synchronized flow only is the 
generic term for many species terms of different types of SPs like a moving SP, a localized SP, a 
widening SP (7), an ESP, etc. 

As mentioned, this classification of congested patterns in three-phase traffic theory is 
made based on common empirical features of congested traffic (7) found during many years of 
observations of real measured traffic data. Therefore, the classification of congested patterns into 
different types of GPs and SPs is well predictive and self-contained (see Sect. 2.4.10 of (7)). 

Moreover, at a heavy bottleneck, which restricts the average flow rate in a congested 
pattern upstream of the bottleneck to very small flow rate values, rather these “usual” congested 
patterns, a mega-wide-moving jam (mega-jam for short) can be formed. A review of a theory of 
the mega-jam and other congested patterns upstream of heavy bottlenecks caused for example by 
bad weather or accidents derived in Journal of Physics can be found in other works by Kerner (8, 
10). 
 
 
ABOUT DETERMINISTIC MICROSCOPIC THREE-PHASE 
TRAFFIC FLOW MODEL  
 
The first mathematical traffic flow model based on the above hypotheses of three-phase traffic 
theory, which can show empirical features of traffic breakdown and resulting congested patterns, 
was developed in 2002 by Kerner and Klenov. Later, several different three-phase traffic flow 
models were developed (8, 9). Here, the authors briefly discuss a microscopic deterministic 
traffic flow model (16).  
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In this model, driver acceleration (deceleration) )t,x(a depends on the traffic phase in 
which a driver is as follows: 
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  (7) 

 
where a driver time delay )del( depends on the space gap, speed, and acceleration (deceleration); 

)jam(
maxg  the maximum space gap within a wide-moving jam. Steady states of synchronized flow 

cover a 2-D region in the space–gap–speed and flow–density planes (Figure 17). The 
overacceleration effect is simulated through the use of a speed gap between states of 
synchronized flow and free flow. The model can shown all known empirical features of traffic 
breakdown and resulting traffic congestion. 
 
 
LINKING THREE-PHASE TRAFFIC THEORY AND 
FUNDAMENTAL DIAGRAM APPROACH 
 
A link between three-phase traffic theory (7) and the fundamental diagram approach to traffic 
flow modeling (1–6) can be created through the use of the averaging of an infinite number of 
steady states of synchronized flow shown in Figure 17 to one synchronized flow speed for each 
density (Figure 18) (16). In this case, the authors should find rules for vehicle motion in a traffic 
flow model whose steady states are associated with a fundamental diagram, however, the model 
should show the free flow, synchronized flow, and wide-moving jam phases as well as to a 
sequence FS J transitions (Figure 14). Examples of such three-phase traffic flow models 
are speed adaptation (SA) models whose steady states are shown in Figure 18. 
 
 

 
 

FIGURE 17  Steady states in the ATD model (16). 
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Traffic breakdown is simulated in the SA models through the use of one of the following 
features of states in a neighborhood of the maximum point on the fundamental diagram (16):  
 

 A discontinuity of states on the fundamental diagram between free flow and synchronized 
flow states (Figures 18a and b).  

 An instability of states on the fundamental diagram within some density range (dashed 
curve FS in Figure 18c).  

 
An S J transition is simulated in the SA models through instability of states of synchronized 
flow on the fundamental diagram whose density is greater than some critical density denoted by 

)J(
cr  (dashed parts of curves S at the density )J(

cr in Figure 18).  
In other words, in these models there are two separated density regions on the 

fundamental diagram in which phase transitions occur (Figure 19) (16): 
 

 A region in a neighborhood of the maximum point on the fundamental diagram labeled 
by FS in which traffic breakdown occurs and,  

 A region of greater densities of synchronized flow labeled by S J in which wide-
moving jam emergence in synchronized flow is realized. 
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FIGURE 18  Steady states in the SA models (16). 
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FIGURE 19  Two density regions for phase transitions in SA models (16). Steady states of 

traffic flow in the flow-density plane are the same as those in Figure 18a. 
 
 
As shown by Kerner (16), the models are able to show and predict the FS J transitions. 
However, due to the averaging of the infinite number of steady states of synchronized flow to 
one synchronized flow speed for each density, these models are not able to show important 
features of synchronized flow as well as many features of coexistence of the free flow, 
synchronized flow, and wide-moving jam phases found in real traffic. These drawbacks of the 
models are associated with the ignoring of the 2-D-region of steady states of synchronized flow 
of three-phase traffic theory. 
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THE FUNDAMENTAL DIAGRAM: FROM THEORY TO PRACTICE 

 

Traffic Flow Theory Historical Research Perspectives 
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IIT Bombay, India 
 
 

Traffic flow is a kind of many-body system of strongly interacting vehicles. Traffic jams are a typical 
signature of the complex behavior of vehicular traffic. Various mathematical models are presented to 
understand the rich variety of physical phenomena exhibited by traffic. This paper provides an overview 
of what is currently the state of the art with respect to traffic flow theory. Starting with a brief history 
about vehicular traffic flows, this paper discusses the Greenshields, Greenberg, and Gurein, etc., models. 
This paper also discusses some basic relations between traffic flow characteristics, i.e., the fundamental 
diagrams; speed, volume, and density relationships; hydrodynamic analogies; and traffic hump formation 
(shock wave). It also sheds some light on the different points of view adopted by the traffic engineering 
community. Some performance indicators are reviewed that allow assessment of the quality of traffic 
operations. A final part of this paper gives the probabilistic description of traffic flow, distribution of 
vehicles on a road. 

 
 
 

raffic-flow theories seek to describe in a precise mathematical way the interactions among 
vehicles, drivers, and the infrastructure. The infrastructure consists of the highway system 

and all its operational elements, including control devices, signage, and markings. These theories 
are an indispensable element of all traffic models and analysis tools that are being used in the 
design and operation of streets and highways. The scientific study of traffic flow had its 
beginnings in the 1930s with the application of probability theory to the description of road 
traffic and with the pioneering studies conducted by Bruce D. Greenshields at the Yale Bureau of 
Highway Traffic on the study of models relating volume and speed and the investigation of 
performance of traffic at intersections. After World War II, with the tremendous increase in the 
use of automobiles and the expansion of the highway system, there was also a surge in the study 
of traffic characteristics and the development of traffic-flow theories. In December 1959, the 
First International Symposium on the Theory of Traffic Flow was held at the General Motors 
Research Laboratories in Warren, Michigan. This was the first of what has become a series of 
triennial symposia on the theory of traffic flow and transportation. The field of traffic-flow 
theory and transportation has become too diffuse to be covered by any single type of meeting, 
and numerous other symposia and specialty conferences about a variety of traffic-related topics 
are held on a regular basis. Yet, even as traffic-flow theory is increasingly better understood and 
more easily characterized through advanced computation technology, the fundamentals are just 
as important today as in the early days. They form the foundation for all the theories, techniques, 
and procedures that are being applied in the design, operation, and development of advanced 
transportation systems. This elementary and brief introduction to traffic-flow theory is included 
to extend the engineer’s knowledge in this vital area and to relate the theory to other aspects of 
traffic engineering. 

T 
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BASIC RELATIONSHIPS 
 
Earlier, the major elements of traffic flow were outlined as: (1) composition or classification, (2) 
volume, (3) origin and destination, (4) quality, and (5) cost. Traffic flow is concerned 
particularly, with three of these elements: composition, volume, and quality.  

One objective of traffic flow theory is to derive theoretical relationships between the 
various traffic variables so that the engineer can determine the characteristics of traffic streams 
and hence predict the consequences of alternative designs. Initial work is concentrated on the 
flow, density, and space–mean–speed variables as these three variables are of particular interest 
since flow describes how many vehicles are moving, and flow (Us = resultant demand), density 
(D), and space–mean–speed (V) together describe the quality of service experienced by drivers, 
which can serve as a useful first approximation to travel costs. These three variables are related 
to each other by the equation 
 
 V = D * Us                                                         (1) 
 
This relationship represents the fundamental equation of traffic flow. If a relationship is 
established between any two of the variables, the relationship of the third can be controlled by 
Equation 1. Obviously the possible combinations are volume and density, speed and density, and 
speed and volume, all of which have been investigated empirically. 

At this point it is useful to consider some of the characteristics of the physical driver-
vehicle-highway system and the manner in which it operates, and to set out the basic conditions 
that must be satisfied by any explanatory theory. The definitions clearly require volume to be 
zero when density is zero, and require volume equal to zero at maximum density (i.e., when 
vehicles are lined up end-to-end). Further, it is evident that volume decreases before density 
reaches a maximum value (Note that the maximum volume that can pass through a given section 
of highway is referred to as the highway “capacity” by traffic engineers). The relationship 
between volume and density, then, must have a general form similar to that illustrated in Figure 
1.  

This has been termed the “fundamental diagram of road traffic” by Haight. Clearly there 
are innumerable volume–density functions that will pass through the zero-volume points and 
have a maximum volume value falling in between, and several functions have been proposed or 
derived from empirical data or theoretical consideration. 

Since space mean speed is volume divided by density, the slope of the line OA  in Figure 
1 represents the space mean speed corresponding to volume VA   and density  DA. It is also clear 
that for the volume level  VA , there is another possible speed, defined by the slope of the line OB  
and corresponding to density DB. 

Further, at the jam density Dj, speed is zero, and as the volume and density approach zero, 
the speed will be equal to the means free speed (i.e., the speed drivers will assume when free or 
virtually free from inference by other vehicles). The mean speed will be a function of the drivers, 
their vehicle characteristics, the highway characteristics (lane width, sight distance, etc.), and 
other factors such as lighting and weather. 

In general, the relationship between speed and volume will be of the form shown in 
Figure 2. As volume increases, the space mean speed decreases, and travel time increases. If the 
input volume for the facility approaches Vm, the dynamics of traffic flow and shock wave action  
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FIGURE 1  The fundamental diagram. 

 
FIGURE 2  General form of road traffic volume-speed relationship. 

 
may cause the capacity to be reduced below Vm, with speeds corresponding to lower-speed 
portion of the curve; in such an instance, the maximum volume that can pass through the 
roadway section might be reduced to VA, say, and the speed to UA. From  the traffic engineers’ 
and highway users’ point of view, the reduction in speed and in capacity is clearly an undesirable 
situation, because only few vehicles can pass and because they must travel at lower speeds than 
appears reasonable for the section of highway. In the section that follows, the results of the more 
pertinent research on traffic flow theory will be summarized and applied to these sorts of 
problems. 
 
 
EMPIRICAL STUDIES OF VOLUME, DENSITY, AND SPEED RELATIONSHIPS 
 
One of the earliest recorded works is that of Greenshields in 1934. He found a linear relationship 
as shown in Figure 3 between average density and average speed of the form 
 

 Us = Uf  – 
f

j

U

D
 
 
 

*D (2) 
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FIGURE 3  Speed–density relationship.  

 
 
where Uf   is the mean free speed, and Dj is the jam density. Thus for a Greenshields’ data with 
the mean free speed Uf  as 46 mph and the jam density Dj  as 195 vehicle per mile; thus for his 
data, 

 
Us = 46  – 0.236 * D 

 
If a linear relationship between speed and density is assumed, then the corresponding functions 
for volume and density and for volume and speed are parabolic. The volume density relationship 
can be derived by substituting V/D for Us in Equation 2; the result is 
 

 V = Uf  D – 
f

j

U

D
D2                                                                         (3) 

 
Similarly, by substituting  V/Us  for D in Equation 2, the volume–speed relationship is  
 

 V = Dj Us – 
j

f

D

U
 Us

2                                                     (4) 

 
These two relationships are illustrated in Figure 4. To determine (1) the density, and (2) the 
speed at which the flow or volume is at maximum, Equations 3 and 4 must be differentiated with 
respect to density and speed, respectively; the resulting differentials can then be set equal to zero 
and solved. Thus:  

 
FIGURE 4  Parabolic volume based on 244 groups of 100 vehicles’  

density and volume–speed curves. 
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Density when volume is maximum (Dm) :  
 

 
dV

dD
 =  Uf – 

f

j

U

D
 2D = 0 and D = Dm =  

2

jD   (5) 

 
Speed when volume is maximum (Um) : 

 

 
S

dV

dU
 =  Dj  –  

j

f

D

U
 2Us = 0 and Us =   Um= 

2

fU   (6) 

 
From Equations 1, 5, and 6, the maximum volume is  
 

 Vm  =  Dm Um = 
4

fjD U   (7) 

 
Thus for the Greenshields’ data with Uf  = 46 mph and Dj =195 veh/mile, the Dm = 98 veh/mile, 
Um = 23 mph, Vm = 2,240 veh/h. Greenberg analyzed data collected in the north tube of the 
Lincoln Tunnel and fitted an exponential function to the speed and density observations, which 
are shown in Table 1. His hypothesis that speed and density are related exponentially was based 
on a theoretical analysis in which high-density traffic flow was assumed to be analogous to 
continuous fluid flow. The form of the function was 
 
 D = CebU

s
  (8) 

 
where e is the base of the Napierian or natural log system. The parameters C and b can be 
estimated by making a least-square regression fit to the data shown in Table 1. To express 
Equation 8 in a linear form, algorithmic transformation is made as follows: 
 

loge D = loge C + b Us 

 
Putting Y = loge D, and c = loge C, the linear equation becomes 
 
 Y = c + b Us  or  Y = a + b (x – x )  (9) 
 
where x is Us , and x  is the mean value of  Us  (that is, x  =  sU

n ). 

From the data in Table 1, after transformation, 
 
 y = 81.098, Us  = 285, y2  = 368.603,   Us 

2  = 5,453,  Us y = 1,229.325 
 
From the above equations, b = –0.0581 or –1/17.2 and C = 5.425109, thus  
 
loge C = 5.425109, C = 227, and  
 
 D = 227e–(U

s
 /17.2)  (10) 
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TABLE 1  Speed and Density Observations in Lincoln Tunnel 
 

Volume V, veh/h Speed Us, mph Density D, veh/mile 
1,088 32 34 
1,232 28 44 
1,325 25 53 
1,380 23 60 
1,480 20 74 
1,558 19 82 
1,496 17 88 
1,504 15 94 
1,410 15 94 
1,344 14 96 
1,339 13 102 
1,344 12 112 
1,188 11 108 
1,290 10 129 
1,188   9 132 
1,112   8 139 
1,120   7 160 
   990   6 165 

 
 
The estimated coefficient of determination calculated comes out to be r2 = 0.988, and the 
standard error of estimate for density once calculated yields s = 4.93 vehicles/mi. 

Figure 5 includes the observed data and the plot of Equation 10. The exponential form 
gives an infinite mean free speed and a jam density of 227 vehicles/mi. 

In the former respect, the exponential violates the boundary condition for speed at zero 
density. The relationship between speed and volume follows directly from Equations 1 and 10: 
 

V = Us (227e–(Us /17.2)                                             (11) 
 
 

 
 

FIGURE 5  Density–speed relationships. 
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This volume–speed equation is shown in Figure 6, together with Greenberg’s field data. The 
standard error of estimate and estimated coefficient of determination have been computed, giving 
s = 61.7 vehicles/h, and r2  = 0.85, respectively. From both statistics and Figure 6, the derived 
form for the volume–speed relationship is not as suitable as the equation for speed–density. In 
particular, Equation 11 underestimates volume in the region of maximum volume. Violation of 
the boundary condition at zero density is also evident, because speed is infinite at zero volume. 
Using Equation 11, a maximum volume of 1,460 veh/h occurs at a speed of 17.2 mph. 

Figure 7 shows the relationship between volume and density and the observed field data. 
The functional relationship is  
 

V = 17.2 D loge 
227

D
                                             (12) 

 
FIGURE 6  Volume–speed relationships. 

 
 

 
FIGURE 7  Volume–density relationships. 
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This equation satisfies the volume–density boundary conditions and has the general form 
postulated for the fundamental diagram in Figure 1. The density at maximum volume, as shown 
in Figure 7, is approximately 82 vehicles/mi. 

For purpose of comparison, a linear equation has been fitted to Greenberg’s density–
speed data. A least-squares regression fit was made for an equation with the following general 
form: 

 
D = C + bUs 

 
For the data in Table 1, 
 
D = 1,766, Us  = 285,  D2 = 197.156, Us 

2 = 5,453, D Us  = 23,375, C = 175, b = – 4.8576.  
 
Thus 
 D = 175 – 4.86 Us,                                            (13) 

and r2 = 0.936, s = 8.5 vehicles/mi 
 

Equation 13 is shown in Figure 5, where it may be observed that the linear regression fit 
is not as suitable as Greenberg’s equation. In particular, there are large deviations for densities 
less than 50 veh/mi and for densities larger than 140 veh/mi. This has resulted in a pattern of 
systematic errors for the regression line. However, as shown above, the r2 value and the standard 
error of estimate were reasonably good for most engineering purposes. 

The previous comparison illustrates an important aspect of curve fitting, and a distinction 
should be made between “good prediction functions” and the “true functions.” If engineers are 
primarily interested in obtaining “good or satisfactory prediction” equations between speed and 
density for the same range of data values, the linear form may be preferable because it is easy to 
use. However, the linear form cannot be assumed as the true relationship between the variables, 
because of having a high r2 value. In fact, there is every reason to assume that it cannot be the 
true relationship in this case because the errors appear to be systematically distributed about the 
regression line, indicating that some form of concave function is closer to the true relationship. 
In the present case, the exponential form of the function does have a higher value of r2, and the 
errors do not show any obvious bias; thus the exponential form is more likely to be a true 
function than a linear form, although even it may not be the true form of relationship. 

Thus, as discussed previously, the linear relationship between speed and density leads to 
a parabolic curve for the derived forms; they are 
 
 V = 175 Us – 4.86 (Us

2 )                                         (14) 
 

 And  V = 36D 
1

175

D 
 
 

                                         (15) 

 
It is evident that all the boundary conditions specified earlier are satisfied by Equations 14 and 
15. The maximum volume of 1,580 veh/h occurs at a speed of 18 mph and at a density of 
approximately 82 veh/mi. 

Many empirical studies have been used on observations of travel time and volume with 
particular emphasis on developing working relationships. Guerin, in an analysis of data collected 
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in Chicago and New Haven, suggested the use of boundary curves. For speed and density, the 
boundary curve is defined as 
 

Us = 
2

f j

f

U D D

AU D Dj D


 

 

 
For Greenberg’s data, the following constants and parameter values are suitable: 
 

  Uf = 40, Dj = 400, A = 0.00007, giving Us = 
2

40 400

0.0028 400

D

D D


 

       (16) 

 
Equation 16 is plotted on Figure 5. The boundary curves for the other variables are 
 

  
11

2 4218.9(40 ) 400s s
s

VV U U U    (17) 

 

 
2

40 400

0.0028 400

D D
V

D D




 
                                            (18) 

 
The equations shown in Figures 6 and 7 satisfy the four boundary conditions stated previously. 
Guerin pointed out that the form of the fundamental diagram defined by Equation 18 also 
satisfies a fifth possible boundary condition, as follows: 
 

 
0

lim 0
s

D

dU

dD
                                             (19) 

 
This boundary condition implies that a small number of vehicles can be added to an empty 
system without a decrease in the mean free speed. 

A number of empirical studies have postulated a linear relationship between space mean 
speed and volume. One of the first can be attributed to Normann and was later used in the 
Highway Capacity Manual. This functional form does not serve as a satisfactory basis for 
developing a theory of traffic flow, but it does seem to have useful engineering applications. As 
an illustration, linear equations have been fitted to Greenberg’s speed–volume data (Table 1). A 
general equation of the following form was fitted by least squares of two groups of data: 
 

V = c + bUs 
 
The first group of data included the first five entries in Table 1 and resulted in the following 
equation: 
 

 V = 2,127 – 32.3Us  for Us    18.1 mph,                      (20) 
r2   = 0.998,    s = 7.5 veh/h 

 
The remaining 13 observations in Table 1 resulted in the following equation: 
 

 V = 801 + 41.2 Us      for Us  18.1 mph,                             (21) 
r2   = 0.939,    s = 41.5 veh/h 
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Equations 20 and 21 are shown in Figure 6. Maximum volume and the associated speed are V = 
1,541 veh/h and  Us  = 18.1 mph; because V is equal to Us D, D at maximum volume is 85 
veh/mi. 

Equations 20 and 21 are only applicable for a particular range of speeds since both give 
unrealistic values for volume when extended beyond the range of Greenberg’s data. Within that 
range they appear to be better predictors than any of the curves discussed earlier. Thus a 
volume–speed curve consisting of three linear segments may prove satisfactory for many 
engineering problems. 
 
 
HYDRODYNAMIC ANALOGIES 
 
Analogies have been often drawn between the flow of fluids and the movement of vehicular 
traffic. However, the current evidence suggests that the equations developed from hydrodynamic 
analogies hold good only for high-density traffic and indicates that continuous and steady flow 
analogies almost totally obscure the fact that each vehicle is individually controlled. Even so, 
most important traffic-control problems occur only under high-density and other than “free 
movement” conditions; thus it might appear that better understanding of these analogies is 
worthwhile. 

Principal contributions to this topic have been made by Greenberg, Lighthill and 
Whitham, and Richards. To develop the basic relations, Greenberg’s approach will be used.  The 
assumptions are 
 
1. High-density traffic will behave like a continuous fluid, and the corresponding fundamental 
motion equation for one-dimensional continuous fluid is 
 

 
2

sdU c D

dt D x


 


                                           (22) 

 
where 
 

Us =  fluid velocity or space mean speed, mph; 
D =  density, vehicles/mile; 
X  =  distance, miles; 
T =  time to move distance x; and 
C =  roadway parameter. 

 
Equation 22 can be rewritten by expressing speed in terms of distance and time: 
 

 
2

0
s s sU UU c D

t x D x

 
  

  
                                      (23) 

 
2. For a fluid, mass-per-unit time is constant (this is normally termed the continuity of flow); 
thus, if traffic and fluid flow are analogous, 
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 0
D V

t x

 
 

 
                                                 (24) 

 
where V is the volume or flow rate in vehicles per hour. Also Equation 23 can be restated: 
 
 V = Us D                                                            (25) 
 
3. If it is further assumed that speed is only a function of density, Equation 23 to Equation 24 
may solved to yield speed in terms of density: 
 

 log j
s e

D
U c

D
                                               (26) 

 
where Dj is the jam density. Substituting speed from Equation 25 into Equation 26 gives the 
following result: 
 

 log j
e

D
V cD

D
                                              (27) 

 
Equation 27 defines the form of the fundamental diagram shown previously in Figure 1. It can 
easily be verified that 
 

1. When V = 0, D = 0 or D = Dj and 
2. When D = 0, Us = , D = Dj , Us = 0. 

 
Thus, as a complete theory of traffic flow, the formulation violates the boundary condition that at 
zero volume and density the speed is the free mean speed. This is particularly obvious in Figure 
6, where volume and speed are graphed. This figure also illustrates that at high volumes (and 
hence densities) the hydrodynamic analogy is a good description. 

Other useful concepts can be derived from fluid flow analogy to traffic flow. Lighthill 
and Whitham have shown that the speed of waves “carrying” continuous changes of volume 
through a vehicular flow is given by  dV/dD or the slope of the fundamental diagram; thus 
 

 s s
w s

dU D dUdV
U U D

dD dD dD
                                (28) 

 
where Uw is the speed of the wave in miles/h. 

As shown previously (e.g., Figure 5), the space mean speed of traffic decreases with 
increasing density, and thus dUs/dD  will be negative. Also, Equation 28, the speed of the wave 
(Uw) will be less than the mean speed of traffic (Us), and the wave will move backward relative 
to the mean vehicular flow. At low densities, when interaction between vehicles is very small, 
dUs/dD approaches zero, at which point the wave velocity equals the vehicle speed. At densities 
above the point of maximum volume, the waves will move backward relative to the road, and 
under the conditions for maximum volume, the wave is stationary relative to the road; at lower 
densities, the wave moves forward relative to the road (see Figure 8).  



56 Transportation Research Circular E-C149: 75 Years of the Fundamental Diagram for Traffic Flow Theory 

 

 
FIGURE 8  Velocity and volume. 

 
 
Since the wave velocity changes with the vehicular density, it is possible to have different 

waves traveling through a vehicular stream. A particularly interesting case is a section of road 
with low-density flow immediately followed by a section with higher-density flow. This 
situation might be caused by an accident, a reduction in number of lanes, an entrance ramp, or 
other constricted circumstances. The wave in the lower-density traffic will travel forward 
(relative to the road) at a higher speed than the wave in the higher-density flow. When these 
waves meet there will be a change in flow and a new wave will form. Both the original waves 
and new wave will move forward relative to the road. The new wave has been termed a shock 
wave by Lighthill and Whitham, and its speed is given by the slope of the chord joining the 
respective points on the fundamental diagram (Figure 8); analytically, its speed Usw is as follows: 
 

 2 1

2 1

V V
Usw D D





                                      (29) 

 
Lighthill and Whitham illustrate their work with several examples concerning conditions 

that sometimes occur in vehicular flow. The first example they term a “traffic hump,” which is a 
period during which the flow of vehicles onto a highway suddenly increases. A typical example 
might be the release or discharge of a large number of vehicles from a parking lot. The highway 
is assumed uniform along its length, and hence the fundamental diagram will have the same form 
at all points. The wave pattern of flow may be illustrated conveniently on a space–time diagram 
as shown in Figure 9. 

The light lines on Figure 9 show the paths of waves, each traveling at constant speed 
along the highway. During periods of normal flow input, the wave velocities are the same and 
hence are shown by parallel lines in Figure 9. As the input flow and densities increase, the wave 
velocity is reduced. As the period of increased flow ends, the wave velocities increase again until 
they reach normal value, as shown in Figure 9. The faster waves at the right will meet the slower, 
causing a discontinuity and the formation of a shock wave, as shown by the dotted lines in Figure 
9. 
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FIGURE 9  Shock wave density relationships. 

 
 
CAR-FOLLOWING THEORY 
 
The hydrodynamic analogy discussed in the previous section relied on the assumption that high-
density streams of vehicles behave like an incompressible fluid. In other words, it was assumed 
that individual drivers react to the presence of other vehicles in such a way that only the stream 
or total flow characteristics need be considered. The character of intervehicle relationships was 
not specified or necessary to analogy. Car-following theory, by contrast, deals with the 
intervehicle relationship and from this basis builds up a description of character of total vehicular 
flow. 

Car-following theories have been developed by numerous researchers, but they often are 
associated with the work of Herman et al. at the research laboratories of General Motors 
Corporation. Herman pointed out that the “follow the leader” types of problems basic to car 
following are the product of the psychological behavior of the drivers as they respond to certain 
stimuli. The first car-following model considered is one in which it is assumed that a driver will 
attempt to keep relative speed between his vehicle and the one immediately ahead as small as 
possible. The stimulus will be a change in the speed of the vehicle ahead, and the lagged 
response will be a change in the speed of the following vehicle, whereas the process is 
constrained to minimize differences in the relative velocity between the two vehicles. These 
ideas can be expressed in an equation of the form 
 

 ( ) ( ) ( )1x t x t T x t Tn nn
                                             (30) 

 
where 
 

x(t)  = acceleration of the nth vehicle at time t, or an(t); 
xn(t) = velocity of nth vehicle at time t, or Un(t); 
T = time lag or stimulus-response time of driver-car system; and 
Λ = driver-sensitivity coefficient. 
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Equation 30 can be rewritten as 
 
 ( ) ( ) ( )1a t U t T U t Tn nn

                                         (31) 

 
The driver-sensitivity coefficient λ is to account for the driver’s awareness of and intensity of 
reaction to stimuli from the vehicle in front. As the vehicles get closer to one another, drivers pay 
more attention and hence their awareness of, and sensitivity to, the actions of the other vehicles 
increases. In other words, it is unlikely that λ would be constant, and in fact, experiments have 
shown that it is variant. Herman indicates that a good approximation to the sensitivity is a 
constant (λ0) divided by the front-to-front distance between the vehicles. Thus Equation 31 
becomes 

 0

1

( ) ( ) ( )1
n n

a t U t T U t Tn nnx x

      
                       (32) 

 
Again, T is the time lag or reaction–response time between a driver perceiving a change in the 
speed of the vehicle ahead and actually changing his own speed.  

Equation 32 is a complex second-order differential equation, the solution of which 
involves the Laplace transform. By integrating Equation 32, an expression relating speed and 
spacing or speed and density, can be obtained. Gazis et al. showed that the result is 

 

 0 log j
s e

D
U

D
                                             (33) 

 
where 
 

Dj = jam density and 
D = density. 

 
Comparison of Equation 32 with Equation 33, which was derived earlier by using the fluid-flow 
analogy proposed by Greenberg, will show that the same form for the fundamental diagram of 
traffic flow has been derived from two independent approaches. However, as discussed earlier, 
this particular formulation does not satisfy the boundary condition of mean free speed at zero 
volume and density. In order to improve the car-following model in this respect, Edie has 
suggested a modification that expresses the driver sensitivity as a function of both vehicle speed 
and vehicle spacing. He assumes that the faster a driver is traveling, the greater will be his 
awareness of the behavior of other vehicles. The modified form of Equation 32 yields 
 

 2
2

1

( )
( ) ( ) ( )1( )

n

n n

U t T
a t U t T U t Tn nnx x

       
                           (34) 

 
where λ2  is a constant. Integration of Equation 34 yields an expression relating speed and density 
as follows: 
 

 log f
j e

s

U
D D

U
                                              (35) 
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where Dj is the jam density and is equal to the 1/λ2. It should be noted that Equation 35 has the 
following properties: 

 
When D = 0: Us = Uf 
When Us  0: D  

 
Therefore, the modified car-following equation satisfies one boundary condition at the expense 
of another. Edie, therefore terms equations having the form of Equation 33 as congested models, 
and equations having the form of Equation 35 as uncongested models. He further suggests that 
these models provide the basis for the development of more complex models. 
 
 
PROBABILISTIC DESCRIPTION OF TRAFFIC FLOW 
 
The theoretical techniques described previously have in some respects dealt with opposite ends 
of the traffic flow behavior spectrum. The car-following models described and kept track of 
individual car movements, while the fluid models described the movement of the total vehicle 
population. Specifically, these two models can be regarded as deterministic flow behavior 
models, one at the micro-level and the other at the macro-level. 

In many traffic engineering problems, however, an intermediate description of traffic, 
which preserves some of its discrete features and deals with probabilistic aspects of flow 
behavior, can be particularly useful. Typical applications are studies of intersection control, left-
turn storage areas, and other cases where engineer would like to estimate the traffic delay or 
queuing resulting from various control measures. A reasonably adequate intermediate description 
of traffic can be developed from the use of probability theory, statistics, and queuing theory. 

As an initial example, consider a stretch of road free of traffic-control devices and on 
which the volume of vehicles is very light. An observer at one point on the road might note that 
over a period of time vehicles pass without any regularity being apparent. Therefore flow may be 
described as random. That is, the number of vehicles arriving in any interval of time is 
independent of the number of vehicles that arrived during any previous time interval. Earlier it 
was noted that this assumption is made for the Possion’s distribution (as well as for gamma and 
exponential distributions). For Poisson-distributed arrival (n), the probability of exactly n 
vehicles arriving in any t-s interval, is given by 

 

 ( )
!

ne
p n

n


    for n = 0, 1, 2, ... ,                                    (36) 

where 
 

n! = n (n–1) (n–2) …     (2) (1), 
λ = V/T = mean rate of arrivals per unit time interval, 
µ = λt = average number of vehicles arriving in time t, and 
V = total volume of vehicles arriving during time T. 

 
The probability of no vehicles arriving in the interval t (that is, n = 0) is 
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0

(0)
0!

e
p e




   = te  for t  0 

 
If no vehicles arrive in time t, then there must have been a gap or time headway of at least t s. 
Thus the probability of a headway h being equal to or greater than t is  
 
  P (h  t) = te , for t 0                                             (37) 
 
and the probability of a headway being less than t is  
 

P (h < t) =1- te , for t 0 
 
Equation 37 is a continuous function because t can assume all values from zero to infinity. (This 
cumulative probability is termed the exponential distribution.) Since any volume of vehicles V 
will also have V gaps, the frequency of occurrence of a gap of size h in time T is given by 
 
 Freq (h  t) = tVe   for t  0                                        (38) 

Freq (h < t) = (1 )tV e   for t  0 
 
If, for example 705 vehicles pass in a period of 2,691 s, and if random arrivals are assumed, the 
probability and the number of various size gaps may be computed as follows:      
 

λ = 705/2,691 = 0.262 
P (h  t) = e-0.262t 

Freq (h  t) =705 e-0.262t 

 
Because the headway or gap distribution equation, Equation 37, is continuous, the probability of 
headway of exactly t s is zero. However, for an interval, such as the interval from t1 to t2, the 
probability would be 
 
 P (t2  > h  t1 ) = 1 2t te e     for t 0                                 (39)   
 
Thus, for an example with t1 and t2 equal to 2 and 3, respectively, 
 

P (3 > h 2) = 0.5921 – 0.4557 = 0.1364 
 
The analysis so far has been based on the assumption that arrivals for light traffic are randomly 
distributed over time. If this is the case, the Possion’s distribution can be used to predict vehicle 
arrivals and, in turn, the exponential distribution can be used to describe the headways. In order 
to test the hypothesis about random nature of light traffic, it is necessary to collect field data, to 
estimate the parameter value, and to analyze the empirical and theoretical data. Generally, 
various numerical or empirical studies have been conducted, which shows that for light traffic 
conditions, the Possion distribution can be used to approximately describe the flow. However, as 
the flow rate increases, Equation 37 becomes unacceptable, at least for the situations where 
statistical acceptance of order indicated is required. This conclusion only serves to confirm the 
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previous car-following results that relationships do exist between vehicles, particulary as the 
traffic density increases.      

Haight and others have suggested use of the gamma or Erlang probability function. This 
probability function may be written as 
 

1( ) ( )
( 1)!

k tf t t e
k

 
 


                       for   t  0                 (40) 

 
where k and λ are parameters of probability function and k is a positive integer. For Possion-
distributed events or arrivals, the gamma probability function may be used to represent the 
waiting time t until the kth arrival or event. That is, f(t) is equal to the probability of waiting time 
t until the kth arrival. The special case of the gamma probability function for k being to 1.0 is 
called the exponential probability function; it is: 
 

( ) tf t e                   for t  0                                   (41) 
 
where f(t) is equal to the probability of waiting time t until the first arrival or event.  
 
 
USE OF CELLULAR AUTOMATA 
 
Dhingra et al. (2004, 2005) contributed research work on traffic-flow modeling concentrated on 
various areas like midblock, intersections, and ramps, and many of the works were on 
homogeneous traffic conditions. In developing nations such as India, the traffic scenario is even 
more chaotic, as the element of heterogeneity is brought in by varying vehicular, human, road 
and environmental factors. Simulation has been established as a very vital tool for the traffic 
analyst, in getting to know more about the traffic flow and to verify the performance of control 
systems. Cellular automata, a new entrant to this area, introduced a concept of minimal 
modeling, against the complex modeling procedures being in use until then. It has proven to be 
computationally efficient in analyzing midblock traffic for homogeneous and heterogeneous 
conditions. The model is used to study the behavior of heterogeneous traffic such as lane 
changing, incident occurrence, and the effect of different composition of traffic. The study of 
cellular automata gives a new computationally efficient model for heterogeneous traffic. 
However, these models can handle only unidirectional traffic at midblock. Therefore, further 
study is required to explore the vehicular behavior in bidirectional traffic at midblock as well as 
intersection. 
 
 
CONCLUSION 
 
This paper essentially gives the gist of various theoretical approaches of traffic flow that describe 
the way the vehicles move over parts of the highway system. The various empirical studies 
relating to volume, density, and speed involving approaches such as Greenshields,’ Greenberg’s, 
and Guerin’s are presented. Macroscopic models such as hydrodynamic analogies including 
contributions from Lighthill and Whitham and Richards are highlighted. Car-following models 
consisting of treatment of traffic flow at microscale, involving intervehicle relationship 
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characteristics, and details of individual vehicles are shown here. The microscale treatment of 
traffic flow is inspired by General Motors approach which is generally associated with the work 
of researchers Herman et al. Apart from above deterministic approaches, an intermediate 
description of traffic, preserving some of its discrete features and dealing with probabilistic 
aspects of traffic behavior is explained at length.  
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ongestion modeling is a topic considered in traffic flow theory since Greenshields’ study of 
traffic capacity in 1934. Several levels of investigation deal with different categories: 

microscopic car-following dynamics, mesoscopic stochastic theories of car cluster formation 
(1,2) [for queuing description, see Wang et al. (3)], as well as macroscopic fluid-dynamical 
models study the characteristics of traffic states, given by speed, flow, and density, shown in the 
fundamental diagram. By this relationship, speed and flow can be represented as a function of 
density, usually as a steady-state dependence but also as function of time because traffic states 
change continuously. Distinguishing a collection of similar traffic states as phases, the 
phenomenon of phase transition from (nearly) free-flow to stop-and-go traffic is the emergence 
of a random fluctuation (e. g., of speed) developing into a vehicular congestion known as 
breakdown (4). 

Usually a traffic breakdown is defined as a certain amount of speed drop in a dense traffic 
situation. It always has a reason, but the reason is hard to analyze. To describe these dynamics 
successfully a probabilistic model is chosen where the unpredictable influences are summarized 
by a stochastic force creating vehicular platoons (called vehicular clusters) out of the metastable 
free flow. This spontaneous formation of a new traffic phase is modeled as a stochastic cluster 
emergence process (1, 2). A car cluster is a vehicular platoon larger than a predefined critical 
number of participating (or bounded) vehicles. Using this definition, the speed drop is translated 
into an overshot of the threshold given by the critical cluster size. 
 
 
TRAFFIC INVESTIGATIONS 
 
Figure 1 shows one particular time frame from a video observation done in 2003 in the NGSIM 
program (Next Generation Simulation program, http://ngsim.fhwa.dot.gov/). Cars were traced 
and their trajectories recorded in a data set. Data such as these can be used to create microscopic  

 

C 
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FIGURE 1  Original pictures of traffic observation in the NGSIM project. 

Red rectangles belong to tracing software (5). 
 
 
traffic models. To study the basic behavior of a certain model, it is necessary to simplify the 
boundary conditions. The first simplification is the one-lane model, which forbids overtaking 
maneuvers. The second simplification is periodic boundary conditions. Figure 2 shows the 
simplified model situation. 

Figures 3 and 4 are generated from GA400 ITS data in the whole year of 2003 from 
empirical observations at stations numbered 4001115 and 4005103 on the inflow direction to the 
Atlanta city in Georgia, United States. Station 4001115 is located on the basic highway segment 
with three lanes, while station 4005103 is set up on a one-lane on-ramp to GA400 south (inflow 
direction). The original data for each station is 20 s aggregated, when used to generate the 
fundamental diagrams, the original data were aggregated to 5 min. Because only time mean 
speed is available, it is used to calculate the density instead of space mean speed. From the two 
fundamental diagrams, the pattern on basic highway segment and on- off-ramp looks similar but 
has distinguishable features. 
 
 
 
 

 
 

FIGURE 2  Simplified street for theoretical traffic flow analysis 
(only one lane with periodical boundary conditions). 

 
 



Liebe, Mahnke, Kühne, and Wang 65 

 

 
 

FIGURE 3  Flow–density relationship plotted from  
1-year observations at Station 4001115. 

 
 
FORCES 
 
A physical picture of traffic can be achieved by defining forces between two cars and one car 
with the road. Figure 5 shows three kinds of forces in the one-lane model. 

When a driver is alone on the road, he will accelerate until he reaches a certain maximum 
velocity. This can be translated into an accelerating force FD driving the car exponentially to this 
maximum velocity. Most of the time a car is not alone on the street. So there must be an 
interaction between cars. 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

FIGURE 4  Flow–density relationship plotted from 
1-year observations at Station 4005103 (on–ramp). 
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FIGURE 5  Different forces in traffic model. Left: An empty road leads to acceleration 
until the maximum velocity is reached. Middle: A car in front leads to a repelling force and 
as a consequence to breaking. Right: A car behind a driver could also lead to some forces. 

 
 

This interaction can be described as a repelling force, FF, depending on the distance to the 
leading car. A similar force, FB, can describe the interaction to the car behind 
 

  

  .)(
1

)(

,)(
1

)(

,)(
1

)(

optmax

optmax

max

B
B

BB

F
F

FF

D
D

xvvxF

xvvxF

vvvF













 (2) 

 
Putting all interactions together determines a force F(ΔxB; ΔxF; v), acting on a certain car 
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If point-like cars and next-neighbor interactions are considered as described, the headways ΔxF 
and ΔxB are the distances of a certain car (i) to the car next to it in driving direction (i + 1) and to 
the directly following car (i – 1) 
 
  (5) 
  (6) 
 
Taking into account that the interaction with the following car is slightly weak, it can be 
neglected. Further on, the relationship can be made that τD = τF = τ if FF is considered to be in the 
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same range as FD. This leads to a final equation for the force used in the so-called optimal 
velocity model 
 

   ,)(
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),( maxoptmax vvxvvvxF 
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 (7) 

 
For the optimal velocity vopt a function is needed which becomes zero at small distances and the 
maximum velocity at big distances. The function, proposed in Mahnke et al (2), 
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fulfills these requirements. 
 
Fundamental Diagram 
 
If a homogeneous long-time regime with a density of ρhom = N/L is considered, the velocity of all 
cars will be vopt(N/L). This directly leads to the fundamental diagram (see Figure 6 for 
dimensionless plot) flux over density (j = ρv over ρ). The nonlinear function represents the 
homogeneous situation. The linear functions represent heterogeneous situations after a 
breakdown. 

Based on the NGSIM data, a fundamental diagram can be drawn (see Figure 7). If the 
dimensionless theoretical plot (Figure 6) is compared with the one from the data, a mismatch in 
small density region can be seen. The data indicate a linear relationship between the density and 
the flux. The model is in this region not linear. This is because of the density dependence of the 
optimal velocity in the small density region. The congested phase is represented quite well. The 
linear behavior found in the data also exists in the model after the breakdown. 

The data diagram is widely scattered, which is a hint to the probabilistic character of 
traffic flow. But also the measuring process leads to some scattering because the number of cars 
is always a finite number and the length of the road segment is constant. When a car leaves the 
 
 

 
FIGURE 6  Fundamental diagrams for parameter values b = 0.9, b = 1.0 and b = 1.1. 

(the function with the smallest negative envelope belongs to b = 0.9, 
and further reduction of b = τ/(vmaxD) would lead to accidents). 
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FIGURE 7  Fundamental diagram of real traffic data 
(linear fits of the two traffic regions are also shown). 

 
 
observed road, the number of cars is decreased by one and the effective length of the road 
increases by the length of the car. Both lead to a decrease of the density. The model could be 
extended by an additive noise term, ξ(t), to take the probabilistic behavior into account called 
Langevin equation 
 

 .)(det tF
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m   (9) 

 
Nevertheless it is hard to distinguish between the systematic noise due to the measuring process 
and the real noise in a traffic situation. The following description presents the noise-free model. 
 
Energy and Energy Flux 
 
The definition of forces allows the definition of energy and energy flux. In physics, the kinetic 
energy is defined as 
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The conservative force defines the potential energy, because the conservative force is the 
negative derivative of the potential energy with respect to the position 
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Because the energy of the system is now well defined, it is possible to investigate the energy flux 
Φ as the negative time derivative of the energy 
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  (13) 
  (14) 

 
The energy flux depends on the forces and the velocity on the own and the leading car. It can be 
split into two parts, an inflow and an outflow part 
 
  (15) 
  (16) 
 
Because there are always forces and velocities in the system, the two parts of the energy flow 
never become zero, although the sum is zero in the long-time regime. Only in the long-time 
regime is the energy in the system conserved. 
 
Phase Transition 
 
As was noted before, the homogeneous situation is not the only long-time solution of the system. 
Depending on the density, the homogeneous situation becomes unstable and a small perturbation 
leads to a phase separation. This is shown in Figure 8 at one specific density (6). The system 
starts in a (nearly) homogeneous situation without kinetic energy. After a short time of 
homogeneous flow, the energy of the system changes stepwise. A closer analysis shows that the 
jumps in the energy appear when regions of high density merge. If the cars are considered as 
particles, this would be called cluster formation and merging. This is interesting because there is 
not only one growing cluster; there are several clusters early in the system, but in the long-time 
result there is only one cluster left. When this last cluster is formed, the energy of the system is 
stable in time. 

Figure 9 shows the long-time result for the whole interesting density range. Four densities 
marked with dotted lines have a special significance. The two outer densities separate the regions 
where a cluster formation is possible (between the densities) or not (left and right from the 
densities). The two inner densities separate the region where a homogeneous long-time result is 
possible (left and right of the densities) and where only the cluster solution is stable (between 
them). 

A dimensionless description leads to only one parameter, b = τ/(vmaxD), which defines the 
behavior of the system depending on the density. Figure 10 shows the different phases of the 
system. That means it shows which stable long-time solution is possible at a certain density and a 
certain combination of the parameters D, τ, and vmax. 
 
 
CONCLUSION 
 
Once this concept is established the authors ask what external principle lies behind the cluster 
formation as phase transition from free-flow to congested traffic. The vehicular flow as an open 
nonequilibrium system has energy sources such as the carried gasoline and energy sinks such as 
road friction and air resistance. The paper presents investigations about the energy flow analysis 
and its relationship to phase transitions. Based on the stochastic model about dynamics of jam 
formation (2) similar to nucleation (see schematic, Figure 2 with two contributions only, called 
attachment and detachment rate), the paper addresses the connection of these rates of jam 
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formation to the energy concept, which finally leads to an energy change during traffic 
breakdown. 

Microscopic traffic models based on follow-the-leader behavior are strongly 
asymmetrically interacting many-particle systems. These well-known vehicular models include 
the fact that (1) the driver is mainly looking forward interacting with the lead vehicle and (2) the 
car travels on the road always with friction. Due to these realistic assumptions the moving car 
needs petrol for the engine to compensate dissipation by rolling friction (compare schematic 
Figure 11). Here we investigate the flux of mechanical energy to evaluate the energy balance out 
of the given nonlinear dynamical system of vehicular particles. 
 
 

 
 

FIGURE 8  Dense traffic simulation with 60 cars. In the first instance several small jams 
appear, which join until only one jam is left in the final regime.  

The merging of jams leads to an increase of the energy. 
The thin line is the potential energy. The thick line is the kinetic energy. 

 
 
 

 
 

FIGURE 9  Mean energy per car with b = 1.1. The vertical dotted lines indicate the critical 
headways which separate the different phases. The thermodynamic limit is shown. 
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FIGURE 10  Different phases of the optimal velocity model. Empty circles: Only 
homogeneous situation is possible. Empty squares: Only heterogeneous situation is 
possible. Filled squares: Depending on the initial condition the homogeneous or the 

heterogeneous situation is stable. Filled circles: Homogeneous situation is stable, 
heterogeneous situation immediately leads to accidents. Empty area: Homogeneous 

situation is unstable, heterogeneous situation immediately leads to accidents. 
 
 
 

 

 

 
 

FIGURE 11  The energy flux in the system. 
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Traffic flow is a dissipative system of driven or active particles (6). It means that the total 
energy E = Ekin + Epot is not conserved, but we have an energy balance equation 
 

 0
td

Ed
 (17) 

 
with the energy flux Φ following from the equations of motion and consisting of dissipation (due 
to friction) and energy input (due to burning of petrol). In the long-time limit, the many-car 
system tends to certain steady state. In the microscopic description it is either the fixed-point 
(free flow) or the limit cycle (stop-and-go traffic) in the phase space of velocities and headways 
depending on the overall car density and control parameters. The steady state is characterized by 
a certain energy value. 

In order to understand the traffic breakdown as transition from free-flow to congested 
traffic, we estimate the total energy per car at low and high densities and observe the energy of 
jam formation. 
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THE FUNDAMENTAL DIAGRAM: FROM THEORY TO PRACTICE 
 

A Stochastic Macroscopic Modeling Framework to  
Interpret the Fundamental Diagram 
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Modeling breakdown probabilities or phase transition probabilities is an important issue when assessing 
and predicting the reliability of traffic flow operations. Looking at empirical spatiotemporal patterns, 
these probabilities clearly are not only a function of the local prevailing traffic conditions (density, speed), 
but also of time and space. For instance, the probability that a start–stop wave occurs generally increases 
when moving upstream away from the bottleneck location.  

This contribution proposes a unifying stochastic modeling framework that allows us to model the 
dynamics of the breakdown or phase-transition probabilities in an intuitive manner using the kinematic 
wave model of Lighthill and Whitham (1) as a basis. Different researchers have considered the dynamic 
modeling of breakdown probabilities (2–6) commonly using (stochastic) queuing analysis and nucleation 
models; we refer to Kerner for a thorough discussion of these modeling approaches. In doing so, we 
propose using coupled set of partial differential equations describing the traffic dynamics and the 
dynamics of the phase-transition probabilities p(t,x). We argue that the proposed modeling framework 
can be considered as a straightforward generalization of the kinematic wave theory to three-phase theory. 

The main result is that we can reproduce the main characteristics of the breakdown probabilities 
and related traffic flow operations. This is illustrated by means of two examples: free flow to synchronized 
flow (F-S transition) and synchronized to jam (S-J transition). We show that the probability of an F-S 
transition increases away from the on-ramp in the direction of the flow; the probability of an S-J 
transition increases as we move upstream in the synchronized flow area. 
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THE FUNDAMENTAL DIAGRAM: FROM THEORY TO PRACTICE 
 

Analysis of LWR Model with Fundamental Diagram  
Subject to Uncertainty 
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The LWR model is of interest because it can successfully reproduce some essential features of traffic flow, 
such as the formation and propagation of various waves. Recently, however, the disadvantageous aspects 
of the traditional LWR model are attracting more and more attention. Many researchers have made great 
effort to develop new models based on the LWR model, such that some prominent nonlinear 
characteristics of traffic flow, such as platoon diffusion, capacity drop, hysteresis, and spontaneous onset 
of congestion are captured. In this paper, the authors investigate the LWR model from an uncertainty 
perspective. Rather than developing a new explanatory model, they attempt to analyze how reliable the 
LWR model prediction will be if the fundamental diagram (FD) used is not specified accurately. Their 
work reflects the current debate on the nature of the FD. To be specific, the authors postulate a form of 
the flux function driven by random free-flow speed, which accommodates the scattering feature observed 
in the speed–density plot. The authors show the properties of the LWR model with the new flux. A third-
order essentially nonoscillatory finite difference algorithm is devised to solve the model. An approach to 
evaluate the predictability of traffic disturbance propagation with this model is presented. The authors 
interpret the results and conclude that if the FD cannot be undoubtedly specified, the LWR model will 
deteriorate and only make a reasonable prediction in relatively short time scale.  

 
 
INTRODUCTION 
 
Background 
 

he LWR model (1, 2), as the simplest kinetic wave (KW) model, is central in many 
investigations associated with traffic dynamics and control. This is probably because some 

essential features of traffic flow, such as wave formation and propagation, can be qualitatively 
well reproduced with the LWR model. The reader is referred to works by Daganzo and Zhang (3, 
4), and the references therein for full discussion of this model and its variations. 

At the same time, the deficiencies of the LWR model are well known. For example, the 
LWR model fails to generate capacity drop, hysteresis, relaxation, platoon diffusion, or 
spontaneous congestion. The existence of these traits has been confirmed in many field 
observations. In the LWR model, mass (i.e., the vehicles) conservation always holds true 
provided that no sinks and sources are involved. Thus to remedy the problem, one may either 
follow the rationale of hydrodynamics and add momentum conservation type equations, or 
question the initial assumptions regarding the fundamental diagram (FD), i.e., the smoothness 
and concavity, and propose other forms of models. These two strategies are, in spirit, consistent 

T 
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with the discussions by Zhang (4), where they are named “higher-order” and “lower-order” 
extensions of LWR model, respectively.  

Of the two strategies, the former seems much more debatable. Daganzo (3) describes the 
logical flaws in the argument of deriving high-order continuum models, and he shows that 
negative flow and speed could be unreasonably generated (this means anisotropy property will 
be violated). Inconsistency inherent in such model in a statistical perspective is also 
demonstrated by Heidemann (5). Zhang (4) holds that the two strategies are very close in nature, 
regarding the anisotropy issue as well as necessity to introduce behavioral laws, and he finds that 
the models investigated therein can all be reduced to a KW model endowed with an appropriate 
“effective fundamental diagram.” Moreover, the plots of speed-concentration or flow-
concentration usually exhibit structured randomness/scatterings, especially around congestion 
region. These observations, though not necessarily conflicting the initial assumption of the FD, 
are quite common and make thorough analysis possible. Therefore, it seems to be at least a good 
starting point to follow the latter strategy and see what may happen.  

Different interpretations of the scattering have lead to many new models, either 
explaining this effect itself or incorporating this effect to obtain traffic flow models with new 
features. On one hand, Castillo and Benitez (6) and Cassidy (7) demonstrate that well-defined 
and reproducible relations of traffic variables, such as flow-occupancy, can be obtained only if 
the stationary traffic data are used. This implies the scattering is due to the existence of transient 
states. Zhang (4) shows, at the price of lowering data resolution, a well-behaved FD can also be 
constructed from locally smoothed transient traffic data. On the other hand, the hysteresis 
phenomenon has been well known (8, 9). This indicates speed-concentration curve should 
consist of hysteresis loops rather than a single curve. Meanwhile, it is noted that Newell's 
extension of the FD (10) and the reversed-  shaped FD have been in existence for a long time. 
Nonetheless, the FD with structured variability still seems to be a puzzling issue in recent years 
and continues triggering discussions in different dimensions. Treiber and Helbing (11) show that 
conventional measurement methods with the delay of driving behavior may result in the 
scattering of flow–density data in synchronized congested traffic. Zhang and Kim (12, 13) utilize 
car-following models and explain the occurrence of capacity drop and hysteresis with one 
variable of gap time. Wong and Wong (14) and Ngoduy and Liu (15) attribute nonlinear traffic 
phenomena such as hysteresis, capacity drop, and dispersion of traffic platoon to the distribution 
of heterogeneous drivers and they formulate this idea into multiclass continuum traffic models. 
Kerner et al. (16–18) criticize the FD approach, arguing that this approach fails to produce the 
spatial-temporal features of congestion correctly. The concept of synchronized flow is introduced 
and the three-phase traffic flow theory is developed. This list of works is not intended to be 
complete in any sense. One fact is evident: the concept of the FD, though seemingly basic, is 
hardly unequivocal since its birth. Many interesting findings regarding traffic flow are initiated 
with the fresh insight into the FD. 

The aim of this paper, rather than resolve those existing controversies with FDs, is to 
investigate the potential influences brought by such ambiguity. To fulfill this end, we analyze the 
possible sources of randomness with the FD first, and then following the methodology of 
uncertainty analysis, develop a numerical procedure to evaluate how the randomness affects the 
faithfulness of the LWR model. Though not attempting to be explanatory, our study essentially 
unveils the robustness of LWR model to the imperfect specification of the FDs. Knowledge of 
this hopefully prompts further understanding of traffic flow features. 
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Paper Organization 
 
The remainder of this paper is organized as follows. First, a brief account for uncertainty analysis 
is presented and the source of randomness associated with the speed–density plot is 
differentiated. In this context, the authors discuss the extension of the FD from a single curve to 
random function, which accommodates a distribution of flow for any given density value. Then a 
specific extension is proposed that assumes that the specification of free flow is subject to 
uncertainty. Reasons and implication of introducing such assumption are detailed in a 
perspective of interpolation. Based on the proposed random FD, the authors conduct a numerical 
study. The model to be solved is the LWR with a random FD, and an essentially nonoscillatory 
(ENO) finite difference scheme is devised to fulfill the purpose. Subsequently, an example is 
designed with local jam–vacuum initial data that attempts to find how predictable the 
propagations of these local disturbances are with the previously discussed uncertain setting. 
Finally, the authors briefly summarize the paper and show the gaps that were found. 
 
 
UNCERTAINTY ANALYSIS: THE LWR MODEL IN STOCHASTIC SETTING 
 
In system modeling literature, the uncertainty is commonly understood as the deviation from the 
unachievable ideal knowledge of the relevant system. Roughly speaking, the uncertainty analysis 
is to model the uncertainty with a system and understand the related influences. Risk and 
reliability assessment are among the most significant examples of uncertainty analysis, and find 
their applications in hydrology, structure engineering and economics, etc. The uncertainty 
analysis in the general context of conservation laws has been reported in literature for two 
decades. Many of them are in the spirit of randomizing the flux function, either spatially or 
temporally. For example, Holden and Risebro (19) and Holden (20) discuss the expectation and 
convergence of a stochastic Buckley-Leverett equation. Wehr and Xin (21) analyze the large-
time property of Burger’s equation. More recently, Bale et al. presented a general solution 
approach, without directly addressing the issue of randomness, for the conservation equation 
with flux function admitting spatial variation (22). All of them have focused on the spatial 
variability of the flux function. In the traffic field, Jou and Lo considered a nonlinear 
macroscopic traffic flow equation perturbed by a Brownian motion (23). Before unfolding our 
investigation, empirical evidence is presented. For any empirical speed–density relation, the 
mapping from density to speed is always multi-valued after rounding off the density data. This 
enables us to calculate the mean and standard deviation of the speed indexed by density. In 
Figure 1 the mean and standard deviation of the speed versus density at one station from GA-400 
ITS data set (which are collected by virtual loop detectors on freeway GA-400) are shown. In the 
plot, one can see that the standard deviation is comparable to the mean of speed in quite wide 
range, indicating the existence of non-ignorable variability in speed–density relation. Moreover, 
the shape of the standard deviation is somewhat interesting, exhibiting a peak around 50 veh/mi. 
Our investigation begins from these observations. The LWR model assumes that the speed–
density (v-k) relation is time independent, i.e., system equilibrium is already achieved (by 
equilibrium, we mean only transition between stationary traffic states is possible). The LWR 
model says that the density k(x,t) of traffic flow is the solution to the following equations: 
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  (1) 
 

 
 
 
The first equation is the conservation law with the assumption of smoothness of involved 

functions up to a certain order, the second equation is the fundamental relation which holds 
under the equilibrium assumption, and the last equation provides the initial state of the solution. 
Flow q=q(k)=kv(k) is known as the flux function of k, which depicts the dynamics of the 
concerned quantity, i.e., traffic flow density. To correctly incorporate the exhibited randomness 
into Equation 1, we first need to analyze the possible sources of randomness. We begin by 
categorizing the involved randomness in two classes. The first type of randomness is the 
uncertainty during data collection and processing, e.g., inaccurate reading and data round-off that 
is reflected in the initial data setting and scatter plot of the v-k relation. In this case, the collective 
small additive errors would altogether obey the normal distribution law, due to the central limit 
theorem; alternatively, if the errors are small and multiplicative, they jointly behave by the 
lognormal law. This type of randomness is statistical and relatively well known. The second type 
of randomness is due to the inherent system dynamics. Taking the transportation system for 
example, the drivers’ behaviors vary from one driver to another, thus the group is best described 
in distributional terms rather than deterministically. We claim that this randomness underlies the 
random v-k relation as aforementioned. An intuitive interpretation of Figure 1 would be in an 
analogous manner to that of Brownian Bridge. That is, taking the v as a random process indexed 
by k, at two points 0 and jam density kjam the knowledge of v is relatively complete since the 
constraints are imposed by definition of the two states. This explains the smaller variances at two 
ends as shown. Based on the above analysis, we argue that the second type of randomness is 
essential, since the first type can usually be controlled reasonably well, for example, through 
improving the measuring techniques.  Back to the problem of formulating the LWR model in a 
stochastic setting, we consider the second type randomness since it is dominant and inherent.  
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Most generally, to account for this randomness, we express traffic speed as a positive valued 
multivariate function,  
 
 RMRtxkvv tx  

 ),(:)),(,( ),(  (2) 
 
where   is an appropriately defined subset of sample space   (set of all such subsets is 
denoted as ),( txM  , a  -algebra defined on the sample space), the probability space equipped 
with measure txP , . This definition will lead to a stochastic flux function,  
 
 )),(,( txkkvkvqf   (3) 
 
Substituting the Formula 3 back into Equation 3, we obtain the stochastic formulation of the 
LWR as,  
 
 0)(  xt KVK  (4) 
 
Equation 4 in general admits a random field K as solution. Before attempting to obtain useful 
calculation results, it is desirable to justify the validity of this equation. The minimum 
requirement is that with trivial probability measure it is consistent with usual deterministic 
equation.  
 
 
FD DRIVEN BY RANDOM FREE-FLOW SPEED 
 
To make the analysis and computation tractable, we need restrict our focus to a specific form of 
Equation 1 in this paper. This is equivalent to treat a specific form of Equation 3. In particular, 
we assume that the stochastic flux function is independent of space and time. This assumption 
greatly simplifies the matter since each realization of f would be a function of one variable k 
only. This reduces to the deterministic case we usually deal with. To address the features 
observed in Figure 1, we find the following form plausible. We postulate that the randomness of 
f is due to the uncertainty of the free flow speed. First, the free-flow speed is written as 
 
 )( rskvv ff   (5) 
 
where fv  is a constant, and   represents the imperfect knowledge of actual fv , with )( rsk   
being a scaling coefficient. Adopting this scaling coefficient implicitly assumes 0E  and 

1)( Var . The reason of using a function of k as the scaling coefficient is as follows. If we 
adopt the v-k relation of,  
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then after substituting Equation 5 in, we obtain the v-k relation. 
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The meaning of )( rsk   is interpreted as follows. Letting s>0, then as k increases, the 
variance of the first term in the product of Equation 5 becomes larger. This reflects the common 
perception that the free flow speed is less informative for the inference of v(k) when density k 
increases, as in this case, the system state represented by (k,v) is moving away from the state 
(0,vf). Recall that speed–density relation can be regarded as a curve on k-v plane that interpolates 
two points (0,vf) and )0,( jk .   

While the speed–density relation depicted here has a lack of sound proof at microscopic 
level, it has three advantages. First, it is constructed in a heuristic manner as previously 
mentioned. Interpretation of such relation is quite intuitive. Second, the postulated v-k relation is 
consistent with the observation that a peak of standard deviation exists between 0 and kjam, which 
also takes a maximum value in this region. Third, this relation leads to an easy-to-sample random 
flux function, namely, a family of curves governed by single random parameter  . 
 
NUMERICAL STUDY   
 
Numerical Scheme 
 
In this paper we adopt the finite difference methods with an ENO reconstruction to obtain the 
numerical solution of Equation 1. Roughly speaking, the ENO method reconstructs the cell 
boundary values through adaptively utilizing the local stencil information. In particular, the 
stencil with the minimal non-smoothness measure is selected. With ENO, high order finite 
volume or finite difference methods are immediately available. The order of accuracy depends 
on the size of the adopted stencil. The effectiveness of this method to solve the conservation 
equations of traffic flow (i.e., the LWR model) has been examined (24, 25). For a detailed 
description of this method, the reader is referred to Shu (26) and its references. In summary, we 
devise the algorithm as follows to repeatedly generate random flux function and solve the 
corresponding LWR model. This algorithm consists of two parts, i.e., initialization and time 
marching. Detail is as follows: 
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Example 
 
To make the model more realistic, the four parameters in Equation 6 need to be estimated. In this 
paper, we adopt the values  05.0,1,1  s  and r=3 for the purpose of illustration. And the 
following are set: 60fv  and 200jamk . 

The free boundary conditions are imposed throughout the simulations in this section, i.e., 
0 xk  at the left and right boundaries of the computation region. We set 1dt  s, 1.0dx  

mi. 
We investigate the distributional properties of the solution of the proposed model, driven 

by the i.i.d. random sequence. In particular, the propagation of local disturbance on a one-lane 
freeway is studied. Here jam/vacuum is defined by significantly different values of local density 
compared with its neighborhood. We assume )3,3(~ Ui  for the aforementioned reason. 
The settings for the cases studied are below (see Table 1).  

The simulation results at t = 600 s are shown in Figure 2. It seems that the predictability 
of the output drops significantly when the initial randomness has a variance of one. We also list 
certain statistics of the solutions in Table 1. Two quantities, the maximum local fluctuation and 
its location, are particularly interesting. The former is defined as 
 
 }100|,50)(max{|*  ii xxkk  (7) 
 
and the latter is defined by 
 
 }100|,50)(max{|arg*  ii xxkx   (8) 
 
We also calculate the coefficient of variation (COV) using the values listed in Table 1 and take 
its reciprocal as the measure of predicting accuracy. It turned out that ** ,, kbka CovCov   and 

** ,, xbxa CovCov  . There are multiple implications from the above results. First, the LWR model 
is often used to predict the location of shock waves. Our example indicates that caution should 
 
 

TABLE 1  The Statistics of Numerical Solution Under Initial Condition a and b 
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FIGURE 2  Propagation of local disturbance with random flux function (t = 600 s, number 

of realizations = 20). The dotted line is initial data and solid lines are simulation results. 
 
 
be taken with such an application when uncertainty of the FD is present, because even with small 
randomness of the FD the final outputs (i.e., the density profile) may be distributed quite 
differently. Second, we observe that there is no trend of decay for the spread of model outputs as 
time passes. This confirms the general intuition that a model deteriorates when applied for a long 
time prediction. Third, quantitatively, the propagation of local vacuums seems more predictable 
than local jams, while the latter will be of more interest in application. To summarize, our 
observations are consistent with the common view point that the LWR model produces a 
qualitatively good prediction. We find that this statement is credible only if the specification of 
the FD is certain and a relatively short time scale is involved.   
 
 
CONCLUDING REMARKS 
 
In this paper, motivated by empirical observations from freeway traffic data and noticing the 
ongoing debate over the FD, we investigate the LWR model in a stochastic setting. In particular, 
we discuss the general concept of uncertainty and analyze the sources of randomness associated 
with the FD. A specific form of the stochastic flux function is postulated, which is driven by 
random free flow speeds. We provide the mathematical properties of the flux function that are 
essential for developing a flux splitting scheme. An ENO finite difference numerical scheme is 
devised and implemented to solve the proposed model. With a hypothetical example, we 
illustrate how the predictability of two types of local density disturbance travel can be evaluated. 
This example implies that that if FD cannot be undoubtedly specified, the LWR model will 
deteriorate and only make reasonable predictions in a relatively short time scale. The analysis 
framework in this article is hopefully extended to investigation of the general KW models.  We 
remark that the model parameters need to be estimated in order to achieve realistic simulation 
results, which is a gap left by the current work. Also, some assumptions are possibly relaxed in 
later study. In this sense, our work in this paper is illustrative in nature. The merit of this study is 
to initiate the investigations of influences of inherent randomness on traffic modeling. We expect 
our study will be further advanced with availability of data of finer resolution in the future.   
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THE FUNDAMENTAL DIAGRAM: FROM THEORY TO PRACTICE 
 

A Macroscopic Fundamental Diagram of Urban Traffic 
Recent Findings 

 
NIKOLAS GEROLIMINIS 

 
 

This paper presents recent findings from Nikolas Geroliminis and Carlos F. Daganzo (1–2). Various theories 
have been proposed to describe vehicular traffic movement in cities on an aggregate level. They fall short of 
creating a macroscopic model with variable inputs and outputs that could describe a rush hour dynamically. 
This paper presents recent findings showing that a macroscopic fundamental diagram (MFD) relating 
production (the product of average flow and network length) and accumulation (the product of average 
density and network length) exists for neighborhoods of cities in the order of 5 to 10 km2. These findings 
demonstrate that, conditional on accumulation, large networks behave predictably and independently of their 
origin–destination tables. The results are based on analysis using simulation of large-scale city networks and 
real data from urban metropolitan areas. The real experiment uses a combination of fixed detectors and 
floating vehicle probes as sensors. The analysis also reveals a fixed relation between the space-mean flows on 
the whole network and the trip completion rates, which dynamically measure accessibility. This work also 
demonstrates that the dynamics of the rush hour can be predicted quite accurately without the knowledge of 
disaggregated data. This MFD can be applied to develop perimeter control and other macroscopic control 
strategies (pricing, allocation of urban space, etc.) based on neighborhood accumulation and speeds and 
improve accessibility without the uncertainty inherent in today’s forecast-based approaches. 
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THE FUNDAMENTAL DIAGRAM: FROM THEORY TO PRACTICE 
 

Influence of Various Restrictions on Speed-Flow Models 
 

MARIAN TRACZ 
STANISŁAW GACA 

Krakow University of Technology 
 
 

The paper presents traffic speed models developed on the basis of numerous measurements. In studies of the 
speed–flow relationships the following research issues were analyzed:  
 

 impacts of the speed limit, traffic flow, traffic flow composition, and time of day on speed flow 
and 

 impacts of qualitative road and roadside features on free-flow speed (cross sections, road 
function, accessibility, intensity of development, and roadside pedestrian traffic). 
 
The research included road sections with numerous constraints of traffic freedom. Such sections comprise 
sections of roads through built-up areas (small communities and towns). The regression analyses, with use of 
generalized multiple regression, was the basic tool in investigations. Additionally, in analyzing data from 
speed measurements, the classic form of the logit function for a multiple-valued regression was applied. The 
analyses showed that even at general and posted speed limits the characteristic traffic flow–speed relations 
can be identified. The shape of these relations is characteristic for empirical results in which spread of 
recorded values is typical for randomness and impacts of local factors. Average speed in traffic flow depends 
not only on geometrical alignment of a road cross section but also on local factors as well as speed limits. 
Speed in free-flow traffic is significantly influenced by qualitative road and roadside characteristics. Most 
important of these factors are: type of cross section, intensity of roadside development, and accessibility of the 
road. 
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THE FUNDAMENTAL DIAGRAM: FROM THEORY TO PRACTICE 
 

Quality of Service Beyond the Traditional Fundamental Diagram 
 

ANJA ESTEL 
Ruhr University, Germany 

 
 

In the German Highway Capacity Manual (HBS) the design and operation analysis of freeway sections is 
based on the volume-to-capacity ratio, which is used as a substitute for the average travel speed. For 
undersaturated flow the travel time can indirectly be calculated from speed-flow diagrams given within 
the HBS. However, the applicability of speed-flow diagrams is restricted to demand values less than the 
capacity. A differentiation of oversaturated traffic conditions with a demand beyond the speed-flow 
diagram is not possible so far. The paper presents approaches for a division of Level of Service F (LOS F) 
into differentiated degrees (F1 to F4) and proposes corresponding calculation methods. For the estimation 
of travel times as a function of traffic demand, different traffic flow models and queuing equations are 
considered. Four standardized methods are described in the paper, differing in the performance measures 
used. In the first three methods, the peak hour is retained as the analysis interval. In contrast to these 
concepts, the latter evaluation is based on a 24-hour analysis. This more sophisticated concept allows the 
consideration of spatial as well as temporal effects. The methods are analyzed and compared in terms of 
their significance, their sensitivity and the availability of input data. Predominantly, the evaluation 
methods developed in this research can be applied for assessing the quality of service on congested 
facilities depending on traffic demand. In the scope of decision making, funds can be spent more 
efficiently.  

 
 

n the German HCM (HBS, FGSV 2005) the design and evaluation of freeway sections are 
made on the basis of the volume-to-capacity ratio as a substitute for the average travel speed 

and traffic density. For undersaturated flow [Level of Service (LOS) A–E] the most decisive 
criterion for users, the travel time, can be derived from speed-flow diagrams given within the 
HBS. Thus, the fundamental diagram is a practical instrument for evaluating the operation 
quality on freeway sections below saturation. Beside the Levels of Service A to E there is only 
one level “F” relating to oversaturated operating conditions. Various oversaturated situations 
cannot be differentiated so far.  

The obvious increase of traffic volume more often results in serious congestions. A 
considerable growth of daily congestion hours requires a differentiated evaluation of 
oversaturated operating. Hence, the aim is to divide Level of Service F into differentiated 
sections (F1 to F4) and to develop calculation methods for their determination. This will help in 
making decisions to eliminate worst bottlenecks first. Additionally it permits the quantification 
of improvement capabilities of the operation quality by implementing corridor control systems or 
temporary unblocking of shoulders.  

For such evaluations the estimation of travel times is needed as a function of traffic 
demand. Here the use of the fundamental diagram and speed-flow diagram are restricted for 
oversaturated flow conditions. The lower branch of the traffic flow model does not represent 
traffic demand but the possible flow during congestion. Moreover, the fundamental diagram 
reflects snapshots of traffic flow detached from time dependence and spatial propagation of 
traffic conditions. On this account there has been a search for calculation methods allowing 
evaluation beyond the speed-flow diagram. 

I 
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Already within the 1990s the need for a differentiated evaluation of congestion was 
recognized in the United States. Various concepts were elaborated and published. Within this 
scope May (1996, 1997) recommended a differentiation into three congestion levels, F1 to F3, 
using a combination of the performance measures saturation and the duration of the congestion. 
An alternative concept exceeds the evaluation of the peak hour by evaluating the quality of 
service over a whole day. Cameron (1996) recommended the assessment of each hour of a day 
using the methods for undersaturated flow. The oversaturated operating conditions are divided 
into four congestion levels, F to I, and additional thresholds are defined. As a result the number 
of each congestion level over the whole day, like H1 G3 F7, can be obtained. Since such results 
cannot be compared easily with each other, Baumgaertner (1996) took up this concept and 
suggested a summarized evaluation of the whole day using a so-called congestion index. This 
value (0 for uncongested up to more than 40 for extremely congested) represents a weighted 
average of the 24 hourly levels of service. 

These concepts haven’t been included within the American HCM (TRB, 2000) so far. 
They will form a foundation for some of the concepts, developed within this paper. The 
following requirements should be fulfilled for a differentiated evaluation method: 
 

 Demand patterns for several hours should be considered, to assess congestion effects 
on following time periods and segments like spatial and temporal shifting of flow (demand) as 
well as the phenomenon of the capacity drop. 

 The method has to be feasible using only input data that are available in practice: 
these data are often rare and inaccurate.  

 It has to be user friendly but realistic: congestions should be described as realistically 
as possible without losing clarity. For this purpose, traffic flow models should be implemented. 

 It should be used without software solution (pen and paper methods). 
 
 
DEFINITION AND DESCRIPTION OF CONGESTION 
 
Definitions 
 
On highways segments congestion often occurs at so called bottlenecks which can be lane 
reductions, ramps, or topographical changes like steep gradients. There are various definitions 
for congestion. The most common definition is 

 
The occurrence of a traffic demand that exceeds the capacity of the highway 
segment during an interval of a specific duration. The demand cannot completely 
pass during this interval. 
 

Often, congestion is defined due to the effects caused by the congestion. For example these are 
the disturbance of flow (unstable flow resulting in stop-and-go traffic) as well as additional travel 
times (occurring during undersaturated flow conditions, increasing seriously during congestion). 
As another definition, exceeding upper or lower limit values of measures that describe operating 
conditions (given thresholds between LOS E and F in the manual) can be used. 

For the development of evaluation methods for congested traffic, significant performance 
measures are required to describe and compare the effects of different congested situations. A 
literature research shows that there are numerous performance measures, more or less 
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appropriate for different purposes. Comprehensive overviews over possible measures are given 
by Shaw (2003), Bertini (2005) as well as Schrank, Lomax (2001, 2005). Different dimensions 
of congestion should be considered.  

In order to integrate a performance measure in a method applicable for evaluation as well 
as for design, the measure has to be computable. Most of the performance measures, shown in 
Figure 1, can be calculated with the aid of traffic flow models and queuing solutions. The 
following performance measures, that seem appropriate for describing congestion effects, were 
chosen as a basis for evaluation methods: 
 

 Volume to capacity ratio, 
 Average delay, 
 Sum of delays within a specific analysis period, 
 Travel time or travel time index, and 
 The probability of breakdown. 

 
Macroscopic models for calculating those measures are described in the following paragraphs. 
 
Traffic Flow Models 
 
The correlation between traffic flow and density on a road segment is described within the 
fundamental diagram. In the speed-flow diagram there are two speed values belonging to each 
traffic flow value, one for fluent traffic and one for congested condition. 

This results in an upper and a lower branch, marking steady traffic flow conditions in 
each case. The transition between both branches occurs suddenly and not continuously. The 
average speed that can be realized during a traffic flow below capacity can be determined with a 
traffic flow model.  
 
 

propagation
Distance driven under 
congestion, queue length

duration
hours/day

extent
average delay

reliability
Daily variability of 
travel time

propagation
Distance driven under 
congestion, queue length

duration
hours/day

extent
average delay

reliability
Daily variability of 
travel time

 
 

FIGURE 1  Dimensions of congestion (Lomax et al., 1997). 
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Lighthill and Whitham (1955) developed a theory, describing traffic flow along free road 
segments in a hydrodynamic analogy to the flow of one-dimensional, compressible fluids. The 
motion of waves on a river is taken as an analogy to the movement of density waves in traffic 
flow. Thus, traffic flow can be described at every location. The basic idea of this traffic flow 
model is based on the analysis of small segments in the space–time area as well as the 
assumption that no vehicles get lost within those segments. Thus, the following differential 
equation can be applied (continuity equation): 
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Assuming stationary flow conditions, the well-known equation of state can additionally be 
formed to describe traffic flow: 

 
mvkq                                                                                                                               (2-a) ( 

 
where 
 

q   =  flow rate (veh/h), 
k    =  density (veh/km), and 

mv  = space mean speed (km/h). 
 
If two different traffic densities meet each other a density wave moves upstream. Its speed 
corresponds to the secant between both points within the fundamental diagram. It can be 
calculated by  
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where 
 

u     =  speed of the density wave (km/h), 
2,1q  =  flow rate in both flow conditions (veh/h), and 
2,1k  =  density in both flow conditions (veh/km). 

 
Beside the hydrodynamic models queuing models can be used for the description of traffic flow. 
The bottleneck is treated as the server. The theory permits the calculation of several performance 
measures like the average delay in the queue as well as the expected number of waiting vehicles. 

Brilon and Ponzlet (1995) developed a macroscopic traffic flow model describing the 
relation between traffic flow and average speed on highway segments operating below 
saturation, based on a simple M/M/1-queuing analogy. As long as the flow does not exceed the 
capacity, the average speed can be determined by 

 



90 Transportation Research Circular E-C149: 75 Years of the Fundamental Diagram for Traffic Flow Theory 
 

 

 qCL
v

v
qv






00

0

0

1
)(  

(3) 

 
where 

 
)(qv  =   average speed at a specific flow q (km/h), 

0v     =   parameter of the model (km/h), 

0L     =   parameter of the model (km), 

0C    =   parameter of the model (veh/h), and 
q      =   traffic volume (veh/h). 

 
Kimber and Hollis (1979) developed methods for time-dependent queuing calculations to 
describe fluent and congested traffic conditions at road junctions. The recommended equations 
given in the appendix are based on a probabilistic approximation of a transformed M/M/1 
queuing model. The advantage of this model consists in the consideration of the statistical 
character of traffic flow as well as of the time dependence of demand and capacity. 

Since the assumption of random arrivals and service at a give-way junction can be 
adopted for describing traffic flow at a freeway bottleneck, the equations may be used for 
calculation of growth and decay of the average queue length depending on patterns of demand 
and capacity on a highway segment. This allows an evaluation of the effects of congestion 
(queue length, delay, duration) beyond the peak hour. The necessary input data are demand as 
well as capacity, which both are available in practice.  
 
 
CONCEPTS FOR DIFFERENTIATED EVALUATION METHODS 
 
Preliminary Remarks 
 
Within a research project (Brilon and Estel, 2007) evaluation methods to assess the degree of 
congestion were developed. By combining performance measures and different time periods with 
specific evaluation methods, various potential concepts were elaborated for congested flow 
conditions. They differ concerning comprehensibility, complexity, data availability, and 
significance as well as user friendliness. By means of example evaluations data requirements and 
practicability were assessed. After an intensive discussion with German experts from science and 
practice, the following four concepts were selected upon which to base evaluation:  
 

 The measures of effectiveness within the current guideline (HCM), 
 The probability of breakdown,  
 A travel time index, and  
 The delay due to congestion.  

 
The developed methods can be used for all kinds of road traffic facilities. The following 
statements are concerning freeway segments. Procedures describing oversaturated conditions are 
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more complex, because congestion on the one hand affects facility sections up- and downstream 
from the bottleneck and on the other hand influences the flow conditions in subsequent time 
intervals. Thresholds between four levels of congestion can be proposed. Since their values have 
to be defined by the responsible road authorities as a political decision, no thresholds are given 
within this paper.  
 
Application of the Methods That Are Described in HBS for 
Undersaturated Traffic Flow Conditions  
 
The application of the calculation procedures described for undersaturated flow on oversaturated 
conditions allows a simple approximate evaluation for sections of freeways during the peak hour. 
Depending on the volume-to-capacity ratio higher than one a congestion Level F1 to F4 can be 
determined. For this purpose additional thresholds have to be determined to differ between 
congested situations of different severity.  

Some variations should be considered compared to the treatment of fluent traffic 
conditions. Since congestion influences the operation conditions in subsequent analysis periods 
as well as in adjacent highway segments the effects of congestion have to be evaluated. As long 
as an isolated peak hour is evaluated, the shift in demand is not considered. What must not be 
neglected are the capacity drop phenomenon as well as the limitation of volume during the peak 
hour for downstream highway segments. 

The capacity drop, defined as the difference between the capacities in fluent and 
congested traffic flow, is caused probably due to downstream bottlenecks, the adjustment of 
driver behavior at the beginning of a bottleneck, as well as the limited acceleration capabilities of 
different vehicles (Brilon et al., 2005). The value of capacity drop has been analyzed for short 
analysis periods as 1- to 5-minute-intervals so far. Banks (1990) as well as Hall and Agyemang-
Duah (1991) analyzed the capacity drop for different North American freeways. The measured 
capacity drop values averaged 3% to 6%. Ponzlet (1996) analyzed traffic flow on German 
freeways and determined a 6% drop for 5-minute flow rates and a 4% drop for 15-minute flow 
rates. Brilon and Zurlinden (2003) computed an average capacity drop of 24% for 5-minute flow 
rates, by comparing a stochastic capacity to flow rates during congested operation. A relationship 
between segment characteristics and the value of the capacity drop has not been found yet. 
However, since the existence of this phenomenon has doubtlessly been detected by several 
empirical studies, this effect should be considered within the evaluation of congested conditions 
to reproduce realistic congestion extends. As the average capacity in fluent traffic for 1-hour 
flow rates is considerably lower than for 5-minute flow rates, a 5% drop is recommended as 
input for the evaluation method.  

The determination of the operating performance has to be performed separately for each 
segment. Segments are parts of a road section beyond the sphere of intersections that differ in 
several segment characteristics (gradient, number of lanes, speed limits…). Since there are no 
ramps between two segments a constant traffic volume can be assumed. However, the capacity 
can vary considerably due to the segment characteristics. 

If the capacity of one of the segments is lower than the traffic volume, the number of 
vehicles that can pass this as well as the following segments during the peak hour is limited by 
this capacity and additionally restricted by the capacity drop. That is why the relevant traffic 
volume for each segment is determined by 
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where 

 
),( tiqact        =   actual flow within the peak hour in segment i (veh/h), 

),( tiqB         =   design flow during the peak hour (veh/h), 
),1( tiCact    =  capacity of the upstream segment i-1 within the peak hour (veh/h), and 
),1( tiqact    =   actual flow of the upstream segment i-1 within the peak hour (veh/h). 

 
In case of congestion the actual capacity considering the capacity drop has to be used for the 
calculation of the volume to capacity ratio: 
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where 
 

),( tiCact  =   actual capacity of the segment i during the peak hour (veh/h) 
),( tiC       =   capacity in fluent traffic of the segment i during the peak 

                              hour (veh/h), and 
Dropc        =   capacity drop of segment (cDrop=0,95) (-). 

 
The described effects are explained in Figure 2. 

The volume-to-capacity ratio than can be calculated to 
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where 

 
a           =  volume-to-capacity ratio (-), 

)(iqact    =  actual flow rate within the peak hour in segment i (veh/h), and  
)(iCact   =  actual capacity of the segment i during the peak hour (veh/h). 

 
Since in this method only the peak hour is considered, the effects can only be evaluated 
incompletely. 
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FIGURE 2  Effects on flow and capacity due to 

congestion on subsequent freeway segments. 
 
 
Evaluation Based on the Probability of Breakdown  
 
This evaluation method seems to represent another appropriate approach for a differentiated 
evaluation of traffic quality on freeways. It does not focus the effects in case of an oversaturated 
condition. Instead, the substantial question of this assessment is at which probability an 
oversaturated condition will occur at all. The question of whether or not congestion will occur is 
particularly important for the quality of service on freeways sections. Because of the capacity 
drop, oversaturated conditions dissipate rather slowly. At the same time a large total delay results 
from the high travel demand on freeways. Therefore a prevention of oversaturated conditions is 
essential.  

The criterion of breakdown probability is based on the fundamental idea of a stochastic 
capacity. Instead of the assumption of capacity being a constant value, a distribution of varying 
capacities can be observed on freeway sections by detecting traffic breakdowns at different flow 
rates (Elefteriadou et al., 1995; Ponzlet, 1996; Minderhoud et al., 1997; Persaud et al., 1988; 
Kuehne and Anstett, 1999; Lorenz and Elefteriadou, 2000; and Okamura et al., 2000).  
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Defining the probability of a breakdown as the probability of reaching a specific capacity, 
the distribution function can be derived from empirical speed-flow relations by means of the 
product limit method (Brilon and Zurlinden, 2003, 2004; Regler, 2004; and Brilon et al. 2005, 
2006). The resulting distribution functions can be fitted to Weibull distributions by means of 
maximum likelihood estimation (Figure 3). The criterion for determining the level of congestion 
is the probability at that demand exceeds capacity and congestion occurs. Within the evaluation 
method the breakdown probability is determined depending on the traffic volume as well as on 
the proportion of heavy vehicles. Both input data are available in most cases. 

Since the distribution function of breakdown probability varies due to the segment 
characteristics, general design charts are prepared as a dimensioning or evaluation aid for the 
user. To provide such diagrams, empirically calculated distribution functions of freeway capacity 
have to be standardized and transformed into 1-hour-intervals. For this purpose, the probabilities 
for non-appearance of a single breakdown event within the 5-minute-intervals of the peak hour 
are multiplied. The probability that no breakdown will occur in any 5-minute-interval can be 
calculated as follows (Brilon et al., 2005): 
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where 
 

)( 60qpZ  =    breakdown probability relating to a 1-h volume q60 (-), 

iq           =    flow within a 5-minute interval i (veh/h), and 
a, b        =    parameter describing Weibull distribution. 

 
One can assume that the nonappearance of breakdowns in each of the 12 5-minute 

intervals is statistically independent of each other. The more important question for the 
transformation is how the traffic flow within the 5-minute intervals qi is distributed in relation to 
the average hourly volume q60. Constant flow rates as well as normal distributed flow rates may 
be assumed. 

If the traffic flow during the peak hour is assumed to be nearly constant (qi = const = q60), 
Equation 7 can be reduced to Equation 8: 
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where 
 

)( 60qpZ   =   breakdown probability relating to the volume q60 (-), 

60q           =   traffic volume during the peak hour (veh/h), 
a             =   a, 
b            =   ab 12/ , 
a             =   shape parameter (describing the variance of the Weibull distribution), and 
b              =   scale parameter of the Weibull distribution. 



Estel 95 

 

Such an assumption allows a simple, approximate calculation of the breakdown probability. In 
Figure 4 a result for )( 60qpZ  is shown as an example for a three-lane carriageway with less than 
2% gradient in urban areas. 

For freeway segments without variable speed-control system the average capacity value 
given in the manual HBS (FGSV, 2005) corresponds to a breakdown probability of 40% if 
constant traffic flow is assumed, i.e., a volume equal to capacity will cause a considerable 
breakdown in 40% of all cases. 

Geistefeldt (2007) analyzed the influence of the kind of distribution of traffic flow on the 
distribution function of capacity (i.e., mathematical form of 5-minute volumes fluctuating around 
the average 1-h volume). Here no significant differences could be determined between the 
assumption of a normal and a uniform distribution. Most decisive for the capacity distribution is 
the standard deviation. 

Analyzing 36 sections of two- and three-lane freeways average standard deviations of 
5.8% (three-lane) and 8% (two-lane) were obtained in the range of capacity. Due to this 
supposition there are 5-minute flow rates considerably higher than the average traffic volume q60. 
The probability of nonappearance of a breakdown in these intervals is much lower than under the 
assumption of constant traffic flow. As a consequence the resulting distribution functions are 
shifted in the direction of lower traffic flow.  

The determination of the distribution functions is based on Equation 7. For normal 
distributed qi this equation can only be solved numerically or by simulation. Within this research 
a Monte Carlo simulation was chosen. The resulting functions conform to the functions obtained  
by Geistefeldt who used a numerical approach.  
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FIGURE 3  Calculation of the distribution function of 
breakdown probability assuming normal distributed flow rates. 
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FIGURE 4 Breakdown probability assuming 
constant flow during the peak hour. 

 
 
As a consequence of the steep slope of the breakdown probability function in the range of larger 
saturation, this evaluation method reacts very sensitively on small changes of the input volume. 
Due to the skewness of the Weibull distribution function the evaluation is more sensitive to 
under- than overestimation. The extensive sensitivity has to be considered through the proposal 
of thresholds between the congestion levels. Due to this reason, the thresholds should not be 
defined linearly dependent on the breakdown probability.  
 
Evaluation Based on a Travel Time Index  
 
The application of the travel time index allows an evaluation based on travel time performance. 
This characteristic is particularly suitable to describe the performance of the traffic flow. The 
travel time varies depending on the quality of service. Thus, the use of the travel time reliability 
as a measure of performance is frequently suggested (Schrank, Lomax, 2001; Chen, 2003; Shaw, 
2003; and FHWA, 2006). As a component of the proposed measures a specific percentile of the 
empirical travel time data is used to express the reliability. Since such a percentile cannot be 
computed without measurement, it does not seem to be an appropriate measure of effectiveness 
within a standardized assessment method for both, design and evaluation. As an alternative a 
travel time index is suggested, which describes the ratio of an average travel time that can be 
observed during a specific quality of service and an acceptable travel time. The latter is the 
average travel time observed during 90% saturation. At this saturation the maximum efficiency 
of the transport facility is reached (Brilon, Zurlinden, 2003). For undersaturated flow conditions 
the travel time is described by the speed-flow diagram. For congested flow conditions the travel 
time can be calculated with a queuing model or on the basis of the kinematic wave theory. By 
generating an index, influences of segment characteristics as well as speed limits can be 
considered. Thus, comparative evaluations of segments with different characteristics become 
possible. At the same time this concept permits a consistent, summarizing evaluation of 
sequences of different traffic facilities.  
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Evaluating the peak hour, the ratio of an average travel time, which can be achieved at a 
certain traffic volume, and an acceptable travel time is calculated and used as performance 
measure. The actual travel time consists of two components: the delay due to congestion as well 
as the reduced time to pass the segment. The total sum of travel times within the peak hour can 
approximately be calculated using an extended deterministic queuing model (Geistefeldt, 2005). 
In this case, the queue length at the end of the peak hour equals to 

 

(9) 

 
where 
 

),( tiN   =   queue length of segment i at the end of the peak hour (veh), 
),( tiqact   =   actual flow within the peak hour in segment i (veh/h), 
),( tiCact  =   actual capacity within the peak hour in segment i (veh/h), and 

T   =   duration of time interval (h). 
 
The delay due to congestion RZcong is equivalent to the area below the function N(i,t). The total 
sum of travel times than is equal to 
 















congestionduring),(),(

trafficfluentduring),(
)),((

),(
tiRZTtiq

v
L

Ttiq
tiqv

L

tiRZ
congact

crit

act
act  (10) 

 

 
where 
 
 ),( tiRZ  = total sum of travel times of segment i during  the peak hour (veh * h), 
 L  = length of the segment i (km), 
 )) ,(( tiqv act  = average speed depending on the actual flow qact (km/h), 
 ),( tiqact  = actual flow within the peak hour in segment i (veh/h), 
 T  = duration of time interval (h), 
 critv  = critical speed at which flow reaches capacity (q = C) (km/h), and 
 ),( tiRZ cong  = total sum of delays due to congestion (veh * h). 

 
The average travel time per vehicle is 
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where 
 

 ),( tirz  = average travel time per segment i and per vehicle (min/veh), 
 ),( tiRZ  = total sum of travel times of segment i during peak hour (veh * h), and 
 ),( tiqact  = actual flow within the peak hour in segment i (veh/h). 
 
Instead of this queuing model the more realistic approach of the kinematic wave model can be 
applied for the calculation of the actual average travel time per vehicle. In this case one needs the 
fundamental diagram of the bottleneck segment as well as of the upstream segment in which the 
queue will occur as a consequence of the congestion. From that fundamental diagram of the 
upstream segment the speeds and corresponding densities during congestion as well as fluent 
traffic can be extracted. It is more difficult to estimate the average speed during congestion. If 
unknown the use of vcong = 20 km/h is suggested. The second fundamental diagram for the 
segment downstream of the bottleneck reveals the traffic flow conditions as well as the reduced 
average capacity at the bottleneck. The queue length at the end of the interval t then is 
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where 
 
 congL  = queue length at the interval of peak hour (km), 
 )(tqact  = actual flow within the peak hour in segment i (veh/h), 
 actC  = actual capacity of the segment i during the peak hour (veh/h), 
 )(tk  = density in the undisturbed inflow (veh/km), 
 congk  = average density in the queue upstream the bottleneck (veh/km), and 
 t  = time (h). 

 
and the additional average delay due to congestion is 
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where 
 
 )(irz cong  = average travel time per segment i and per vehicle during peak hour (h/veh), 
 congL  = queue length at the interval of peak hour (km), 
 freev  = average speed during fluent flow upstream the bottleneck (km/h), and 
 congv  = average speed in the queue upstream the bottleneck (km/h). 
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For the determination of the travel times both segments downstream and upstream the bottleneck 
are considered. The actual travel time that is consumed to pass both segments can be obtained by 
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where  
 

 )(irzact  = average travel time per segment i and per vehicle during peak 
hour (h/veh), 

 congL  = queue length at the interval of peak hour (km), 
 upL  = length of the segment upstream the bottleneck (km), 
 downL  = length of the segment downstream the bottleneck (km), 
 congv  = average speed in the queue upstream the bottleneck (km/h), 

 ))(( tqvup  = average speed upstream the congestion depending on the flow rate 
(km/h), 

 )) (( tqvdown  = average speed downstream the bottleneck depending on the flow 
rate (km/h), and 

 )( congcrit Cqv   = critical speed downstream the bottleneck (km/h). 
 

This model reflects the consumed travel times more realistically than the theoretical 
consideration of stagnant waiting vehicles. Independent from the applied model the travel time 
index for the peak hour can be determined for each segment. To evaluate the whole freeway 
section, the actual and acceptable travel times of each segment can be summarized to obtain the 
ratio 
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where  
 

)(iTTI  = travel time index of segment i (-), 
)(irzact  = average travel time per segment i per vehicle during peak hour 

(min/veh), and 
 )(irz accept  = acceptable travel time per segment i per vehicle during peak hour 

(min/veh). 
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In the case of congestion, the throughput is limited by the capacity. As a consequence the 
flow passing the downstream segment is also restricted. Considering the quality in the upstream 
segments, the actual traffic flow equates to Equation 4. Since the capacity within congested flow 
is reduced by the capacity drop compared to fluent traffic, the capacity has to be modified 
depending on the existence of a queue regarding to Equation 5. 

Since the additional travel time due to congestion does not depend on the segment 
lengths, comparing the same congestion extent (same volume-to-capacity ratio) the ratio of 
actual and acceptable travel time becomes larger with decreasing segment length. To obtain a 
comparable evaluation criterion, the thresholds between the congestion levels have to be related 
to the segment length.  

Here it should be pointed out that this kind of performance measure may also be used as 
measure of effectiveness in the range of fluent traffic flow (LOS A to E) as an alternative to the 
volume-to-capacity ratio. 
 
Evaluation Based on Delay Due to Congestion  
 
Using the delay due to congestion as measure of effectiveness allows a comparative evaluation 
of different facilities as well as the determination of a quantitative structure for an economic 
evaluation. Since delay is a time dependent value one should look at more than one peak hour. 
Additionally, the examination of several hours allows the consideration of effects caused by the 
congestion, such as capacity drop and time shift in demand. Some freeway sections are 
congested twice a day. If this should be observed, it is necessary to evaluate the traffic quality for 
almost all 24 h of a day. 

There are different models to calculate the delays caused by congestion. Deterministic or 
stochastic queuing models as well as a hydrodynamic flow model can be used. Independent from 
the preferred calculation model, an adequate duration of the time intervals has to be chosen. To 
minimize the effort for the user, 1-h intervals are proposed. However this interval length tends to 
underestimate the duration of congestion since the highest traffic flow is lower due to the 
averaging. Using a spreadsheet program it is possible to heterodyne the hourly volumes with a 
minute-by-minute flow pattern whose averaged hourly means represent the input volumes. This 
procedure, developed by Brilon and Zurlinden (2003), is shown in Figure 5. 

The delay can be calculated for every interval. To obtain a comparable measure of 
effectiveness only delays due to congestion should be considered, since this measure is 
independent from the length of the segment. 

As already indicated, some effects of congestion have to be considered. For each segment 
as well as each interval it has to be analyzed, if a queue exists. Beside the volume within the 
current interval the existence of a queue depends on the operation quality in the bordering 
segments as well as on the existence of a queue within the previous interval. Thereby temporal 
shifts of demand can be considered. The effects on the spatial dimension are regarded through 
the segments, indicated by the letter i, while impacts on the temporal dimension are implemented 
by evaluating several intervals, indicated by the letter t. 

Depending on the quality of traffic flow in the upstream segments, the actual flow and 
capacity values (Equations 5 and 6) have to be used as input for the traffic flow model. The 
calculation of the queue length differs according to the chosen model. 
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FIGURE 5 Development of demand patterns  
in 1-min intervals based on 1-h intervals. 

 
Using the simple deterministic queuing model the number of queuing vehicles at the end 

of interval t is 
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where  
 

 ),( tiN  = queue length at the end of interval t on segment i (veh), 
 )1,( tiN  = queue length at the end of previous interval t-1 on segment i (veh), 
 ),( tiqact  = actual flow of the segment i within interval t (veh/h), 
 ),( tiCact  = capacity of the segment i within interval t (veh/h), and 
 T  = duration of the interval (h). 
 

Applying the cinematic wave model, the length of the queue is given by 
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where 
 

 ),( tiN  = queue length at the end of interval t on segment i (km), 
 )1,( tiN  = queue length at the end of previous interval t-1 on segment i (km), 
 )(tq  = flow rate (veh/h), 
 )(tk  = density (veh/km), and 
 t  = time (h). 
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A transformed stochastic approach for a queue length equation can be adopted from 
queuing problems at road junctions under the assumption of random arrival and service at the 
bottleneck. The equation developed by Kimber and Hollis (1978) for the queue length as a 
function of demand, capacity and time is given in the appendix. Since the resulting functions of 
queue length hardly differ, the simple deterministic approach in Equation 16 is suggested. 

The delay due to congestion again corresponds to the area below the function of queue 
length. It can be calculated by a numerical integration for each segment. All delays due to 
congestion are summarized to a total delay (for example over a whole day). Since this value is 
influenced notably by the demand pattern as well as the segment geometry, the absolute sum of 
delay does not seem appropriate as a comparable performance measure. With an increasing 
number of lanes the performance based on total delay becomes worse. In order to avoid this 
feature, the sum of delays has to be standardized to be comparable. There are some alternatives 
for this standardization. 

Since the congestion effects should be evaluated, it seems reasonable to refer the delay to 
all vehicles that are affected by the congestion. However, using this standardized delay as 
evaluation measure showed that referring delay to affected vehicles can result in inconsistencies 
in cases of high daily traffic flow (Figure 6a). For example this issue occurs, if a second minor 
congestion arises additionally to a huge one, or both congestions merge. While the total sum of 
delays only marginally increases, the number of affected vehicles considerably rises. As a result 
the standardized delay is reduced despite the worse extent of congestion. Thus, the value used for 
the standardization has to be independent from volume as well as the duration of congestion. 
Additionally, segment characteristics that cause a capacity reduction have to be considered to 
allow a comparing evaluation of varying freeway sections. These conditions can be kept by using 
the capacity at 0% HV as one possible reference value. In this case the measure of effectiveness 
is defined as 
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(18) 

 
where 
 

)(ivz cong  = average standardized delay due to congestion on segment i (min/veh), 


i

congVZ  = total sum of delay due to congestion on segment i over the whole day 

(veh*h), and 
%0SVC  = capacity of segment i assuming 0% heavy vehicle (veh/h). 

 
With this standardization also two congestion periods within 1 day can be evaluated 

consistently and comparably (Figure 6b). 
Depending on the standardized delay the level of service can be determined for every 

freeway segment. The evaluation based on a 24-h analysis offers the largest degree of 
information, since congestion effects are evaluated beyond the peak hour additionally. Beside the  
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FIGURE 6  Total delay and standardized average delay depending on the daily traffic 
(example: two-lane carriageway, 1% gradient, 9% heavy vehicles). 

 
 
resulting total standardized delay, which serves as service measure, the duration of congestions 
can be determined. This concept is mostly qualified to evaluate and compare oversaturated 
situations in a multidimensional way. Spatial as well as temporal effects of the congestion can be 
considered.  
 
 
PRACTICAL CONCLUSIONS AND RECOMMENDATIONS 
 
To conclude, it can be stated, that standardized methods were formulated which allow a 
differentiated evaluation of oversaturated flow conditions beyond a static consideration of traffic 
state. Although the fundamental diagram alone does not suffice for a differentiated evaluation of 
congestion, it builds the foundation for further approaches. Predominantly, the evaluation 
methods, developed within this research, can be applied for evaluating the quality of service on 
existing, congested facilities. In the scope of determining the priority for removals of 
bottlenecks, funds can be spent efficiently by the comparison of facilities and the quantification 
of improvement capabilities regarding operation performance.  

Generally, the evaluation methods for congestion are much more sensitive due to 
uncertainties within the input data than those for undersaturated traffic flow conditions. Thus, a 
high quality of input data is needed. The application of software for the evaluation of 
oversaturated conditions is recommended. In consideration of the fact that level-of-service 
analysis in practice is mostly accomplished by using software, the 24-h analysis method should 
be short-listed in spite of its higher complexity. The obtained additional information justifies the 
effort.  
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APPENDIX 
 

Queue Length at Road Junctions by Kimber and Hollis 
 
 
The time depending queue length is determined by 
 

 )1)1((4)1)1((5,0)( 2  gCxgCxgCxxFn   
 

where 
)1( g

gl



 

 
I. for 1g :   0)( ttFntL    

   where  
  00

00
0 1

1
LLgC

LL
t




  

II. for 1g :  
a) lL  00    0)( ttFntL     

   where  
  00

00
0 1

1
LLgC

LL
t




  

b) lL 0   ltL )(  
 

c) lLl 20     02)( ttFnltL    

   where   
    00

00
0 212

122
LlLlgC

LlLl
t




  

d) lL 20    
 























cc

c

ttttFnl

ttCt
L

LgL
tL

2

0
)1()( 0

0
0    

   where 
 

 















1

2

0

0

0

L
L

gC

Lltc  

where 
 
 C  = capacity and 
 g   = saturation. 
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MEASUREMENTS AND CHARACTERISTICS OF TRAFFIC FLOW 
 

Measuring Traffic Flow Using Real-Time Data 
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University College London, England 
 
 

The theory of traffic flow based upon speed, flow and density that vary only slowly in space and time is 
well established. However, matching field observations up to this theory and extracting estimates of 
quantities of interest is not always straightforward. Spatial density of traffic is not measured readily, and 
inductive loops are often used instead to measure the proportion    of a sampling period for which a 
vehicle is present, which is known as occupancy: the relationship between occupancy    and density  k  is  
k =  / L , where  L  is the mean effective length of a vehicle at the detector. According to this, correct 
interpretation of occupancy depends on the composition of the traffic that is measured, which will affect 
the value of L. Estimates of the capacity of a road are most useful when they are expressed in units that 
are independent of traffic composition. In this paper, we show how the value of  L  can be estimated from 
the 1-minute point observations of a kind that are available from the Highways Agency MIDAS data that 
are collected on the U.K. motorway network. The value of this quantity was found to vary substantially 
over time during the day, between lanes on the road, and according to the control status of the road thus 
reflecting variations in traffic composition, and variations in lane usage. The consequences of this are 
discussed for interpretation and use of traffic data of this kind in estimating the speed–density 
relationship, capacity and related properties of a road section. 

 
 

escriptions of traffic based upon the three quantities of speed (v), flow (q) and density (k) 
are well established, and analysis leads in the case of homogeneous traffic directly to the 

formula that has become known as the fundamental equation (1): 
 
 q = k v   (1) 
 
where 
 

q  =  flow, measured in vehicles per unit of time; 
 k  =  density, measured in vehicles per length of road; and 

v  =  space-mean speed, measured in length per unit time (2). 
 
This fundamental equation can be supplemented by adoption of a model relationship between 
speed and density of the form 
 
 v = f(k) (2) 
 
Whilst Equation 1 is an inescapable consequence of the definitions of the quantities that are 
involved, equations such as Equation 2 represent descriptive models of traffic behavior, which is 
based on an association between speed  v  and density  k . Traffic flow can be analyzed 
effectively following on from these relationships (2–5). 

D 
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Estimation of values of these quantities for use in models requires appropriate processing 
of measured data: in particular, traffic density cannot usually be measured conveniently but 
instead is estimated from other detector data that are readily available. Here, we consider how 
this can be undertaken and practical issues that arise in the process. 

Measurement of the spatial density k of traffic is not always practical, as this requires 
instantaneous observation of a substantial length of road. Instead, as Hall (6) has pointed out, it is 
more usually estimated from the proportion  of time for which a vehicle is present at a fixed 
detector, known as occupancy, which can be measured conveniently by repeated sampling of the 
state of the detector. The occupancy measured in this way provides a time-based estimate of the 
proportion of the road that is covered by vehicles. This is related to density k through the 
relationship 
 
  = k L  (2) 
 
where L is the mean effective length of a vehicle at the detector, representing the mean range of 
positions of a vehicle for which the detector will be occupied. According to this, proper 
interpretation of occupancy data from a detector requires knowledge of the mean effective 
vehicle length, which depends on the magnetic properties of vehicles, and the composition of 
traffic. 

In the present paper, we investigate the relationship between occupancy  and density k 
as revealed in traffic data from a U.K. motorway road. These will be required in order to 
interpret observations of occupancy for use in standard models of traffic flow. In particular, we 
develop different methods to estimate L and investigate their performance. This leads us to 
observations about typical values of L for each lane of the motorway in different traffic control 
conditions. 
 
 
DATA 
 
The data used for the present investigation are derived from the MIDAS (7) and associated 
Halogen data-logging systems. They represent measurements made between Junctions 10 and 16 
on the 188-km M25 London Orbital Motorway in England. In this region, the road has four 
running lanes in each direction and carries up to 85,000 vehicles per day in each direction. The 
running lanes are numbered consecutively from 1 at the nearside (shoulder) to 4 at the offside 
(median). The rules of the road are that overtaking vehicles should pass to the offside of those 
being overtaken, and vehicles should return to the available lane that is furthest to the nearside as 
soon as safely possible (8). Under most circumstances, heavy goods vehicles and those drawing 
trailers are prohibited from using the most offside lane of a motorway (i.e., Lane 4 in the present 
case). 

According to the traffic conditions, mandatory speed limits can be imposed at each of the 
national value of 70 mph, the reduced values of 60 mph and 50 mph that are used to manage 
flow under busy conditions, and the value of 40 mph that is used to slow traffic in advance of 
joining slow moving queues. The MIDAS system has arrays of detectors spaced at 
approximately 500-m intervals along the carriageway, with a separate detector in each lane. The 
data are aggregated over 1-minute intervals, each record containing 
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 flow  the number of vehicles crossing the detector during that minute, 
 speed  the mean speed in km/h of vehicles crossing the detector, and 
 occupancy the proportion of time that the detector is occupied. 
 
The data used in the present analysis represent all of the available records for Wednesday, May 
1, 2002, at location code 4757 on the clockwise (A) carriageway. Analysis of corresponding data 
from the same site on Wednesday, May 15, 2002, and from another Site 4747 between the same 
junctions on Wednesday, May 1, 2002 were found to yield similar results. 

The number of observations available for analysis is reported in Table 1. There were over 
1,000 minutes of the day during which the speed limit defaulted to the national one of 70 mph. 
By contrast, only 18 minutes of data were available for the 60-mph speed control condition. The 
number of available observations in each controls state varied substantially among lanes in the 
case of the 70-mph speed limit, with about half the number available in Lane 4 compared with 
Lane 1: this arises because in light traffic conditions such as occur late at night, the high 
availability of low-numbered lanes leads to Lane 4 being empty for extended periods of time. 

Preliminary analysis of Equations 1 and 2 leads to the relationship between the quotient 
q/v and occupancy : 
 
 q / v  =   / L  (3) 
 
In order to investigate this correspondence, values of q/v were plotted against those of    for 
each of the four running lanes. The results of this are given in Figure 1. According to Equation 3, 
the gradient of the chord from the origin to each observation corresponds to the reciprocal of the 
mean effective vehicle length L associated with that observation. The results in Figure 1 show 
that in each lane, there is a good relationship between these quantities while the occupancy is 
less than about 0.30, showing consistency in estimates of mean effective vehicle length in each 
lane. On the other hand, for occupancies above about 0.30, the relationship between q/v and   
becomes weak, showing substantial scatter. As can be seen from these plots, most of the 
observations of higher occupancy were made when the speed limit was set at 40 mph, indicating 
the presence of slow-moving queues. 
 
 
 

TABLE 1  Number of Observations Available for Analysis 
 

Speed Limit 
(mph) 

Lane 
1 2 3 4 

70 1,015 893 733 541 
60      18   18    18    18 
50      97   97    97    97 
40    239 239   240  241 
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FIGURE 1  Plots of flow divided by speed against occupancy 
(q / v  versus  ) for four lanes of the M25 motorway. 

 
 
METHOD 
 
Several methods are available to estimate values of the mean effective vehicle length L using 
speed, flow and occupancy data. These differ according to whether they provide estimates of L 
or instead they provide estimates of its reciprocal Γ = L-1, and according to whether they arise as 
direct calculations of mean values or incidentally from statistical analysis. The key distinction 
between estimates based upon L and those based upon Γ arises from the weight associated with 
observations that deviate above and below the estimate: those that deviate substantially above the 
estimate of L will correspond to smaller deviations in the reciprocal space, in which case they 
will be carry less influence. 

Here, we identify six distinct methods as follows, which are then tested using the M25 
data and compared using their standard errors and their stability between circumstances. 
 
 



Heydecker and Addison 113 

 

DIRECT ESTIMATION 
 
Equation 3 can be rearranged to give the expression  
 
 L = v  /q  (4) 
 
according to which values of average vehicle length for each minute can be calculated directly 

from the observations of v,  and q. The mean  
1

1 n

i
i

L L
n 

   of the resulting calculated values will 

yield an unbiased estimate of the mean vehicle length L. However, if the calculated value will be 
used to estimate traffic density k from observations of occupancy  through the equation 
 
  k = /L  (5) 
 
then a more appropriate approach will be to calculate the average value of observations of the 
required quantity 
 
 Γ = q/(v )  (6) 
 
In each of these cases, the standard error of estimation e  can be calculated from the sample 

estimate of the variance    22

1

1
n

i
i

S L L n


    of the data according to 2
e S n  , where n is the 

number of observations. 
The advantage of direct estimation in this way is that it provides a methodology that is 

simple, transparent and independent of any model formulation, although it does depend on 
choice of quantity as between L and Γ. 
 
 
REGRESSION ESTIMATES BASED ON OCCUPANCY 
 
An approach to estimate values of L and Γ can be founded in regression analysis, and the 
variance of estimation quantified accordingly. First, we consider each observation of occupancy 
 to consist of a systematic part corresponding to L  q/v together with an error  that is 
measured on the scale of occupancy. Thus we can express 
 

 
qL
v

     
 

 (7) 

 
from which we can estimate L by regressing the observed values of  on those of the quotient 
q/v : the fitted coefficient of q/v  then provides the required estimate of L. Using the method of 
ordinary least squares (OLS) will minimize the sum of the squares of errors , and hence lead to 
minimum variance of estimation. Use of standard regression methods (9) also provides standard 

errors of estimation σL calculated as 2
L e xxS   , where  22

1

n

xx i
i

S X X


  represents the sum 

of squared deviations of the explanatory variable  X = q/v from its mean.  
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As in the case of direct estimation, we may prefer a minimum variance estimate of Γ . 
This can be achieved by rearranging Equation 7 to 
 

 
q
v

     
 

 (8) 

 

where the error  is attached to observations of the quotient q/v rather than to the occupancy . 
In this case, Γ is estimated as the coefficient of  in the regression of q/v.   

The advantage of regression-based methods is that is provides a systematic approach to 
the estimation of the quantities of interest, L and Γ. The choice of errors  on the scale of 
occupancy  associates them with this macroscopic quantity and thus allows to some extent for 
deviations from model values that arise in partial observation of vehicles at the boundary of 
sample periods and when vehicles change lanes while they are passing over detectors. 
 
 
REGRESSION ESTIMATES BASED ON FLOW 
 
By rearranging Equation 3 between speed, flow and occupancy, we can express flow as 
 
 v L q  (9) 
 
where  is an error that is measured on the scale of flow. Thus L can be estimated as the 
coefficient of q in a regression of the product v . 

Finally, this expression can be rearranged so that Γ can be estimated as a coefficient of 
the product v  in the regression 
 
 q v     (10) 
 
These approaches share the advantage of regression-based methods with those described earlier. 
The choice in this case of errors  on the scale of flow q associates them with this quantity, 
which is observed in this context microscopically as a count of vehicles during the sampling 
period. This approach seems well suited to applications in which the focus will fall on estimates 
of flow and capacity. 
 
 
SUMMARY 
 
We have identified and presented six distinct methods for the estimation of the effective length L 
of vehicles at a detector for use in the interpretation of occupancy. Each approach can be 
formulated as estimation either of mean effective length L or of its reciprocal Γ. The direct 
methods embodied in Equations 4 and 6 use standard sampling approaches, but each relies on 
quantities derived from primary observations. The other approaches rely on regression analysis: 
methods 7 and 8 with errors on the scale of occupancy associated respectively with observations 
of occupancy and the quotient q/v, whilst methods 9 and 10 have errors on the scale of flow 
(hence weighting differently according to speed) associated respectively with observations of the 
product v   and flow.  
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RESULTS 
 
The six approaches described earlier to estimation of values of L for use in traffic flow modeling 
led to different estimates, with varying quality. In this section, we review and compare the results 
of these methods. In order to make comparisons between methods that estimate the length L 
explicitly and those that estimate its reciprocal Γ, we present the results in terms of length, 
calculating the estimate L =  Γ-1 with standard error L = Γ / Γ2. These calculations were 
undertaken separately for each combination of lane and speed control condition. 
 
 
DIRECT ESTIMATION 
 
The results of direct estimation of L according to Equation 4 and that arising from direct 
estimation of its reciprocal Γ  according to Equation 6 are presented in Table 2. 
 
 
REGRESSION ESTIMATION ON THE SCALE OF OCCUPANCY 
 
The results of regression estimation of L according to Equation 7 and that arising from regression 
estimation of its reciprocal Γ according to Equation 8 are presented in Table 3. 
 
 
REGRESSION ESTIMATION ON THE SCALE OF FLOW 
 
The results of regression estimation of L according to Equation 9 and that arising from regression 
estimation of its reciprocal Γ according to Equation 10 are presented in Table 4.  
 
 

TABLE 2  Results of Direct Estimation of L and Its Reciprocal Γ  
 

Lane 
Speed Limit 

(mph) 
Number of 

Observations 

Estimate of L from 
Equation 4 (m) 

Estimate of L as -1 
from Equation 6 (m) 

L Standard Error  L L Standard Error  L 
1 70 1,015 11.76 0.09 10.94 0.09 
 60      18 10.41 0.47   9.97 0.47 
 50      97   8.27 0.17   7.99 0.17 
 40    239 12.83 1.16   9.18 1.18 

2 70    893   6.90 0.06   6.51 0.06 
 60      18   8.63 0.36   8.39 0.35 
 50      97   8.69 0.13   8.52 0.13 
 40    239 11.24 0.54   9.60 0.55 

3 70    733   5.76 0.03   5.62 0.03 
 60      18   6.47 0.22   6.38 0.21 
 50      97   6.57 0.05   6.54 0.05 
 40    240   8.07 0.26   7.33 0.27 

4 70    541   5.81 0.03   5.72 0.03 
 60      18   5.81 0.16   5.71 0.16 
 50      97   6.29 0.04   6.27 0.04 
 40    241   7.39 0.20   6.87 0.20 
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TABLE 3  Results of Regression Estimation of L 
and Its Reciprocal Γ on the Scale of Occupancy 

 

Lane 
Speed Limit 

(mph) 
Number of 

Observations 

Estimate of L from 
Equation 7 (m) 

Estimate of L as -1  
from Equation 8 (m) 

L Standard Error  L L Standard Error  L 
1 70 1,015 11.98 0.38 12.45 0.48 
 60      18 10.27 1.79 10.88 1.93 
 50      97   7.62 0.29   7.79 0.23 
 40    239   9.91 0.13 12.96 0.19 
2 70    893   7.19 0.26   7.39 0.19 
 60      18   8.65 1.05   8.94 0.94 
 50      97   8.51 0.27   8.70 0.24 
 40    239 10.29 0.13 12.24 0.17 
3 70    733   6.10 0.21   6.13 0.13 
 60      18   6.53 0.82   6.64 0.55 
 50      97   6.56 0.25   6.60 0.16 
 40    240   7.82 0.10   8.87 0.10 
4 70    541   6.06 0.25   6.08 0.15 
 60      18   6.20 0.82   6.25 0.52 
 50      97   6.36 0.22   6.40 0.14 
 40    241   7.31 0.10   8.02 0.08 

 
 
 

TABLE 4  Results of Regression Estimation of L 
and Its Reciprocal Γ on the Scale of Flow 

 

Lane 
Speed Limit 

(mph) 
Number of 

Observations 

Estimate of L from 
Equation 9 (meters) 

Estimate of L as -1 from 
Equation 10 (meters) 

L Standard 
Error L

L Standard 
Error L 

1 70 1,015 11.87 0.08 12.34 0.13 
 60      18 10.31 0.43 10.61 0.56 
 50      97   7.71 0.10   7.91 0.09 
 40    239   8.30 0.07   9.02 0.09 
2 70    893   7.11 0.05   7.31 0.05 
 60      18   8.63 0.25   8.83 0.27 
 50      97   8.51 0.09   8.68 0.10 
 40    239   8.86 0.08   9.40 0.09 
3 70    733   6.08 0.04   6.11 0.03 
 60      18   6.50 0.19   6.57 0.15 
 50      97   6.54 0.08   6.57 0.06 
 40    240   6.95 0.07   7.20 0.06 
4 70    541   6.04 0.04   6.06 0.03 
 60      18   6.17 0.19   6.19 0.14 
 50      97   6.28 0.07   6.30 0.06 
 40    241   6.58 0.06   6.80 0.05 
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DISCUSSION OF RESULTS 
 
According to these results, the mean effective length of vehicles varies substantially between 
lanes and between speed control conditions. As well as this, differences arise in the estimates 
among the different approaches (estimation of L and of ) and different methods (direct, or 
regression analysis). The precision of the estimates varies as well, both among speed control 
conditions and among estimation approaches and methods. We discuss these aspects in turn. 

All of the results presented in this section show that the mean effective vehicle length 
varies among lanes of the motorway and according to the traffic control state. There is a 
consistent tendency under each traffic control condition for the mean effective vehicle length to 
be less in the higher numbered lanes (i.e., those farther to the offside). This reflects the tendency 
for long and heavy vehicles preferentially to use the nearside lanes.  

The effects of variations in speed limit condition differ among the lanes. In Lane 1, at the 
nearside shoulder, the mean effective vehicle length decreases as the speed limit is reduced from 
the national limit of 70 mph to 50 mph, with an increase in mean effective length when the speed 
limit is reduced from 50 mph to 40 mph. On the other hand, the mean effective length of vehicles 
in the other lanes tends to increase as the speed limit decreases, suggesting a migration of longer 
vehicles from lower to higher number lanes as the speed limit is reduced.  

Figure 2 shows the cumulative distribution of 1-minute observations of effective vehicle 
lengths calculated for Lane 1 under different speed control conditions. This shows a substantial 
proportion of measurements that correspond to long vehicles under the 40-mph speed control 
condition. Figure 3 shows that the distribution of effective vehicles lengths under the national 
speed limit of 70 mph is almost identical between Lanes 3 and 4, but varies among the other 
lanes. However, the distribution of effective vehicle lengths seems to be influenced by some 
artifacts because the maximum permitted physical length of an articulated truck on U.K. roads 
without special permission is 16.5 meters, which corresponds only to the 85th percentile of the 
distribution in Lane 1 under 40-mph control conditions. 

The different approaches to estimation—either as direct estimation of L or as its 
reciprocal —lead to different values. In the case of direct estimation, the results given in Table 
2 show that estimation of L leads to greater values than does estimation through the reciprocal. 

By contrast, when regression methods are adopted, estimation of L as opposed to its 
reciprocal  leads to smaller values. 

Comparison of the results of the three different methods (direct estimation and the two 
regression formulations) shows that the estimates of L vary substantially among them. Notable 
differences arise under 40-mph control conditions: the direct method 4 leads consistently to in 
estimates of L  that are larger than those of the other methods (by up to 2 to 3 meters), whilst the 
regression method 8 with errors on the scale of occupancy leads consistently to estimates of L 
that are larger than those of the other methods. 

The standard errors of the estimates shows that the mean effective vehicle length L  can 
be estimated with greater precision under the national (70 mph) and 50-mph speed limit 
conditions than under other conditions. In the case of the 60-mph speed limit condition, 
relatively few observations were available so the estimated variation was not reduced 
substantially due to the sample size. However, despite the substantial sample size of 239 or 
greater for the 40-mph speed limit condition, the inherent variability in traffic under this  
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FIGURE 2  Distribution of effective length of vehicles in  
Lane 1 according to speed control condition. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3  Distribution of effective length of vehicles 
under national speed limit according to lane. 
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condition led to large standard errors in direct estimation, especially in Lane 1. This seems to be 
due to the presence of a few observations with large values of L. The standard errors for 
estimates of L resulting from each of the regressions with errors on the scale of flow that are 
presented in Table 4 were generally small, and in most cases less than those of the other 
methods. 
 
 
CONCLUSIONS 
 
Measurement of detector occupancy as a proxy for traffic density has substantial currency, and 
confers substantial practical advantages of cost and convenience. In order to estimate traffic 
density from observations of detector occupancy, an estimate of mean effective vehicle length L 
is required. The analysis presented here shows that the value of L varies substantially among 
lanes and among traffic control conditions, and that there is no unique method to estimate it. 
Because this quantity is generally used to estimate values of density k from observations of 
detector occupancy  using the relationship k = /L,estimates of the reciprocal  = L-1  are of 
interest as opposed to those of  L itself. 

The present research has considered six different approaches to the estimation of  L , 
including two direct ones and four regression ones. From the point of view of consistency of 
estimates and precision of the values, the method preferred on the basis of the results presented 
here is the regression (10) of flow q on the product of speed and occupancy v , which has errors 
on the scale of flow and yields an estimate of  as a coefficient. This approach automatically 
weighs observations according to the prevailing speed, so that observations made in low-speed 
conditions under which detectors might not operate as intended have reduced influence.  

The finding that the mean effective vehicle length varies according to traffic conditions 
gives some cause for concern in the interpretation of traffic data. This results partly from the 
variation over time of the composition of traffic, and could arise because of heavy goods vehicle 
operators avoiding busy motorway roads at their busiest times, and partly from properties of the 
detector system. A consequence of this is that capacity of the road might be better described in 
terms of occupancy multiplied by speed than flow of vehicles, measured as density multiplied by 
speed. This will be the topic of further research. 
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Airborne Traffic Flow Data and Traffic Management 
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Imagery collected from airborne platforms has long been used to document the evolution of traffic 
congestion over time and across extended areas. The authors have documented such published research 
dating all the way back to 1927, and these activities continued in various periods of activity up through the 
late 1980s. Beginning in the late 1990s, many important ideas, new and old, on the use of airborne imagery 
for traffic analysis were investigated and tested in the field by a number of research teams around the 
world. Through detailed image processing techniques, this imagery can be used to automatically 
determine traffic flow measures. Prototype software tools have been developed to automatically estimate 
queue lengths at intersections, to estimate vehicle speeds, and to estimate vehicle flows and densities. 
Similar research has integrated traffic flow data from airborne imagery into formal data collection 
programs, where the data from the imagery is fused with ground detector data to enhance the estimates 
and forecasts of traffic flows. Some of these research teams have also “architectured” approaches to 
automatically, in real-time, georeference images from remote cameras for managing traffic. This is done 
by integrating the imagery with information on the height, location, and orientation of the camera. Using 
these camera data, in combination with a geographic representation (latitude–longitude) of the area to be 
studied, lead to an explicit way to georeference the road and vehicle locations. Absolute values of vehicle 
positions, speeds, accelerations, decelerations, and lane changes can be determined. There have been a 
wide variety of experiments in this area; these tests have extracted individual vehicle trajectories from 
digital video imagery. Uses of the obtained airborne traffic data are many: (a) off-line analyses can be 
used for transportation planning purposes, (b) online, real-time analyses can be used for traffic 
management, especially in areas where ground sensors are not available and for large-scale incidents, and 
(c) one can develop data sets of vehicle trajectories for use in the calibration–validation of micro-, meso-, 
and macroscopic traffic flow models. 

 
 

easuring traffic flow and traffic behavior has been a subject of much research and practical 
application over more than 80 years. Interestingly, aerial photogrammetry and other 

methods of using imagery as a means of measuring traffic flow and traffic behavior have been 
practiced throughout this history. This is due in part to the common need to visualize traffic 
conditions and the challenges of capturing the movement of vehicles both in time and in space. 

Airborne imagery has a number of major advantages over other forms of traffic 
measurement: 
 

 The sensor itself can move and, even motionless, can capture a broader spatial extent of 
vehicle movements than traditional sensors at designated points in the road network. 

 Because the sensor can move quickly from one area to another, or can move with the 
traffic flow, a single sensor can cover several locations. 

 The sensor itself is managed remotely, without the need to disrupt traffic to maintain and 
operate the sensor. In addition, the sensor generally can be operated without any major effect on 
driving behavior in the observed traffic. 

M
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 The imagery can provide a wide variety of data on traffic flow and traffic behavior. This 
can improve the cost-effectiveness of data collection. Also, if the imagery is stored, it can be re-
examined later for the same or other purposes. 
 
Perhaps without saying, the primary disadvantage of airborne imagery is its cost: the need for 
stable imagery, over long periods of time and over larger geographic areas, requires aircraft and 
sensor platforms that can be quite expensive. Moreover, because of both the cost and aircraft 
requirements, the temporal coverage can be relatively short, in comparison to continual (24-hour) 
measurements from other types of traffic sensors. 

Much can be said, however, for the possible integration of both airborne imagery and 
other more typical ground-based (or location-specific) traffic sensors, in achieving a more 
complete understanding of traffic flow. The combination of the persistence of measurement at a 
single location, with the broader spatial coverage provided by airborne imagery, can lead to a 
better understanding of both the spatial and temporal aspects of traffic flow and traffic behavior. 
Such integration of sensor data also illustrates the unique value added through the data from 
airborne imagery. 

This paper provides a brief review of some of the major historical developments in the 
application of airborne imagery for traffic flow measurement. It also reviews some of the major 
recent developments, through the use of automated image processing techniques. To this end, the 
paper provides a review of data collection methods and applications in macroscopic traffic 
behavior, examining flows, speeds, densities, queuing, and related measures. It also provides a 
review of applications of airborne imagery for microscopic traffic flow analysis, specifically in 
the trajectories of individual vehicles. Finally, some thoughts on the future of airborne imagery 
in traffic data collection are provided in the last section. 
 
 
MACROSCOPIC TRAFFIC BEHAVIOR 
 
One of the earliest studies in which aerial photography was used to understand traffic flow is 
described about 80 years ago (Johnson, 1928). The study examined traffic along the one existing 
road between Baltimore, Md. and Washington, D.C. It included 127 aerial photographs, 
overlapping by about 50%, taken by a single airplane flying about 3,600 ft above ground. 
Curiously, the study also included traffic counts taken at four stations along the road, and six 
vehicles with a white sheet on the top were placed in the traffic stream (using what we now call 
the “floating car” technique) so as to be clearly visible in the aerial photographs. Average speeds 
of 20 to 30 mph were recorded by these floating cars. Johnson also used the imagery to 
determine the “density” of vehicles, taken as the number of vehicles observed in every quarter 
mile along the roadway. From these data, observations of vehicle clearance (space between 
vehicles, C, in feet) and velocity (V, in mph) were plotted on a log-log graph, shown in Figure 
1a. The relationship was estimated to be 
 

1.30.5C V   
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In this way, it appears that Johnson actually was hypothesizing a relationship between vehicle 
density and speed. He further noted that the average flow rate, assuming a 15-ft vehicle length, is 
given by 
 

1.3
5280 5280

15 0.5 15
V VN

C V
 

 
  

 

 
where N is the flow rate. In this case, Johnson was using the fundamental relationship of traffic 
flow. What results from this relationship is a very curious speed–flow curve, where flow 
increases almost directly with speed when speeds are low, but the flow levels off as speed gets 
higher (over 25 mph). This is shown in Figure 1b. 

Another set of studies examining the value of aerial photography for describing traffic 
behavior is given by none other than Greenshields (1947). He used a blimp flying at about 2,000 
ft above ground to record traffic movements through a motion picture camera, covering a field of 
view of about ½ mile in each direction (1-mile square). Additional tests with a camera taking 
images every 2 to 5 seconds were conducted, from both a helicopter and an airplane. He 
concluded that “[H]igh altitude haze, shadows of buildings, trees, and the movement of the blimp 
are difficulties which, it is believed, are overshadowed by the complete and accurate record of all 
that happens within the area studied” (p. 291) and, “It is felt that several hours of such 
observations will reveal more than days of less complete data. From this standpoint it could well 
be that aerial photographs will prove comparatively cheap” (p. 297). This paper clearly indicates 
that Greenshields himself had strong and positive opinions on the potential value of airborne 
imagery for traffic analysis. 
 
 

(a)             (b) 
 

FIGURE 1  Measures of (a) clearance versus speed, and 
(b) flow versus speed (Johnson, 1928). 
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A variety of studies since then have documented the use of aerial photography for 
macroscopic traffic analysis. Indeed, many of the more famous researchers in traffic flow theory 
have made extensive use of aerial photography, including Greenshields, Forbes (Forbes and 
Reiss, 1952), and May (Wagner and May, 1963). In the last paper, May introduces the “traffic 
density contour map,” shown in Figure 2, that illustrates the spatial and temporal nature of 
congestion, as measured directly through the density from the aerial photography. Other 
examples of macroscopic flow studies with airborne imagery include Rice (1963), Jordan (1963), 
Cyra (1971), and Makigami et al. (1985), among several others in the academic literature. 

To this day, much of the analysis of airborne imagery and aerial photographs has relied 
on manual analysis of the imagery. In addition to the previously mentioned studies, more 
comprehensive studies of traffic flows, densities, speeds, travel times, intersection delay, freeway 
congestion and level-of-service, origin–destination flows, and special event traffic management 
have been documented. Firms such as Skycomp (2008) make a full business out of the use of 
aerial photography for traffic measurement and analysis, for a variety of clients in the United 
States and Canada (e.g., MAG, 2000). A more extensive review of private sector involvement in 
the market for aerial photography is given in Murray (2002). 

In addition, there is a fairly extensive literature which documents the analytic methods for 
such manual analysis. A more technical treatment of the subject is given in Peleg et al. (1973); a 
more recent summary is given in Mirchandani et al. (2002), Angel and Hickman (2002b), and 
Angel et al. (2002, 2003). In addition, specific methods for freeway level of service, arterial 
travel times, and intersection analysis are given in Angel and Hickman (2002c), Angel and 
Hickman (2002a), and Angel and Hickman (2003), respectively. 

It is important to note here that most research and practical traffic studies have used 
fixed-wing airplanes, helicopters, or blimps as the means to carry personnel and photographic 
equipment, which in itself can be quite expensive. Only a few small studies to date have  

 

FIGURE 2  Traffic density contour map (Wagner and May, 1963). 



Hickman and Mirchandani 125 

 

examined the use of smaller, lightweight, low-cost unmanned aircraft systems (UASs, formerly 
unmanned aerial vehicles or UAVs) to record traffic imagery (e.g., Coifman et al., 2004 and 
Coifman et al., 2006). These studies have shown the potential use of UASs to collect data for 
freeway density measurement, queue measurement at intersections, origin–destination studies, 
and even parking lot utilization. 

Finally, one may observe that there has been relatively little automation of these analysis 
methods for macroscopic traffic analysis. Most researchers have focused instead on the 
automation of detection and tracking of individual vehicles (described in detail in the next 
section). Of course, automated methods for microscopic traffic analysis can also provide data, at 
an aggregate level, that can be used for such studies. As an example, however, Agrawal and 
Hickman (2002, 2003) describe an automated technique to estimate queue lengths at signalized 
intersections, using some common image processing methods. 
 
 
MICROSCOPIC TRAFFIC BEHAVIOR
 
At the simplest level, some research has examined the movement of individual vehicles, in the 
hopes of capturing some basic properties of traffic flows through the revealed behavior of 
specific vehicles. At present, airborne data collection provides one of only a couple proven 
methods of capturing such movements, as the data collection requires spatial and temporal 
persistence, and a relatively high sampling rate (up to 100% of vehicles) of vehicle movements 
on the ground. 

There are many common issues that arise with airborne imagery that need to be addressed in 
this case. Briefly, these challenges include the following: 
 

 Correspondence. Correspondence refers to the ability to identify one vehicle in an image 
as the same vehicle in a second, temporally and spatially separated, image. Depending on the 
frequency with which images are sampled, vehicles can remain stationary, or can move very 
short or very long distances, between images. The challenge is to find some method, manual or 
automated, that can match the same vehicle between these images. The use of different matching 
algorithms to determine vehicle speeds on a freeway, especially for on-line, real-time 
applications, is discussed by Chandnani and Mirchandani (2002). Another interesting study of 
the correspondence problem, using truck movements in and around a truck terminal, is described 
by O’Kelly et al. (2005). 

 Projection. The vehicles identified in the imagery must somehow be related to specific 
locations in the real world, so that their positions and movements can be correctly interpreted. 
This usually requires some way of controlling for the movement of the airborne platform relative 
to the fixed ground. It also requires some method to project the location of vehicles in the image 
to actual coordinates of the vehicle on a specific roadway, and even in a specific lane on that 
roadway. This latter step of projection will commonly require knowing the scale of the image, so 
as to project distances measured in the image (e.g., millimeters or pixels) into ground measures 
(e.g., meters). In addition, as one alternative, this may be completed through more specific 
measurements of locations on the ground where aerial reconnaissance is expected. A second 
method uses specific ground control points to register the imagery to the real-world coordinates, 
using fairly standard image transformation techniques. In yet other cases, detailed camera 
information (x, y, z, roll, pitch, yaw) can be used to project the captured image onto some 
topographic map, allowing direct interpretation of vehicle locations in the image. A final step in 
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projection involves relating the vehicle position to specific roadway characteristics. For example, 
it becomes necessary to capture not only the location of the vehicle on the ground, but also its 
position relative to the lanes on a given roadway. In automated techniques, this step may make 
use of a “road mask” or high-resolution map to connect the vehicles to specific lanes. 

 
In spite of these challenges, there remains a great need has been to establish traffic data at 

the microscopic level—at the point where the movements of specific vehicles, and hence the 
behavior of those vehicles’ drivers, can be revealed. Such data commonly refers to individual 
vehicle movements on a roadway, or in a specific lane of traffic. To represent these movements, 
a time-space diagram is also commonly used, indicating the position of the vehicle in the 
direction of travel in the lane of traffic versus the time at which the vehicle is seen at that 
position. The data from a time–space diagram can indicate vehicle speeds, accelerations, 
decelerations, lane changing, car-following behavior, and many other driver behaviors of 
interest. When microscopic data can be collected from fixed cameras (e.g., NGSIM, 2008), the 
spatial coverage tends to be somewhat limited at 0.25 to 1.0 mile, although the temporal 
coverage can be fairly rich, covering 30 to 60 minutes at a time. 

The original groundwork for such microscopic studies, using airborne traffic data, was 
completed at the Ohio State University in the late 1960s and early 1970s by Joseph Treiterer and 
colleagues (Treiterer and Taylor, 1966 and Treiterer, 1975). A helicopter was used to track 
vehicle movements on a roadway in Columbus, Ohio. Vehicle positions at various points in time 
were recorded through a high-resolution camera flying above the roadway in a helicopter. 
Ground control points were used to register (project) the images to specific coordinates in the 
real world, using a linear transformation of coordinates. Images were taken at a frequency of 
higher than one image per second, allowing fairly simple, but manually tedious, identification 
(correspondence) of the same vehicle in multiple images. An example of a resulting time–space 
diagram with individual vehicle trajectories is shown in Figure 3. Treiterer’s studies led to more 
extensive understanding of microscopic traffic behavior, and clearly serve as a benchmark in the 
analysis of traffic flow. 

Perhaps because of the cost of data collection and the challenge of data reduction from 
extensive sets of imagery, there was only limited work in this area until the late 1990s. In the 
mid-1980s, the U.S. Federal Highway Administration commissioned a study to generate 
microscopic traffic data for a number of freeway sections, using aerial photography from a fixed-
wing aircraft (Smith and Roskin, 1985). The images were digitized manually, but generated 
several large data sets for microscopic traffic analysis. 

Since then, a number of research groups around the world have experimented with 
automated methods to reduce vehicle trajectories from digital imagery, usually in the form of 
digital video. Video provides imagery at very high frequency (up to 30 frames per second) and, 
in many cases, at a high level of resolution with reasonable field of view (400 to 800 meters) in 
order to capture vehicle movements. 

Through the work of the National Consortium on Remote Sensing in Transportation–
Flows, the University of Arizona has been investigating the use of digital video taken from a 
helicopter to derive vehicle trajectories. This work was begun primarily through the work of 
Shastry (2002) and summarized by Shastry and Schowengerdt (2002). Their method relies 
heavily on existing digital image processing techniques. Processing the digital video, the 
individual frames are first registered to an original frame. Proceeding one frame at a time, 
consecutive images are then subtracted from each other. As long as vehicles are moving, small 
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frame-to-frame movements are then detected as blobs in the difference image; this directly 
solves the correspondence problem. The vehicle movements are projected into a relative world 
through a simple linear scaling technique, converting pixels to feet on the ground. In this case, 
however, the actual coordinates of the vehicles in the real world are only relative, but they do 
provide some sense of vehicle speeds, accelerations, and decelerations.  

Subsequent enhancements of this same image processing technique are described in 
Kadam (2005). Furthermore, the use of the technique to determine vehicle trajectories has been 
outlined by Hickman and Mirchandani (2006), and is summarized in Figure 4. The video image 
processing step involves registering the imagery to a single point of view, correcting for the 
movement of the helicopter. Vehicle detection and tracking involves identifying interesting 
features of appropriate dimension in the image, and finding the correspondence between features 
from one image to the next. Generation of vehicle trajectories then requires knowing how to 
project the image into relative or absolute ground coordinates, using the image scale (e.g., meters 
per pixel) and some knowledge of the roadway and lane positions. 

Over the same time, a team of researchers at the Technical University of Delft was 
developing a similar system (Hoogendoorn et al., 2003; Schreuder et al., 2003; Hoogendoorn and 
Schreuder, 2005; and Nejadasl et al., 2006). Their technique likewise uses digital video collected 
from a helicopter, with the objective of capturing microscopic traffic data. Their method differs 
from the Arizona approach in that it specifically uses an automated technique to generate and 
match ground control points in the imagery, in order to register the imagery. Vehicle detection is 
done by first generating a “background” image (the roadway without vehicle traffic), and 
vehicles are detected as differences from this reference image. Correspondence of vehicles from 
one image to the next is also achieved through a coarse matching algorithm, made easier since 
the imagery is taken at relatively high frequency. Finally, the conversion of vehicle coordinates 
in the image to vehicle coordinates in the real world appears to have been done manually, 
through specific lateral and longitudinal references on the roadway. More recent research by this 
same team has examined finer resolution of the vehicle trajectories through the use of a Kalman 
filtering technique (Hoogendoorn and Schreuder, 2005). 

Both the Arizona and the Delft researchers have been examining microscopic traffic 
characteristics from the perspective of off-line analysis. Another major research effort has 
examined on-line methods of microscopic traffic analysis, led by researchers at the German 
Aerospace Center (DLR, Deutsches Zentrum für Luft- und Raumfahrt), and published by Ernst 
et al. (2003), Hipp (2006), Kühne et al. (2007), and Ruhé et al. (2007). 

The experiments at the DLR have involved a variety of different aircraft, including 
helicopters, airships (zeppelins), and fixed-wing airplanes. A similar element in these aircraft is 
the data collection platform, called the Airborne Traffic Analyzer, or ANTAR. The on-board 
equipment includes a high-resolution digital camera that can be pointed in any direction, and an 
inertial measurement unit (IMU). The digital camera system is capable of capturing five images 
per second, with the restriction on the frame rate being dependent on the communication 
between the camera and the computer used to collect and forward these images. The various 
sensor platforms also include some combination of GPS antennas or differential GPS receivers, a 
separate wireless data downlink to transmit imagery to the ground, and/or a camera-mounted 
wireless downlink (Ruhé et al., 2007). The imagery from the camera is then georeferenced on the 
ground using a commercial road network database. With up to five frames per second, the 
location and speed of vehicles in each frame can be easily determined. In addition, the data from  
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FIGURE 3  Vehicle trajectories (Treiterer and Taylor, 1966). 
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the airborne platform is then fused with data from other sources like inductive loops and vehicle 
probes. The software, called Traffic Finder, includes a graphical online presentation of the 
current traffic situation. The Traffic Finder software also includes a short term traffic “forecast” 
(up to 30 min into the future), based on a microscopic traffic simulation model or a bottleneck 
queuing model (Ernst et al., 2003). 

An example of the types of vehicle trajectories available from this system is shown below 
in Figure 5. In this case, the trajectories are relatively short because of the movement of the 
helicopter during the data collection. Nonetheless, even these partial trajectories can be used in 
real time to do short-term forecasts of traffic conditions. The local speed, density, and flow 
estimates are determined from the individual trajectories; these are then translated through a 
fundamental diagram to determine the movement of shock waves in time and space along the 
roadway. With the shock wave analysis, vehicle movements are then projected into the future, 
accounting for decelerations and accelerations due to the shock waves. Hence, a short-term 
traffic forecast can be created (Hipp, 2006; Kühne et al. 2007; and Ruhé et al., 2007).  
 
 
CONCLUSIONS 
 
Based on the above review, it is clear that the history of traffic flow measurement and modeling 
from airborne imagery is very rich, where Greenshields played a very prominent role. Many 
researchers and traffic flow analysts have shown the potential advantages of this imagery for 
covering both the spatial and temporal movement of vehicles. Throughout the 80-year history, 
studies with this imagery have produced methods for obtaining macroscopic measures of speed, 
flow, density, and many other level-of-service variables of the observed traffic. Such measures 
are providing visually meaningful and quantitative congestion information, from which 
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engineers, planners and policy makers can make more informed decisions on improvements to 
the transportation system. Moreover, several researchers have developed tools to automate the 
processing of this imagery, creating data sets of vehicle trajectories for a wide variety of roadway 
facilities. In turn, these data can be used for developing and testing new traffic flow theories and 
for calibrating and validating traffic simulation tools. Current research directions and 
improvements in image acquisition speed and quality will shortly result in applicable methods 
for real-time monitoring of traffic from airborne platforms which should be useful for traffic 
management purposes. It is only a matter of time that airborne imagery using fixed wing planes 
or helicopters, and even perhaps UASs, will be an accepted method by practitioners to collect 
traffic data for transportation planning and traffic management, and by researchers as a very 
appropriate method to collect traffic data for studying traffic flow theories and for calibrating and 
validating traffic simulation models.  
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MEASUREMENTS AND CHARACTERISTICS OF TRAFFIC FLOW 
 

Bird’s Eye Perspective on Traffic Flow 
New Insights from Observing Traffic from a Helicopter 

 
SERGE P. HOOGENDOORN 
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In order to truly advance traffic flow theory, information regarding the spatiotemporal characteristics of 
macroscopic traffic flow characteristics is necessary but not sufficient. Detailed accounts of the time-space 
behavior of all individual vehicles in a region of interest are needed. The seminar work of Treiterer (1) 
already indicated the potential of these data, showing asymmetric acceleration and deceleration and the 
hysteresis phenomenon. Since then, different initiatives have been started in order to collect extensive data 
sets of vehicle trajectories, such as the NGSIM project and the Tracing Congestion Dynamics project (2). In 
the former, vehicle trajectory data are collected from fixed locations (high-rise buildings). In the latter, these 
data are collected using a mobile platform (a helicopter), the main advantage of which is the increased 
flexibility of the data collection location. This contribution provides a review of these new approaches to 
microscopic traffic data collection. The authors briefly describe the observation technique, as well as the 
algorithms used to derive the vehicle trajectory data from the camera images collected. The authors show a 
couple of examples of data analysis techniques and review the main new findings of applying these to the 
gathered trajectory data. This includes new insights from model identification at the individual driving level, 
such as interdriver heterogeneity, multileader behavior, lane changing and overtaking. The authors also 
present results of collecting and analyzing trajectory data to study driving behavior under specific 
circumstances (i.e., driving behavior during incident conditions). Finally, the authors discuss some of the 
remaining open questions and how these questions might be answered in the near future. In particular, they 
discuss the need to fly along with the traffic for a prolonged period of time to investigate intra-driver 
differences, as well as intensifying the empirical research on driving behavior under special circumstances. 
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MEASUREMENTS AND CHARACTERISTICS OF TRAFFIC FLOW 
 

From Inductance Loops to Vehicle Trajectories 
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This paper describes ongoing work on the United Kingdom’s M42 motorway, which has a uniquely high 
coverage of inductance loop detectors. The spacing of detectors is sufficiently small for one to use 
individual vehicle data to follow single vehicles down the highway. The paper gives a brief outline of the 
data collection work and sketches how the vehicle re-identification algorithms work. Sample data sets are 
available from the project website http://www.enm.bris.ac.uk/trafficdata. 

 
 

ur aim is the collection of vehicle trajectory data from highways for the better 
understanding of traffic flow dynamics and the better calibration of microsimulation 

models. One path to this goal is to mount video cameras on tall buildings or gantries and apply 
computer vision techniques to the resulting video streams (1, 2). However, a limitation is that the 
resulting data sets are quite small (order 15 minutes is typical) because a great deal of manual 
intervention is required for the computer vision algorithms to work correctly. 

An alternative source of traffic data is the inductance loop detection infrastructure which 
is a common feature of highways in the developed world. The spacing between loop detectors 
varies, but in Western Europe it is typically 500 m (approx. 1,650 feet) and in the United States it 
is similar. Loop detectors may either be single, in which case they measure only flow and 
occupancy, or double, in which case they also measure vehicles’ velocities and lengths. In their 
usual operation, these measurements are bundled into time averages (1 minute is a typical unit) 
and communicated back to a control office. The consequent spatiotemporal data has led to an 
intense discussion of macroscopic traffic patterns and the fundamental mechanisms which 
explain them (3–6). 

The focus of our ongoing work is individual vehicle data (IVD) collected from 
inductance loop detectors. For this, one intercepts and stores the velocity, length, and timing 
information of individual vehicles before the time-average is applied. Some past studies of IVD 
have focused on data from one detector and the rich connections between headway statistics and 
lattice gases [see Neubert et al. (7) and many subsequent papers]. In contrast, Coifman and 
collaborators have pioneered vehicle reidentification techniques which apply pattern-matching 
methods to the IVD from a pair of detectors [see Coifman and Cassidy (8) and Coifman and 
Krishnamurthy (9) for the latest perspective]. The chief idea is that a vehicle’s velocity at the 
upstream detector may be used to forecast its arrival time at the downstream detector. One then 
searches for a downstream length record which matches that recorded upstream and for which 
the arrival time is consistent. Unfortunately, with the typical loop spacing of order 500 m, traffic 
may shuffle significantly between detectors. Since length measurements are noisy, one in 
practice may only reidentify a vehicle with confidence if its length is sufficiently distinguished or 
if the traffic flow is sufficiently light. Coifman has thus been limited by the spatial resolution of 

O 
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his data and has worked mostly on the reidentification of trucks for the purpose of monitoring 
segment journey times. 

The new opportunity described here is provided by the English Highways Agency’s (10) 
Active Traffic Management (ATM) system which operates on a 15-km (approx. 9-mile) stretch 
of the M42 motorway constituting part of the box of motorways around Birmingham (the United 
Kingdom's second largest city). In busy periods, variable message signs set reduced speed limits 
and open the emergency breakdown lane for ordinary driving. Because of the need to monitor 
traffic closely in this situation, inductance detectors have been installed much more densely than 
is usual, with a nominal spacing of 100 m (approx. 330 feet). However, in a 900-m section where 
queuing is common, this spacing is reduced to circa 30 m (approx. 100 feet). In normal 
operation, the ATM system captures the usual 1-minute average data, but the spatial resolution is 
such that the structure of stop-and-go waves may be examined in a level of detail that was not 
previously possible (see Figure 1). 

In 2003, transport engineering consultancy TRL conducted a 2-day trial where IVD was 
collected from six consecutive ATM inductance detectors with a nominal spacing of 100 m. 
When displayed through an appropriate graphical user interface (see Figure 2), the intelligent 
human can identify the patterns of vehicles from detector to detector and thus it appears possible 

 
FIGURE 1  A spatiotemporal plot of speed (averaged across three running lanes) for the 

high coverage section of M42 ATM showing two stop-and-go waves.  
No interpolation has been used in the production of this picture. 

The vertical extent is approximately 900 m (about 3,000 feet). 
The authors believe that this degree of spatial resolution is unique. 
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to reidentify almost all vehicles with confidence—not just between a pair of detectors, but 
through the entire 500-m section. Thus in effect one coarsely reconstructs the trajectories of 
vehicles (although fine details of vehicles’ accelerations cannot be captured). The technical 
challenge is then to devise algorithms which replicate the human pattern-matching process (11). 
In this respect, we developed algorithms which reidentify vehicles over 100 m with a success 
rate which on average exceeds 99% (using a human-matched set as the ground truth). 
Unfortunately, this success rate is due in part to the anomalously quiet traffic conditions 
experienced during the trial (in particular, flow breakdown did not occur). Since ongoing 
improvements in communications hardware and standards have reduced the need to access road-
side hardware for IVD capture, there is now scope for a much more comprehensive data 
collection exercise. 

In the work that we announce here, we have exploited a commercial equipment trial to 
capture the IVD from 16 consecutive detectors over 1.5 km (nearly 1 mile) of the northbound 
M42. The trial runs from January to October 2008, and because weekday traffic flows are 
approximately 70,000 vehicles, each detector will capture and store the IVD of over 15,000,000 
vehicles in total. This data resource is being made available to the traffic research community 
over the summer and autumn of 2008 (12). The aims of this paper are twofold: To give further 
details of the data collection exercise and the basic calibration work and to give a brief outline of 
how the reidentification algorithms are being developed. Finally, conclusions are presented and 
ideas for possible joint projects are listed. 
 
 
DETAILS OF THE INSTRUMENTED SECTION 
 
We now give details of the ongoing IVD collection exercise. A kml file is available for 
download (13) which may be imported into Google Maps in order to display the instrumented 
section, which is approximately 1.5-km (nearly 1-mile) long. Figure 3 gives a schematic diagram 
of the layout. Note that the sections of Lane 0 labeled ATM are emergency breakdown lane in 
which vehicles do not normally drive. The Active Traffic Management system may open this 
lane for ordinary driving in peak periods, but at present this facility is not used within the 
instrumented section. 

The key feature in Figure 3 is the midsection on-ramp, which contributes order 10% to 
15% of the downstream traffic on average, divided roughly equally between its two lanes. 
Firstly, this presents new challenges for the vehicle reidentification algorithm between Detectors 
4 and 9 where the majority of merges occur. Secondly, it introduces the possibility of interesting 
traffic dynamics. Indeed, an examination of 1-minute average data (which has been collected for 
several years) indicates that this section regularly induces flow breakdown and stop-and-go 
waves as well as experiencing large amplitude stop-and-go waves which have propagated back 
from highly congested junctions further downstream. 

The data that each inductance detector records is listed in Table 1. A significant advance 
since our 2003 exercise is that arrivals are now quoted to 0.1 seconds accuracy (whereas 
previously they were quoted only to the nearest second, with in-lane headway quoted to 0.1 
seconds). These new data are extracted as a by-product of the IDRIS waveform analysis system 
which is undergoing a commercial trial. It is a general observation that IDRIS appears to produce 
significantly cleaner IVD than the standard hardware used in the 2003 exercise. In particular, 
vehicles miscounts (due to either close following or lane straddling) are fewer than 1 in 1,000. 
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FIGURE 2  Visualization of 20 s of IVD captured during the 2003 trial. Panels A–F denote 
the six detector sites progressing in downstream order. In each panel, lane numbers 1–3 are 

plotted horizontally whereas time is plotted down the vertical axis and thus plays the role 
of a space-like coordinate in which vehicles drive up the axis (rather like a photo-finish 
camera). Vehicle records are illustrated by rectangles (whose size is derived from the 
vehicle’s length) next to which the velocity in km/h is given. There is a time-offset of 3 

seconds between each panel so that vehicles at 120 km/h (approx. 75 mph) maintain the 
same horizontal level. Vehicles may clearly be reidentified from panel to panel and the 

overall effect is similar to six helicopter views of the traffic showing how the relative 
configuration of vehicles changes down the highway. Note that in the United Kingdom, 
slow traffic (trucks, etc.) drives on the left. Some lane-changing events, where vehicles 

straddle detectors, have been circled. 
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FIGURE 3  Schematic layout of the instrumented section of motorway. Loop detector sites 
1–16 are separated by about 100 m (approx. 330 ft) longitudinally so that the whole section 

is approximately 1.5 km (nearly 1 mi). Lanes 1–3 constitute ordinary running lanes to 
which U.K. driving rules apply (slower vehicles should tend to drive on the left in lane 1). 

Lane 0 is made up of the emergency breakdown lane (labeled ATM, since it may be 
activated as an ordinary running lane) or parts of the on-ramp. The bold lane-marking on 

the on-ramp denotes a region of chevrons which vehicles should not normally cross. 
 

Our first challenge is to calibrate the loop data. Whereas we may assume that vehicles’ 
arrival times are correct to their quoted resolution, the velocity and length records are subject to 
measurement error. Furthermore, the spacing of consecutive detectors is only nominally 100 m 
and must be determined more accurately for the reidentification algorithms to work efficiently. 
Note that the question of velocity calibration can only be solved definitively by driving a probe 
vehicle repeatedly through the instrumented section, and cross-checking with its IVD — which 
we have yet to do. 

In contrast, the calibration of length measurements, at least in relative terms, may be 
achieved directly from IVD. The technique is to consider consecutive pairs of detectors and to 
seek upstream–downstream pairs of vehicle records which must match, because conditions are 
sufficiently quiet that there are no other vehicle arrivals at either detector within any reasonable 
time tolerance. This requirement can be specified precisely and many thousands of such unique 
possible matches can be found during the night. Joint distributions of the pairs of measured 
lengths can then be analyzed. For private cars (length less than 5.5 m, approx. 18 feet) the 
 

TABLE 1  Data Fields and Nominal Resolution for Each Individual Vehicle Record 
 

Quantity Arrival Time Lane Velocity  Length 

Resolution 0.1 s integer 0-3 0.01 m/s 0.01 m 

NOTE: Velocity and length records are less accurate than their nominal resolution. 
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difference in length measurements between consecutive detectors is small — with mean order 1 
cm (less than half an inch) and standard deviation order 7 cm (approx. 3 inches). Consequently, 
detectors’ length measurements do not require calibration and moreover there is sufficient 
information in them to assist the reidentification of even private cars (whose lengths are not 
especially distinguished). Measured length differences for trucks are more widely spread but this 
is not a serious problem because of their relative scarcity. Unfortunately trucks’ statistics do 
contain many outliers due to lane-changing events, where an anomalous length is recorded due to 
the straddling of detectors in adjacent lanes. 

Unique possible matches can also be used to discover the true driving distance between 
detectors, by taking the time difference between upstream and downstream records and 
multiplying by the mean of their velocities. This calculation gives a distribution of distances with 
a spread which is due principally to the ±0.1-s accuracy of the time difference. By taking a large 
number of records, the true driving distance may be extracted from the statistics (see Table 2). 
Since this method assumes accurate velocity measurements, we checked the Table 2 distances 
with Google maps and found very close agreement. This indicates that the errors in velocity 
measurement have a very small mean component. 

Now that driving distances have been determined accurately, we may use them to seek 
unique possible matches with much tighter tolerances than we used previously. We thus 
dramatically increase the number of unique possible matches which in turn leads to more 
accurate calibration of the loops. The drawback of this boot-strapping approach is that length-
error statistics are built on portions of traffic data where there are lots of unique possible matches 
—that is, principally sparse and hence fast-moving traffic. Thus there are potential limitations in 
exploiting the length-error statistics to reidentify slow-moving traffic. 
 
 
OUTLINE OF REIDENTIFICATION ALGORITHMS 
 
We now sketch how the reidentification algorithms work. (The full details of the algorithms will 
be the subject of a forthcoming journal paper.) For simplicity, we may focus on matching the 
records for a single pair of detectors which do not overlap with the on-ramp, for example, 
Numbers 11 and 12. (The matching for detector pairs 12–13, 13–14, 14–15 and 15–16 is rather 
similar.) In fact, algorithms under development make use of the information from more than two 
detectors simultaneously, but are beyond the scope of this discussion. Since the reidentification 
of sparse traffic turns out to be rather trivial, it is necessary to test algorithms on a sufficiently 
congested day with strongly dynamic traffic patterns, for example January 24, 2008. See Figure 
4. 
 

TABLE 2  Actual Driving Distances Between Consecutive Pairs of Detector Sites 
 

loops 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 

gap (m) 106.0 99.5 101.6 91.4 98.8 92.4 101.7 91.3 

 

loops 9–10 10–11 11–12 12–13 13–14 14–15 15–16 

gap (m) 92.7 92.9 79.1 109.9 103.2 98.6 99.9 
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The first step in reidentification is to partition the data so that when matches are sought, 
only relatively small numbers of vehicles need to be analyzed simultaneously. This partition 
exploits the possible match idea which we introduced earlier. Specifically, for each vehicle 
record at the upstream detector, we forecast the arrival time at the downstream detector using the 
distance x between the detectors and the velocity and arrival time at the upstream detector. We 
then find all records at the downstream detector whose actual arrival time is within a tolerance e 
of the forecast. The tolerance e may be designed in various ways, but must include 0.1 s to 
account for the nominal error in time measurements, as well as other components which model 
for velocity measurement error or the possibility of nonzero acceleration.  

We then apply the procedure in reverse: that is, for each downstream record we forecast 
the earlier upstream arrival time based on downstream velocity and find all possible matches at 
the upstream detector. In this way we construct a bipartite graph of connections between 
upstream and downstream vehicle records. The data is then partitioned into sets of possible 
matches by finding the maximal connected components of the (symmetrized) bipartite graph. We 
call these match-sets. For example, a unique possible match corresponds to a match-set with a 

 
FIGURE 4  Individual vehicle velocity data from Detector 11 for January 24, 2008. In 

summary, we are presently able to reidentify traffic robustly except in the periods 08:00–
09:30 hours and 16:30–18:30 hours when the mean speed drops sharply and stop-and-go 
waves nucleate at this location. Our success includes the period 07:00–08:00 hours when 

the flow rate at times approaches 6,000 vehicles/hour summed over the three running lanes. 
During 07:00–08:00 hours we observe a small velocity variance measured both 

temporally and between lanes. 
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single upstream and a single downstream record. In busy traffic, match-sets grow in size, 
because headways are smaller, so that one finds more and more vehicles within any given 
tolerance interval. Note that large match-sets tend to make reidentification more complicated and 
more computationally intensive, but they do not necessarily render it intractable. 

We now consider the analysis of a single match-set. The simplest situation is the “square” 
case where it consists of an equal number of upstream and downstream records. To reidentify we 
then seek the best bijection between the upstream and downstream records. The simplest version 
of this technique defines a pairwise error score with (1) a component based on the compatibility 
of the upstream and downstream arrival times and velocities with the spacing between the 
detectors and (2) a component based on the difference of measured vehicle lengths upstream and 
downstream (whose design may be informed by the joint probably distribution of measured 
lengths for unique possible matches). The best bijection can then be defined as that which 
minimizes some norm of the score vector—in the case of the 1-norm, this problem may be 
solved by a standard numerical technique known as the Hungarian algorithm. 

In practice however, pairwise scoring methods are confused by groups of vehicles with 
similar velocities and lengths who pass a detector at about the same time but in different lanes. 
Hence more sophisticated algorithms use lane information and work on the (guessed) relative 
likelihood of different reorderings of the vehicles. We developed these methods commercially 
during our original study (11) and tuned their parameters to perform optimally against human-
matched sets. (Recall the clear patterns in Figure 2.) When compared to further human-matched 
data, these methods exceeded a 99% correct reidentification rate. Early indications are that this 
success rate is equaled in the 2008 data in all but the busiest and most strongly dynamic periods.  

We now consider how the algorithms break in busy conditions. In addition to an 
explosion in the size of match-sets, a common problem we encounter is that match-sets are not 
square. Occasionally this is because a vehicle has straddled detectors during a lane change and 
hence has been counted twice at one site or missed completely at the other. This type of problem 
is in fact relatively mild and we have a variety of ad hoc solutions for dealing with it, although 
the merge section still presents challenges. 

More seriously, in strongly dynamic traffic conditions, we presently obtain many non-
square match-sets—this indicates that the search for possible matches is itself breaking down. 
This is because under harsh braking conditions, the velocity at the upstream detector does not 
give a reliable forecast of when the vehicle will arrive downstream. To solve this problem we are 
developing alternative methods which rely principally on matching the sequences of vehicle 
lengths recorded at each detector. However, in very slow traffic this technique will be subject to 
uncertainty for two reasons. First, the vehicles have time to substantially reorder themselves over 
100 m if they are driving slowly enough. Secondly, the detectors themselves do not capture 
lengths reliably at very low speeds. In our favor, the behavior of slow-queuing traffic is not of 
especial interest. 
 
 
CONCLUSIONS 
 
We have summarized ongoing work in the collection and reidentification of IVD from 
inductance loops. This project uses the Active Traffic Management section of the M42 
motorway, which is one of the most densely instrumented highways in the world. The section 
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from which we collect data includes a merge and is a good location for observing complex 
spatiotemporal patterns in detail. 

At present, our reidentification algorithms work extremely well (>99% accurate) in all 
but the most congested and most strongly dynamic conditions. Our current work is focused on 
extending the algorithms to deal with these challenging situations and moreover to identify 
vehicle merges correctly. 

By the end of our project in October 2008, we will have constructed the trajectories of in 
excess of 15,000,000 vehicles. This means that for each vehicle, we will determine a 16x4 array 
detailing its arrival time, speed, lane number and measured length at each of the 16 detector sites, 
and supply pointers to the arrays of its immediate neighbors. Small samples of the data will be 
freely available at http://www.enm.bris.ac.uk/trafficdata and the complete data set will be 
provided on application.  

Our data unfortunately cannot describe dynamics which occur between the detectors 
(nominal spacing 100 m, approx 330 feet) and so in particular, the fine details of vehicles’ 
accelerations are not directly accessible. However the advantage compared to camera trajectory 
data is the shear volume of our data set. Consequently, statistical inference might be used to 
develop descriptions of driver behavior which are much more detailed than the data appears to 
allow at first sight. In this respect it will be interesting to see to what extent camera trajectory 
information and inductance loop IVD can be fused. 

With such a large volume of data, we may disaggregate in many different ways and yet 
retain statistically significant numbers of vehicle trajectories. Thus it seems that (highly 
parametrized) models of lane changing would benefit in particular, but one could also model the 
dependence of driver behavior on more exotic factors such as the weather. We are open to 
suggestions for joint projects that take the applications of this work forward. 
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EMPIRICAL OBSERVATIONS OF TRAFFIC FLOW CHARACTERISTICS 
 

Empirical Relation Between Stochastic Capacities and 
Capacities Obtained from the Speed-Flow Diagram 

 
JUSTIN GEISTEFELDT 

Institute for Transportation and Traffic Engineering, Ruhr-University 
 
 

In conventional procedures for the assessment of traffic flow quality, the capacity of highway facilities is 
treated as a constant value. For freeways, the derivation of design capacities given in guidelines such as 
the HCM or the German HBS is based on speed-flow diagrams. More recent investigations, however, 
demonstrated that freeway capacity has to be regarded as a random variable. The capacity distribution 
function represents the probability of a traffic breakdown in dependence on the flow rate. The objective of 
the paper is to compare stochastic capacities with conventional capacity values. For a considerable 
number of data samples from freeway sections in Germany, the breakdown probability that corresponds 
to the capacity obtained from the speed-flow diagram is determined. In conclusion, suitable breakdown 
probabilities that could be used for the definition of design capacities are derived. 

 
 

he capacity of a highway facility is usually defined as the maximum possible throughput that 
can be expected under specific geometric, traffic, and control conditions (1). In conventional 

procedures for the assessment of traffic flow quality, the capacity of a highway facility is treated 
as a constant value. For freeways, the derivation of design capacities given in guidelines such as 
the HCM (1) or the HBS (2) is usually based on speed-flow diagrams, which represent measured 
data. The observed data points are described by useful analytical functions. The volume at the 
apex of this function is treated as the capacity of the facility. 

In contrast to the traditional understanding of capacity, recent research shows that 
freeway capacity has to be regarded as a random variable rather than as a constant value. The 
variability of capacities can be determined by analyzing the variance of volumes observed prior 
to traffic breakdowns. 

The stochastic concept provides a new way to define the capacity of freeway facilities. 
As the stochastic capacity distribution function represents the probability of a traffic breakdown 
in dependence on the flow rate, capacity design values could, for example, be defined as specific 
percentiles of the capacity distribution function. Compared to slight speed differences in fluid 
traffic, a traffic breakdown entails significant delays for the road users. Thus, the probability of a 
traffic breakdown represents an important measure of traffic flow quality on freeways, 
particularly for heavily trafficked sections. 

The objective of the paper is to compare stochastic capacities with conventional capacity 
values. The empirical analysis is based on data samples from a number of freeway sections in 
Germany. For each section, the breakdown probability that corresponds to the capacity obtained 
from the speed-flow diagram is determined. In conclusion, suitable breakdown probabilities that 
could be used for the definition of design capacities are derived. 

T 
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CONVENTIONAL CAPACITY ESTIMATION 
 
For the capacity estimation in the speed-flow diagram, a procedure that was developed for the 
revision of the design capacities for basic freeway segments given in the German Highway 
Capacity Manual HBS (2) is used [see Brilon and Geistefeldt (3)]. The volume at the apex of the 
speed-flow diagram is determined by applying the speed-flow-density relationship proposed by 
Van Aerde (4). With this traffic flow model, all traffic states in the fundamental diagram are 
described by a continuous function. Thus, in contrast to two-regime traffic flow models, the apex 
volume does not depend on the specification of a speed or density threshold between the fluid 
traffic regime and the congested flow regime. 

Van Aerde’s (4) approach is based on a simple car-following model, which describes the 
minimum desired distance headway between consecutive vehicles as the sum of a constant term, 
a term depending on the difference between the current speed and the free speed, and a term 
depending on the current speed. The speed-density relationship is 
 

 d(v) 
1

x


1

c1 
c2

v0  v
 c3  v

 (1) 

 
where 
 
 d  = density, 

v  = speed, 
∆x  = distance headway between consecutive vehicles, 
v0  = free speed, and 
c1, c2, c3  = model parameters. 

 
The model parameters v0, c1, c2 and c3 can be calibrated by nonlinear regression in the speed-
density plane. To receive an even approximation over the whole range of densities, it is useful to 
divide the empirical data into classes, for example, with a class width of 1 veh/km. The speed-
density function in Equation 1 can then be fitted to the average speeds and densities of each 
class. To receive a good representation of the empirical speed-flow relationship, a sufficient 
number of data points in the congested flow regime is required. The presence of congested 
values also indicates that the data sample contains volumes up to the capacity of the analyzed 
cross section, which is an important prerequisite to obtain a realistic capacity estimate. 

As an example, Figure 1 shows the application of Van Aerde’s (4) traffic flow model to 
describe the speed-flow-density relationship of a two-lane freeway carriageway. The fitting of 
the model function to traffic data in 1-h intervals delivers a capacity of 3,530 veh/h. 

The procedure for the assessment of traffic flow quality on freeways given in the HBS (2) 
is based on the analysis of 1-h intervals. Correspondingly, 1-h averages of flow rates and speeds 
are used for the empirical capacity estimation. If such large time intervals are analyzed, the data 
points in the speed-flow diagram result from aggregations of different traffic states. Particularly 
in case of a transformation between fluid traffic and congestion, 1-h averages may represent a 
traffic state that never existed in real traffic flow (5). As illustrated in Figure 2, 1-h averages tend 
to be located more in the center of the parabolic speed-flow scatter plot than e.g., 5-min 
observations. As this effect significantly influences the apex volume of the fitted 
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FIGURE 1  Speed-flow-density relationship of a 
two-lane freeway carriageway (1-h data). 
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FIGURE 2  Impact of the aggregation interval on the flow-speed diagram in the presence 
of congested values: 5-min data versus 1-h moving averages (two-lane freeway section). 
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speed-flow curve, 1-h intervals with unsteady flow conditions are excluded from the analysis. A 
1-h interval is considered as representing unsteady flow conditions if the root mean squared error 
of the 5-min speeds within the hour is greater than 10 km/h. 

In some rare cases, the application of Van Aerde’s (4) model delivers a capacity slightly 
below or even beyond the highest observed volumes. This mainly applies to speed-flow diagrams 
with a distinct gap between the fluid traffic regime and the congested flow regime. In order to 
avoid unrealistically high capacity estimates, the apex volume of the fitted speed-flow curve is 
compared with the 99th percentile of the distribution of all flow rates in the sample. If the apex 
volume exceeds this threshold, the percentile value is considered as capacity estimate. 
 
 
STOCHASTIC CAPACITY ANALYSIS 
 
The stochastic nature of freeway capacity has been a topic of several recent studies (5–9). In 
contrast to the traditional understanding of capacity as a constant value, these empirical 
investigations show that the maximum traffic throughput of a freeway facility varies, even under 
constant external conditions. 

Empirical capacity distribution functions for specific roadway, traffic, and control 
conditions can be estimated by using mathematical methods for lifetime data analysis (8, 10). 
The capacity, whose distribution function represents the probability of a traffic breakdown 
during a particular time interval, is considered as a lifetime variable. In this analogy, the 
breakdown of traffic flow represents the failure event. 

Traffic flow observations on freeways deliver pairs of values of volumes and average 
speeds in particular time intervals. For capacity analysis, “uncensored” and “censored” intervals 
are distinguished. An interval i is classified as uncensored if the observed volume qi causes a 
breakdown of traffic flow, thus the average speed drops below a specific threshold in the next 
interval i + 1. In this case, the volume qi is regarded as a realization of the capacity c. If traffic is 
fluent in interval i and remains fluent in the following interval i + 1, this observation is classified 
as censored, which means that the capacity c in interval i is greater than the observed volume qi. 
Intervals after a breakdown with an average speed below the threshold are not considered for 
analysis because volumes observed under congested flow conditions do not contain any 
information about the capacity in fluent traffic. 

To estimate distribution functions based on samples that include censored data, both non-
parametric and parametric methods can be used (11). The nonparametric product-limit method 
(PLM) by Kaplan and Maier (12) delivers a set of flow rates and corresponding breakdown 
probabilities, which form a discrete distribution function: 
 

  Bi

k
dk

qF

qqi i

ii

c

i




 
:

1)(   (2) 

where 
 
 Fc(q) = capacity distribution function, 

q = traffic volume (veh/h), 
qi = traffic volume in interval i (veh/h), 
ki = number of intervals with a traffic volume of q  qi, 
di = number of breakdowns at a volume of qi, and 
{B} = set of breakdown intervals (Classification B, see above). 
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The distribution function will only reach a value of 1 if the maximum observed volume is an 
uncensored value, i.e., followed by a traffic breakdown. Otherwise, the distribution function 
terminates at a value of Fc(q) < 1. 

For a parametric estimation, the function type of the distribution must be predetermined. 
The distribution parameters can be estimated by applying the maximum-likelihood technique. 
For capacity analysis, the likelihood function is (10): 
 

 L =  




n
i

icic

ii qFqf

1

1)(1)(    (3) 

 
where 
 
 fc(qi) = statistical density function of the capacity c; 

Fc(qi) = cumulative distribution function of the capacity c; 
n = number of intervals; 
i = 1, if interval i contains an uncensored value; and 
i = 0, if interval i contains a censored value. 

 
An empirical comparison between different function types revealed that freeway capacity is 
Weibull distributed (10, 13). The Weibull-type capacity distribution function is  
 

 Fc(q) = 



 











q

e1   (4) 
 
where 
 
 Fc(q) = capacity distribution function, 

q = flow rate (veh/h), 
 = shape parameter, and 

  = scale parameter (veh/h). 
 
The shape parameter  determines the variance of the distribution function. The variance 
decreases with increasing . The scale parameter  is proportional to both the mean value and 
the standard deviation of the distribution function. The scale parameter represents the systematic 
factors affecting freeway capacity, such as number of lanes, grade, and driver population. 

The stochastic concept of capacity is based on the analysis of traffic breakdowns. The 
prebreakdown volumes represent the momentary capacity of the facility. As a breakdown of 
traffic flow is usually a sudden event, only short time intervals (5 min or even less) are suitable 
for the empirical capacity estimation. For greater intervals, the causality between the observed 
traffic volume and the occurrence of the breakdown is too weak. However, a theoretical 
approach can be used to transform capacity distribution functions between different interval 
durations. Based on a capacity distribution function estimated in 5-min intervals, the 1-h 
distribution can be estimated by applying the following relationship (13): 
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icc qFqF   (5) 

 
where 
 
 Fc,5(q) = capacity distribution function estimated in 5-min intervals, 

Fc,60(q)  = transformed capacity distribution function in 1-h intervals,  
q5,i = flow rate in 5-min interval i (veh/h), and 

 q60 = 1-h average flow rate (veh/h). 
 
With Equation 5, values of the capacity distribution function estimated in 5-min intervals can 
numerically be transformed into 1-h intervals. A Weibull distribution can then be fitted to the 
transformed values by a least squares estimation. The variance of the 5-min flow rates during 1 
hour (denoted by q5,i in Equation 5) can be considered by using normal distributed values 
according to the following Equation 13: 
 

 24/)12(,5  izqi   (6) 

 
where 
 
 q5,i = flow rate in 5-min interval i (veh/h), i = 1..12, 
 zp = p-quantile of the N(q60, σq), 

q60 = 1-h average flow rate (veh/h), and 
 σq = standard deviation of the 5-min flow rates q5,i. 
 
The standard deviation σq, which represents the variability of the 5-min flow rates during one 
hour, has a significant impact on the transformation. The value can be estimated from empirical 
data. As only the highest volumes are relevant for the capacity analysis, the average value of σq 
for the upper percent of all 1-h flow rates in the sample is applied. 

As an example, Figure 3 shows the capacity distribution functions of a two-lane freeway 
section in 5-min and 1-h intervals. Traffic data over 1 year, including a total of 152 traffic 
breakdowns, were analyzed. The 5-min capacity distribution function has a median of 
4,708 veh/h. This means that with a probability of 50%, a demand of 4,708 veh/h in a 5-min 
interval leads to a traffic breakdown. The nonparametric product–limit estimation fits very well 
into the Weibull distribution function. The median of the transformed 1-h Weibull capacity 
distribution function amounts to 4,051 veh/h, which is 14% less than the median of the 5-min 
distribution. 
 
 
COMPARISON OF DETERMINISTIC AND STOCHASTIC CAPACITIES 
 
To compare deterministic capacity values with the corresponding stochastic capacity distribution 
functions, the distribution percentile that corresponds to the capacity estimated in the speed-flow 
diagram is determined. As illustrated in Figure 4, the conventional capacity estimate is compared 
with both the capacity distribution function in 5-min intervals and the transformed capacity 
distribution function in 1-h intervals. 
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The empirical relation between deterministic and stochastic capacities was analyzed for a 
total of 26 freeway cross sections in Germany (see Table 1). The data samples include two-lane 
and three-lane sections with different control conditions (no speed limit, variable speed limit, 
permanent speed limit). The samples contain traffic data measured over periods between 6 
months and 6 years, including between 12 and 287 traffic breakdowns. 
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FIGURE 3  Estimated capacity distribution function in 5-min intervals and transformed 
distribution function in 1-h intervals (two-lane freeway Section A57/140S; see Table 1). 
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FIGURE 4  Relation between the nominal capacity cN in 1-h intervals and the values 
Fc,5(cN) and Fc,60(cN) of the capacity distribution function in 5-min and 1-h intervals, 

respectively (two-lane freeway Section A57/140S; see Table 1). 
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In order to obtain realistic capacity estimates, it is important to account for systematic 
factors affecting the capacity of a freeway. In consequence, only those intervals measured during 
daylight and dry conditions were included in the analysis. Temporary influences such as work 
zones or accidents were excluded by analyzing the speed-flow diagram, the time series of speed 
and volume and the lane-flow distribution. Unusual values, e.g., periods with a reduced speed 
level (indicating a temporary speed limit due to a work zone) or intervals with a zero flow on one 
lane (indicating a lane blocking) were excluded. To account for the impact of heavy vehicles, the 
average heavy vehicle percentage at the highest volumes (denoted as pHV) was determined. The 
value was rounded to a multiple of 2.5%. For the capacity estimation, all intervals with a heavy 
vehicle percentage in the range of pHV ± 5% were considered. For higher or lower heavy vehicle 
percentages, the maximum volumes were too low for a reliable capacity estimation. 

For each traffic data sample, the 1-h capacity in the speed-flow diagram (denoted as 
“nominal” capacity cN), the capacity distribution function in 5-min intervals and the transformed 
capacity distribution function in 1-h intervals were determined by applying the procedures 
presented in the previous chapters. The results are summarized in Table 1. The nominal capacity 
estimates are mostly comparable with the HBS (2) capacities for the section-specific geometric, 
traffic, and control conditions. This evidences that the results of the applied method for the 
conventional capacity estimation are consistent with the HBS (2) design concept. On the 
average, the nominal capacities correspond to the 3rd percentile of the capacity distribution 
function in 5-min intervals and the 40th percentile of the transformed capacity distribution 
function in 1-h intervals. This means that the conventional capacity estimate roughly represents a 
3% probability of a traffic breakdown during a 5-min interval and a 40% probability during a 1-h 
interval. However, the section-specific breakdown probabilities Fc,5(cN) and Fc,60(cN) show a 
considerable variability. 

Figure 5 shows the empirical relation between the nominal 1-h capacity estimates and the 
scale parameter  of the capacity distribution functions in both 5-min and 1-h intervals. Linear 
regression analysis yields that the scale parameter of the 5-min capacity distribution function can 
approximately be estimated by multiplying the corresponding nominal capacity by 1.26. The 
scale parameter of the 1-h capacity distribution function is on average 1.05 times higher than the 
nominal capacity. 
 
 
CONCLUDING REMARKS 
 
Conventional design capacities given in guidelines such as the HCM (1) or the HBS (2) are 
based on the analysis of speed-flow diagrams. The volume at the apex of the speed-flow 
relationship is treated as the capacity of the facility. In contrast, methods for stochastic capacity 
analysis deliver a capacity distribution function, which represents the probability of a traffic 
breakdown in dependence on the flow rate. For a total of 26 data samples from German 
freeways, the empirical relation between deterministic and stochastic capacities was analyzed by 
determining the percentile of the capacity distribution function that corresponds to the 
conventional capacity estimated in the speed-flow diagram. It was found that the conventional 
capacity in 1-h intervals roughly implies a 40% breakdown probability during 1-h and a 3% 
breakdown probability during a 5-min interval. 
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TABLE1  Empirical Relation Between the Nominal Capacity and the Stochastic Capacity 
Distribution Function for 26 Freeway Cross Sections 

 
Freeway/ 

Cross Section 
No. of 
Lanes 

Grade 
(%) 

Speed Limit 
pHV 

(%) 
cN (veh/h) Fc,5(cN) Fc,60(cN) 

A1/190N 2 < 2  100 km/h 15.0 3,979 0.0558 0.6652 
A3/140S 3 < 2  No speed limit 10.0 5,576 0.0344 0.4264 
A3/24RN 3 < 2  No speed limit 10.0 6,393 0.0338 0.4389 
A3/66GS 3 < 2  Traffic-adaptive 12.5 5,615 0.0278 0.5038 
A3/110GN 3 < 2  Traffic-adaptive 15.0 5,598 0.0077 0.1755 
A5/24GN 3 4  Traffic-adaptive 12.5 5,195 0.0394 0.4903 
A5/100S 2 < 2 120 km/h   7.5 3,705 0.0368 0.4488 
A8/Q73 3 6  Traffic-adaptive 12.5 4,302 0.0377 0.4377 
A9/307 3 < 2  No speed limit 10.0 5,439 0.0164 0.1991 
A40/0008W 2 < 2  Traffic-adaptive 10.0 3,967 0.0222 0.3721 
A40/12E 2 < 2  Traffic-adaptive   7.5 3,818 0.0444 0.5683 
A40/22E 2 < 2  Traffic-adaptive   7.5 4,071 0.0356 0.4686 
A40/32W 2 < 2  Traffic-adaptive   7.5 4,019 0.0316 0.4621 
A42/0457O 2 < 2  100 km/h 12.5 4,084 0.0198 0.2534 
A42/0457W 2 < 2  100 km/h 15.0 3,986 0.0167 0.3098 
A43/0265N 2 < 2  120 km/h 10.0 3,714 0.0211 0.4826 
A43/0265S 2 3  120 km/h 10.0 3,465 0.0182 0.2630 
A43/0295S 2 < 2  120 km/h 10.0 3,841 0.0127 0.1812 
A44/1459O 2 < 2  Traffic-adaptive 15.0 3,738 0.0179 0.2756 
A45/0271N 2 < 2  Traffic-adaptive 15.0 3,834 0.0554 0.6304 
A45/1GIN 2 < 2  No speed limit 12.5 3,721 0.0115 0.1837 
A52/120W 3 < 2  No speed limit   5.0 6,781 0.0298 0.4467 
A57/140S 2 < 2  Traffic-adaptive 12.5 4,082 0.0383 0.5510 
A57/150N 2 < 2  Traffic-adaptive 10.0 4,034 0.0376 0.5839 
A66/9ZO 2 < 2  100 km/h   5.0 4,228 0.0214 0.3645 
A661/1FS 2 < 2  100 km/h   7.5 3,950 0.0068 0.1034 
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FIGURE 5  Nominal capacity versus median value of the  
capacity distribution function in 5-min and 1-h intervals. 



156 Transportation Research Circular E-C149: 75 Years of the Fundamental Diagram for Traffic Flow Theory 
 

 

 
Compared to the impact of speed differences in fluid traffic, a traffic breakdown entails 

significant delays for the users of a freeway. Hence, the breakdown probability is an important 
measure of effectiveness, because it represents the reliability of traffic operation. Defining a 
maximum acceptable breakdown probability could therefore be considered as an alternative way 
to derive design capacities. The results of the empirical analyses indicate that appropriate 1-h 
breakdown probabilities that could be used for the derivation of freeway design capacities are in 
a range between about 25% and 50%. 
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Fundamental Diagram for Signalized Arterials 
An Empirical Analysis Using High-Resolution Traffic Data 
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For uninterrupted traffic flow, fundamental diagram (FD) is well known as the description of the relationship 
between flow rate and density in steady state. Such FD for urban roads with signalized intersections, 
however, is an active research topic that deserves more discussion. In this paper, the authors study arterial 
fundamental diagram by using empirical observations from high-resolution, event-based traffic data collected 
from a major arterial in the Twin Cities area. The authors demonstrate that FD does exist on signalized 
roads, when the flow-occupancy data from loop detectors is aggregated at the time interval of one cycle 
length. However, raw flow-occupancy diagram from detector data for the morning and afternoon peaks may 
give misconceptions of arterial traffic flow. By exploring the impacts of g/C ratio, signal coordination, turning 
movements, and queue spillbacks, the authors especially answer the following two questions: 1) Why do 
different capacity values appear in the FDs for the morning and afternoon peaks? and 2) Do the scattered 
points with high occupancy values really mean congestion on signal link? From empirical data, the authors 
show that the impact of queue-over-detector (QOD) is the main cause for the appearance of “two capacity 
values” phenomenon for the morning and afternoon peaks and occupancy expansion on the FDs. Frequent 
QOD is mainly due to poor signal coordination, which leads to higher traffic flow arrival on red. The revised 
flow-occupancy diagrams, with removal of QOD impact, are more revealing to arterial congestion. The 
positions of the scattered points on revised FD, as the authors demonstrate, are good indicators for signal 
oversaturation. Finally, in this paper the authors also provide a mathematical description of both flow and 
occupancy fluctuations for the arterial FDs.  
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There is an ongoing discussion about the suitability of fundamental diagrams in urban networks. The authors 
have argued in favor of such a fundamental diagram, while some researchers deny that there is such a thing 
as a fundamental diagram on urban roads, because for any level of demand any travel time is possible. This 
contribution tries to sort this out by referring to new data sources as well as to simulation approaches. The 
authors hypothesize that in fact there is a fundamental diagram in urban roads; however, there is no one-to-
one correspondence to the fundamental diagram on freeways. 
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SIMULATION AND CALIBRATION OF TRAFFIC FLOW MODELS 
 

A Simple and Pragmatic Representation of Traffic Flow 
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nderstanding the mechanics of traffic flow has been a fascination for engineers and others 
since the 1930s, starting with seminal papers by Greenshields (1) and Adams (2). There are 

very good practical reasons for this, as an understanding of the fundamentals of traffic flow is 
important for both the design of traffic facilities, and for the control of traffic operations.  

However, no attempt is made here to chart progress in the development of traffic flow 
theory since its inception. Neither is any serious attempt made to discuss or differentiate between 
the different approaches or models that have been advanced as a means of predicting or 
explaining traffic flow. There is an abundance of literature on this topic, which is growing all the 
time, and consequently that particular task is best left to others. 

Instead, the paper will concentrate on a particular approach that grew out of the 
development of a model to simulate transit times on long routes, MacNicholas (3). This model, 
which has both deterministic and stochastic components, is used by the National Roads 
Authority to simulate the mean and variance of journey times on Ireland’s primary road network, 
and in particular to assess the impact of road improvements.  

Obviously, this model is on a completely different scale, and can have a cruder 
representation of road infrastructure characteristics than is envisaged here. Nonetheless, it is 
thought that the basic approach, and especially the macroscopic and deterministic component of 
the model, has interesting features that would appear to be applicable outside its immediate 
practical use in simulating transit times for long routes. 
 
 
FUNDAMENTAL CONSIDERATIONS 
 
Any worthwhile model describing traffic flow must in the end be capable of being readily 
calibrated, using data collected in the field. And it must also replicate traffic behavior in 
situations where there is some experience of how traffic actually behaves.  

While the above are not at first sight very demanding requirements, in practice the latter 
requirement does not appear to be as easy to achieve as one might initially imagine, judging by 
literature on the subject. To make any progress on this front it seems fairly obvious that one has 
to, firstly, borrow certain ideas or principles that have already been established by previous work 
in the area.  

Secondly, one has to start with a basic uniform single-lane system with homogenous 
traffic, to which refinements can be added later. These could include nonuniform road 
characteristics, different vehicle classes, multilane systems with side road inflows and outflows. 
Additional reality could be introduced by incorporating random effects.  

Consider then the first stage in the development of what would be described as a 
“deterministic single-lane continuous flow model,” with the primary emphasis on determining 
average journey time through a road system. The basic traffic stream variables are traffic flow Q 

U 
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(vehs/h), concentration or density C (veh/km), and space mean speed V (km/h), and these are 
related from first principles as given below: 
 

 Q CV                                                       (1) 
 
If therefore one has a relationship between V and C (without thinking too much for the moment 
about precisely what it means) the system is completely specified. There is an abundance of field 
data obtained at many sites relating V to C, so that whatever this relationship represents it must 
have a central function in any realistic model of traffic flow. In other words in keeping with the 
theme of the Greenshields symposium one starts with a “fundamental diagram.” This is the first 
major assumption of the development process. 

The initial emphasis therefore is on identifying a suitable function for the V–C 
relationship that satisfies a specification with the following requirements: 
 

1. Preferably, for convenience it should be a single-regime function. 
2. It must satisfy any obvious boundary conditions. 
3. It must have sufficient shape flexibility to be fitted accurately to measured field data, and 

to reflect the expected moderate slope of the V–C relationship when the concentration or density 
(C) is small. 

4. The basic traffic stream variables should be simple explicit functions of each other. 
5. In addition to its ability to predict V from C the function ought to, when transformed, 

offer some further insight into the mechanism of traffic flow. 
 

None of the known functions, used in previous studies of traffic flow, appear to meet all 
of these requirements to a sufficient degree. Consequently, something new is needed if this 
relationship is to underpin a pragmatic model of traffic flow, when it should satisfy these 
requirements as closely as possible. As a result different potential functions were assessed to find 
the one that was deemed to be the most suitable, and the selected function is described below. 
 
 
A PROPOSED SPEED-CONCENTRATION FUNCTION 
 
It is obvious that in any real traffic situation there is a limiting value of average speed, generally 
called free speed V0, that occurs when concentration is zero. And there is a limiting value of 
concentration, generally called jam concentration Cjam, that occurs when speed is zero. If 
therefore two new transformed (or normalized) variables x and y are introduced such that 
 

 

x 
C

Cjam

y 
V

V0

                                            (2) 

 
then the proposed single-regime function, with shape parameters n and K, fulfilling all of the 
above requirements is given below: 
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 y1 xn Kxny                                        (3) 
 
In general, n ≥ 1 and K ≥ 0 has been found for all data sets examined. Obviously, this four-
parameter function satisfied the boundary constraints (y = 1 when x = 0 and x = 1 when y = 0) 
for all values of n and K. 

Reorganizing the above expression (and utilizing the fundamental relationship in 
Equation 1 above) yields the following explicit relationships between the transformed variables. 
These can then be used to plot functions involving all the traffic stream variables, Q, C and V. 
 

 
y 

1 xn

1 Kxn
  (4) 

 
or 

 

 
V V0[

(Cjam )n Cn

(Cjam )n KCn
] (5) 

 

 

 
x 

1 y

1 Ky
n   (6) 

 
and 

 
 Q  (V0Cjam)xy (7) 

 
In other words Q can be found as an explicit function of either C or V. 

The space headway H in meters can be found as a function of speed V, simply by 
substituting Equation 6 above. 
 

 
H 

1000

xC jam

 (8) 

 
 

 H 
1000

C jam

(
V0

V0 V


K

V0 V
V)1/n  (9) 

 
If x* is the value of x, and y* is the value of y, when Q is a maximum it can be shown using 
elementary calculus that these values can be obtained as follows: 
 
For convenience let   
 

 R  (Kn1nK)  (10) 
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then 
 

 
x*

R  R2  4K

2K
n  (11)  

 

 
y* 

1 (x*)n

1 K(x*)n
 (12) 

 
and it follows that 
 

 Qmax  (V0Cjam)x*y* (13) 

 
Finally, it can be shown that slope of the V–C relationship is given by the expression 
 

 
dy

dx

nxn1(1 K)

(1 Kxn )2
 (14) 

 
It can be seen from the above expression that for certain values of the parameters K and n 
 

 

dy

dx
 0

when

x  0

 

 
 
CALIBRATION OF SPEED-CONCENTRATION FUNCTION 
 
Fitting the function in Equation 5 above to a set of single-lane, speed and concentration values 
determined from field measurements is a fairly straightforward optimization problem. The 
parameters are varied, in some cases subject to practical constraints, to minimize the sum of the 
squares of the deviations of the data from the model.  

However, this is not the main problem that has been identified to date in research. The 
amount of scatter found in published data obtained in many field trials is generally thought to be 
much greater than could be attributed to normal experimental error or random effects. For 
example, see work by Erlingsson et al. (4) or Hranac et al. (5) as an indication of the amount of 
scatter found. There are many other published results that exhibit similar scatter. 

The most logical explanation for this is that measurements must actually reflect transient 
as well as equilibrium, or steady state, traffic conditions. The transient states are caused by non-
uniform road conditions and/or disturbances. Consequently, a typical speed-concentration 
relationship for a site contains information on a variety of traffic states.  

But there appears to be a partial consensus amongst the various commentators on this 
issue, and in some ways it is intuitively obvious, which could be interpreted as follows: it would 
not be unreasonable to assume that a model fitted to any set of data represents something close to 
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the equilibrium traffic states, with transient traffic states scattered about the line. This is the 
second major assumption of the development process. 

Nonetheless, for the purpose of model calibration in Figure 1 below it is thought best to 
select a set of data (from the many possible data sets) that was collected under carefully 
controlled conditions. In other words, where the amount of scatter is minimal. Data obtained 
from some single-lane traffic experiments on straight sections by the Road Research Laboratory 
(6) was considered to be suitable for this purpose.  

The input parameters for the model determined from the curve fitting process are shown 
in Table 1. In addition it also gives some important calculated output values, the speed and 
concentration at maximum flow, and the maximum flow. 
 
 

 

FIGURE 1  Proposed function fitted to field data. 
 
 

TABLE 1  Function Parameters and Values 
 

Input V0 90.58 km/hr

Cj 136.40 vehs/km

K 6.83
n 1.81

Output V* 46.00 km/hr
C* 40.26 vehs/km

Qmax 1851.9 vehs/hr  
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COMPARISON WITH THE VAN AERDE FUNCTIONS 
 
The widely used four-parameter model first proposed by Van Aerde (7) has some basic features 
in common with the model proposed here, and a comparison is interesting. It satisfies the same 
boundary conditions at zero concentration and maximum concentration as described earlier. 
And it can assume the same variety of shapes for the relationships between the traffic stream 
variables V, C and Q.  

However, it differs in the sense that V* and Qmax are input parameters to the Van Aerde 
model, instead of being calculated as the outputs (as in Table 1) from the model described here. 
This is not seen as a disadvantage for the proposed model, given the difficulty of measuring 
these quantities directly. Because of unstable conditions around this point in a speed-flow 
relationship values of V* and Qmax are probably found more accurately using model calibration 
as described earlier. 

In addition there is a further price to be paid for using the Van Aerde formulation, in that 
the relationships between the traffic variables are much more cumbersome, in contrast with 
those given in Equations 4 to 14 above. This is particularly the case where V as an explicit 
function of C is required. In fact the function is indeterminate when C = 0.  

Since it has already been decided that the V–C relationship is very important, and must 
underpin any explanation of how traffic actually behaves, the Van Aerde model is just not very 
convenient to use. Hence a more convenient alternative function has been suggested, and is 
used here.  

Nonetheless, it is interesting to compare the functional relationships produced by the 
model proposed here, with the parameters specified in Table 1, and those produced by Van 
Aerde, using the calculated values of V* and Qmax obtained from Table 1. For all practical 
purposes the functions shown in Figures 2, 3, 4 and 5 for the two different approaches are very 
similar. In fact, they are almost identical. 
 

 

FIGURE 2   Comparison of the speed-concentration relationships. 
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FIGURE 3  Comparison of the speed-flow relationships. 
 
 

 

FIGURE 4  Comparison of the flow-concentration relationships. 
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FIGURE 5  Comparison of headways. 
 
 

And this leads one to speculate, is there anything more in common between the two sets of 
arbitrary equations, other than they produce overlapping relationships that are very similar for all 
values of the input parameters? Some algebraic manipulation of the Van Aerde expressions 
shows that for the special case when n = 1 in the proposed model, the relationships are identical 
for all values of K. However, this finding is not of great practical use, because values of n > 1 are 
normally required to achieve the required shape of the V–C relationship when C approaches 0. 
 
 
A FRAMEWORK FOR SIMULATING TRAFFIC BEHAVIOR 
 
For computational efficiency there are clear advantages in considering traffic behavior discretely. 
In other words a single-lane length of road is broken down into discrete sections of space (dL) 
and is considered at discrete intervals of time (dT), Apart from this it helps to understand how 
traffic might behave by considering the evolution of traffic states in these discrete intervals. 

The computational sequence is illustrated in Figure 6 for a situation where each section is 
of equal length and has uniform characteristics. However, one can deal with sections of unequal 
length and nonuniform characteristics with little modification of the basic calculations. This is 
useful where more detailed modeling is required in the vicinity of a bottleneck. 
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Section (j)

V (i-1,j+1) V (i-1,j) V (i-1,j-1) Time 

C (i-1,j+1) C (i-1,j) C (i-1,j-1) Interval (i-1)

Update V

V (i,j) ? Time

C (i,j) ?  Interval (i)

Update C

dL

dT

 

FIGURE 6  Calculation sequence. 
 
 
The process begins with known values of V and C in all the sections at a particular time interval, 
which completely specifies the state of traffic since Q = VC. These values of V and C can be 
either initial assumed values, or the latest updated values. The next step is to update the value of 
V for the next time interval from known or historic values of V and C in the previous time 
interval.  

Obviously, if updated values of speed can be obtained, then using known values of C, the 
revised values of Q and then C can readily be obtained for the next time interval using a version 
of the continuity equation. The real question to be resolved is as follows, what is a plausible 
value of V in any section for the situation described in the calculation sequence?  

To answer this question one must look backwards at the evolution of thinking on how 
traffic is considered to behave. For example, it has been recognized for a considerable time that a 
continuous-flow model using the speed-concentration relationship as the sole determinant of 
speed at point is inadequate. What is happening to traffic as it flows along a lane is obviously 
more complicated than is explained by a simple relationship between speed and concentration. 

A fundamental flaw with the naïve application of this relationship alone can easily be 
demonstrated. Once traffic gets into a high concentration state on any downstream section, flow 
is very much reduced as can be seen in Figure 4. The section then cannot always discharge 
vehicles at the same rate as input flow, and the system locks up.  

The problem can be overcome by the use of a “look-ahead” term first suggested by Payne 
(8). This uses information on conditions in the downstream section as a factor in the 
determination of speed. It is accepted therefore that in any plausible description of traffic flow 
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there must be some mechanism for incorporating a look-ahead term. This is the third major 
assumption of the development process. 

Further interesting work by Ross (9) provides a partial answer to the question posed 
earlier on a plausible value of V for a section in the calculation sequence. This work introduced 
the concept of the “desired change” in vehicle speed as being a function of actual speed V, 
desired speed V0 and a constant relaxation time T. The suggestion is supported by actual field 
observations. 
 

 

V

t


(V0 V)

T
 (15) 

 
From this expression, which is inherently logical, it would appear that in any situation 
acceleration is determined by the desire of drivers to move towards (if possible) free speed.  But, 
of course this desire can be constrained by actual traffic conditions, particularly those ahead.  

If the proposed speed-concentration relationship in Equation 4 is then reorganized as 
follows: 
 

 

 (16a) 
   
 
 
 
 
 
 (16b) 
 
 
The above expression consisting of two parts suggests an idea on how it might be used as an 
element of a traffic model. Most importantly, it can be used in a way that is consistent with the 
earlier assumptions on the V–C relationship, and on incorporating a “look ahead” term.  

The first part of the expression can be considered as a measure of the tendency of traffic 
on a section to accelerate, which is very similar to Equation 15 above. Then the second part of 
the expression (calculated for the section ahead) can be taken as a corresponding and plausible 
measure of the tendency to decelerate. In other words, it is a logical and effective look-ahead 
term for any particular section.  

Clearly, the individual parts have values between 0 and 1, and a function of difference 
between them would have a value between –1 and +1.  The fourth assumption is therefore that 
this is deemed to give a net effective acceleration/deceleration factor ADfac, which ought to relax 
over time towards zero, and an equilibrium or steady state traffic flow. 

Consider then how these ideas might be expressed to determine V for a discrete section 
of space at a discrete interval of time, for the single traffic lane shown in Figure 6. Let 
 

  (17)
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where W is a calibration exponent. This is the simplest version of an expression to determine the 
acceleration/deceleration factor. More complicated versions exist and these will be discussed 
briefly at a later stage. 

Then if Amax (m/sec2) is the assumed maximum acceleration/deceleration (or there could 
be different maximum values for acceleration and deceleration) the speed in the section is 
determined from  
 

 
V(i,j) V(i1,j)  3.6Amax (ADfac)dT

 (18) 
 
The obvious equilibrium-seeking feature of this method of determining speed provides a neat 
and pragmatic answer to the creation of a behavioral model that incorporates all of the earlier 
assumptions, and in particular the idea that the speed-concentration relationship represents 
something close to equilibrium conditions.  

However, it should be noted that the use of this approach is not confined exclusively to 
the model suggested here. But it is believed to be the only simple function that has the capability 
to be transformed in this way and at the same time has the required shape flexibility. 
 
 
REALISTIC CONSTRAINTS IN UPDATING THE PROCEDURE 
 
The primary determination of speed is by Equation 18 above in the calculation sequence outlined 
earlier. But a question has to be asked: does the determination of speed in this way imply that 
simulated traffic in the calculations ceases at any time to behave like real traffic?  

There appears to be no simple analytical answer to this question. Consequentially, the 
calculation of V(i,j) must be subject to numerical constraints so as to ensure that simulated traffic 
behavior is always realistic. This is the final assumption in model development, and it remains to 
outline the form that these constraints should take.  

In keeping with the earlier assumptions about what the V–C function actually represents 
(equilibrium states), some latitude must be allowed in setting constraints based on this function. 
It is reasonable therefore to assume that potentially at least, speed V and flow Q in a transient 
state might exceed V0 and Qmax by a small amount e1 or e2. The constraints given in Equations 19 
and 20 follow from this. 
 
Maximum speed 
 
 V(i,j) Vo  e1 (19) 

 
Maximum flow 
 

 V(i, j) 
Qmax  e2

C(i1, j)

 (20) 
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With realistic traffic flow the calculation of V(i,j) must be always ensure that concentration 
remains within the limits 0 ≤ C ≤ Cjam, since these are physical limits. The constraints given in 
Equations 21 and 22 follow from this requirement, with calibration coefficients k1< 1 and k2 < 1. 
 
Forward packing 
 

 V(i, j) 
k1

dL

dT
(C jam C(i1, j1))  V(i-1, j-1).C(i1, j1)

C(i1, j)

 (21) 

 
Depletion 
 

 V(i, j) 
k2

dL

dT
(C(i1, j))  V(i-1, j+1).C(i1, j1)

C(i1, j)

 (22) 

 
While in practice the percentage of times any of the above constraints are actually triggered 
appears to be quite small, they are still necessary to ensure realistic behavior at all times. 
 
 
TESTING THE PROPOSED MODEL 
 
As was stated earlier a simulation model purporting to replicate traffic behavior is only as good 
as the results it produces in situations where it is fairly well understood how traffic would 
actually behave. To assess the model a (closed system) circular single-lane track of 5-km length 
with 100 sections was used for a numerical experiment using a 1-second time interval. 

The model parameters specified in Table 1 are used, and simulation starts with given 
initial conditions of speed and concentration. Plausible values were also chosen for the additional 
parameter specified in Equations 17 to 22 above. 

A closed system with a fixed number of vehicles, and where there is no beginning or end 
to the traffic stream, has obvious advantages in understanding what is happening. Average 
concentration is known from the number of vehicles in the system, so that one can design a 
numerical experiment where all section concentrations should hopefully converge towards the 
equilibrium value irrespective of the starting position. 

A fairly extreme and most testing example is chosen for initial concentration in the 
simulation, with a queue length of about 800 m at maximum concentration, whereas elsewhere 
concentrations are moderate or small. The average or equilibrium concentration is 26 
vehicles/km. 

The initial conditions specify the speed of each 50-m section at the start of simulation. 
While the process can commence with any permitted section speed, in practice it is perhaps more 
realistic to start with a situation where all vehicles are at rest. All vehicles then move, or attempt 
to move, on a signal indicating the start.  

For the system outlined above there would appear to be three obvious questions that can 
be used to assess how realistic is the simulation process: 
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1. Does traffic reach an equilibrium state as could be expected where there is no external 
influence, and how quickly is this equilibrium reached? 

2. What happens at the start, in terms of traffic flow and the direction and speed of the 
acceleration shock wave? 

3. If measurements of speed and concentration are made for intervals of time and space 
during the simulation, how are these points (representing transient states) scattered about the 
speed-concentration function? 
 
Of course, all the simulation output is dependent to some extent on the parameter values chosen 
earlier. But it was found that generally it is not very sensitive to the values used provided that 
these are within a plausible range. 

Output shown in Figure 7 indicates the variation over time of section concentration and 
speed. Effectively, there is little variation after about 600 seconds, which is about the time it 
would take for a typical vehicle to make two loops of the circuit. Intuitively, this appears to be a 
reasonable replication of what might happen in practice. 

Variation of section concentration over space, towards the end of the simulation period, is 
shown in Figure 8. It can be seen that as time goes on traffic behavior moves from what are 
clearly transient states towards a steady state, in other words where any memory of the initial 
state gradually disappears. Again after about 600 seconds there is very little spatial variation. 

The rates at which the traffic system reaches stability, or steady state, appears to be 
influenced by different possible forms of the function to determine the acceleration–deceleration 
factor given in Equation 17.  For example, one can use a weighted form of the deceleration 
element for several of the sections ahead. Or the parameter w could be a function of the 
expression within the brackets. 

 
 

 

FIGURE 7  Reduction in variation over time. 
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FIGURE 8  Reduction in variation over space. 
 
 
In practice, actual traffic behavior would also include random effects or noise. And random 
effects can easily be added to the model outlined if necessary, where naturally they would affect 
the output seen in Figure 7 and Figure 8. But for the purpose of this exercise they are deliberately 
excluded so as to better understand the underlying deterministic behavior. 

The next question is examined by looking in detail at what happens to the queue as it 
disperses after the start. It is found that traffic flow increases from 0, at the stationary queue, to 
about Qmax downstream of the queue within a short time as would be expected.  

Furthermore in Figure 9, an acceleration shock wave can be seen to move upstream as 
expected, with a measured velocity of about 20 km/h. Interestingly, this velocity corresponds 
almost exactly with that predicted using the classical analysis of Gerlough and Huber (10), based 
on the work of Pipes (11). The final question is, what sort of a picture is presented by the 
transient values of speed and concentration, sampled during say the first half of the simulation 
period? As can be seen in Figure 10 there is significant scatter about the model even with a 
purely deterministic formulation.  

If random effects, and experimental error with field measurements, were added then 
scatter would clearly increase. This corresponds with practical experience where many 
commentators have noted the amount of scatter found in plots of speed and concentration or 
density. 
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FIGURE 9  Acceleration shock wave. 
 
 
While starting conditions for the simulation, in terms of the variation of concentration around the 
circuit, are probably more extreme than would be expected with any field experiment, the results 
would appear to validate the earlier assumption that a model fitted to any set of field data 
represents something close to a set of equilibrium traffic states, with transient traffic states and 
“noise” causing deviations about the line. 
 
 
CONCLUSIONS 
 
Simple empirical functions have been suggested for the relationships between traffic variables, 
speed, concentration and flow, as an alternative to Van Aerde functions. While both approaches 
have the shape flexibility to fit a variety of data, and produce almost identical shapes, it is 
believed that the proposed functions are significantly easier to use.   
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FIGURE 10  Scatter in section values. 
 
 

In addition, a simple transformation of the proposed function, or fundamental diagram, 
appears to offer an insight to into how a traffic stream behaves, which takes the proposed model 
beyond a purely data fitting role. A numerical experiment demonstrates that it provides 
convincing output, very similar to that which would be expected in a real-life traffic situation. 

Examination of the results of different model runs shows that in certain circumstances 
stop–start traffic flow conditions are created, which again reproduces what is observable in the 
field. However, the primary purpose of the model is to assess journey times through a road 
system, rather than to replicate particular traffic phenomena. Other models discussed at the 
symposium are probably more suited to this task. 

A feature of the proposed model is that it can deal seamlessly with bottlenecks and free-
flow sections along a route to obtain robust journey times. As is well recognized in many areas 
of engineering the aggregate behavior of a system can be realistic even if the modeling of 
individual components is not perfect. 
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The paper develops procedures for calibrating the steady-state component of various car-following models 
using macroscopic loop detector data. The calibration procedures are developed for a number of 
commercially available macroscopic traffic simulation software, including: CORSIM, AIMSUN2, 
VISSIM, Paramics, and INTEGRATION. The procedures are then applied to a sample data set for 
illustration purposes. The paper then compares the various steady-state car-following formulations and 
concludes that the Gipps and Van Aerde steady-state car-following models provide the highest level of 
flexibility in capturing different driver and roadway characteristics. However, the Van Aerde model, 
unlike the Gipps model, is a single-regime model and thus is easier to calibrate given that it does not 
require the segmentation of data into two regimes. The paper finally proposes that the car-following 
parameters within traffic simulation software be link specific as opposed to the current practice of coding 
network-wide parameters. The use of link-specific parameters will offer the opportunity to capture unique 
roadway characteristics and reflect roadway capacity differences across different roadways. 

 
 

he rapid development of personal computers over the last few decades has provided the 
necessary computing power for advanced traffic microsimulators. Today, microscopic traffic 

simulation software are widely accepted and applied in all branches of transportation engineering 
as an efficient and cost effective analysis tool. One of the main reasons for this popularity is the 
ability of microscopic traffic simulation software to reflect the dynamic nature of the transportation 
system in a stochastic fashion. 

The core of microscopic traffic simulation software is a car-following model that 
characterizes the longitudinal motion of vehicles. The process of car-following consists of two 
levels, namely modeling steady-state and non-steady-state behavior (1). Ozaki defined steady 
state as conditions in which the vehicle acceleration and deceleration rate is within a range of 
±0.05g (2). Another definition of steady-state or stationary conditions is provided by Rakha (3) 
as the conditions when traffic states remain practically constant over a short time and distance. 
Steady-state car-following is extremely critical to traffic stream modeling given that it influences 
the overall behavior of the traffic stream. Specifically, it determines the desirable speed of 
vehicles at different levels of congestion, the roadway capacity, and the spatial extent of queues. 
Alternatively, non-steady-state conditions govern the behavior of vehicles while moving from 
one steady state to another through the use of acceleration and deceleration models. The 
acceleration model is typically a function of the vehicle dynamics while the deceleration model 
ensures that vehicles maintain a safe relative distance to the preceding vehicle thus ensuring that 
the traffic stream is asymptotically stable. Both acceleration and deceleration models can affect 
steady-state conditions by reducing queue discharge saturation flow rates. 

T
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Traffic stream models describe the motion of a traffic stream by approximating for the 
flow of a continuous compressible fluid. The traffic stream models relate three traffic stream 
measures, namely, flow rate (q), density (k), and space-mean-speed (u). Gazis et al. (4) were the 
first to derive the bridge between microscopic car-following and macroscopic traffic stream 
models. Specifically, the flow rate can be expressed as the inverse of the average vehicle time 
headway. Similarly, the traffic stream density can be approximated for the inverse of the average 
vehicle spacing for all vehicles within a section of roadway. Therefore every car-following 
model can be represented by its resulting steady-state traffic stream model. Different graphs 
relating each pair of the above parameters can be used to show the steady-state properties of a 
particular model, including the speed-spacing (u-s) and speed-flow-density (u-q-k) relationships. 
The latter curve is of more interest, since it is more sensitive to the calibration process and the 
shape and nose position of the curve determines the behavior of the resulting traffic stream. 

A reliable use of microsimulation software requires a rigorous calibration effort. Because 
traffic simulation software are commonly used to estimate macroscopic traffic stream measures, 
such as average travel time, roadway capacity, and average speed, the state of the practice is to 
systematically alter the model input parameters to achieve a reasonable match between desired 
macroscopic model output and field data (5). Since the macroscopic flow characteristics are 
mostly related to steady-state conditions, this requires the user to calibrate the parameters of the 
steady-state relationship and therefore the knowledge of the steady-state behavior of the car-
following model is necessary in this process. It should be mentioned that under certain 
circumstances, the non-steady-state behavior can also influence steady-state behavior (3); 
however since this is not the general case, the focus of this paper will be on steady-state 
conditions.   

Over the past decade, several car-following models have been proposed and described in 
the literature. Brackstone and McDonald (6) categorized the car-following models into five 
groups, namely, Gazis-Herman-Rothery (GHR) models, safety distance models, linear models, 
psychophysical or action point models, and fuzzy logic–based models. However, as it was 
mentioned above the measures that are usually used by transportation engineers are those of 
macroscopic nature, which are mostly affected by car-following models. Consequently, 
calibrating these software using macroscopic data offers a significant appeal to modelers. 

The goals of this paper are twofold. First, the paper identifies the steady-state car-
following model for a number of state-of-practice commercial microscopic traffic simulation 
software. Second, the paper develops a procedure for calibrating these steady-state models using 
macroscopic loop detector data.   
 
 
TRAFFIC SIMULATION CAR-FOLLOWING MODELS 
 
The modeling of car-following and traffic stream behavior requires a mathematical representation 
that captures the most important features of the actual behavior (Table 1). In this treatment, the 
relationships obtained by observation, experimentation, and reasoning are given: the researcher 
attempts to express their steady-state behavior in a graphical form, and classify them based on their 
steady-state representation.  

Typically, car-following models characterize the behavior of a following vehicle (vehicle 
n) that follows a lead vehicle (vehicle n-1). This can be presented by either characterizing the 
relationship between a vehicles’ desired speed and the vehicle spacing (speed formulation), or 
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alternatively by describing the relationship between the vehicle’s acceleration and speed 
differential between the lead and following vehicles (acceleration formulation). 

Over the last few decades, several car-following models have been developed and 
incorporated within microsimulation software packages. This section describes the 
characteristics of six of the state-of-practice and state-of-art car-following models, including the 
Pitt model (CORSIM), Gipps’ model (AIMSUN2), Wiedemann74 and 99 models (VISSIM), 
Fritzsche’s model (PARAMICS), and the Van Aerde model (INTEGRATION). Subsequently, 
each model is characterized based on its steady-state behavior and procedures are developed to 
calibrate the model parameters. 

 
 

 

TABLE 1  Software Car-Following Model Formulations 
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It should be noted again that this study only describes car-following behavior under 
steady-state conditions, when the lead vehicle is traveling at similar speeds and both the lead and 
following having similar car-following behavior, i.e., snsdesired, Δun0, where sn.is the spacing 
between the lead vehicle (vehicle n-1) and following vehicle (vehicle n) and Δun is the relative 
speed between the lead and following vehicle (un-1 – un). In addition to these two conditions, we 
are capturing the average behavior given that driver behavior is stochastic in nature. The analysis 
of randomness was presented in an earlier publication (7) and thus is not considered further in 
this research effort.  
 
 
CORSIM SOFTWARE 
 
CORSIM was developed by the Federal Highway Administration (FHWA) and combines two 
traffic simulation models: NETSIM for surface streets and FRESIM for freeway roadways. The 
FRESIM model utilizes the Pitt car-following model that was developed by the University of 
Pittsburgh (8). The basic model incorporates the vehicle spacing and speed differential between 
the lead and following vehicle as two independent variables as demonstrated in and cast as 
 
  (1) 
 
 
where sn(t) is the vehicle spacing between the front bumper of the lead vehicle and front bumper 
of following vehicle at time t (m), sj is the vehicle spacing when vehicles are completely stopped 
in a queue (m), c3 is the driver sensitivity factor (s), b is a calibration constant that equals 0.1 if 
the speed of the following vehicle exceeds the speed of the lead vehicle, otherwise it is set to 
zero (h/km), u is the difference in speed between lead and following vehicle (km/h) at instant 
t+∆t, and un is the speed of the following vehicle at instant t (km/h). 

Given that steady-state conditions are characterized by travel at near equal speeds, the 
third term of the car-following model tends to zero under steady-state driving. Consequently, the 
steady-state car-following model that is incorporated within FRESIM can be written as 
 
 . (2) 
 
 
Introducing a constraint on the vehicle speed based on the roadway characteristics and roadway 
speed limit, the car-following model can be written as 
 
 . (3) 

 

Rakha and Crowther (9) demonstrated that the steady-state car-following behavior is identical to 
the Pipes or the GM-1 model. Furthermore, if we assume that all vehicles are similar in behavior, 
the vehicle subscripts can be dropped from the formulation. The model then requires the 
calibration of three parameters, namely: the facility free-flow speed, the facility jam density, and 
a driver sensitivity factor (DSF) c3. In the case of the NETSIM software the parameter is fixed 
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and equal to 1/3,600, however in the case of the FRESIM model Rakha and Crowther (9) showed 
that the DSF can be related to macroscopic traffic stream parameters as 
 
 

 , (4) 
 
 

where qc is the mean saturation flow rate (veh/h), kj is the mean roadway jam density (veh/km), 
and uf is the space-mean traffic stream free-flow speed (km/h). For example, considering a freeway 
facility with an average lane capacity of 2,400 veh/h/lane, an average free-flow speed of 100 km/h, 
and an average jam density of 150 veh/km/lane; the DSF can be computed as 1.26 s, as 
summarized in Table 2. In other words, the modeler would need to input an average DSF of 1.26 s, 
a free-flow speed of 100 km/h, and an average vehicle spacing of 6.67 m in order to simulate a 
saturation flow rate of 2,400 veh/h/lane. The estimation of the three macroscopic traffic stream 
parameters qc, uf, and kj using loop detector data is described later in the paper. Rakha and 
Crowther (9) demonstrated the calibration of the DSF can be achieved by changing a base 
networkwide parameter and changing link-specific adjustment parameters.  
 

TABLE 2  Steady-State Model Calibration 
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The calibration procedure was applied to a sample arterial data set in which the traffic stream 
space-mean speed is sensitive to the flow rate in the uncongested regime, as illustrated in Figure 1. 
Because the Pipes model assumes that the traffic stream speed remains constant regardless of the 
flow rate in the uncongested regime, the model is not suitable for such applications. Furthermore, 
the model assumes that the speed-at-capacity is identical to the free-flow speed, which is not the 
case in this data set. It should be noted that the capacity for this example is fairly low given that it 
is measured upstream of a traffic signal.  

The AIMSUN2 car-following behavior is modeled using the Gipps car-following model 
(10–12) and presented in Table 2. According to Gipps, the speed of the following vehicle is 
controlled by three conditions. The first condition ensures that the vehicle does not exceed its 
desired speed or a vehicle-specific free-flow speed (Un). The second condition ensures that the 
vehicle accelerates to its desired speed with an acceleration rate that initially increases with speed 
and then decreases to zero as the vehicle approaches its desired speed. The combination of these 
conditions results in Equation 5 which controls the vehicle acceleration while vehicles are distant 
from each other (free-flow behavior). The equation coefficients were obtained from fitting a curve 
to field data collected on a road of moderate traffic. 
 

  (5) 
 
where un(t) is the speed of vehicle n at time t (km/h); an is the maximum desired acceleration rate 
of vehicle n (m/s2); T it the driver’s reaction time (s); and Un is the desired speed of vehicle n or the 
vehicle-specific free-flow speed (km/h). 
 
 

 
FIGURE 1  Example illustration of pipes model 
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In a constrained traffic situation, when vehicles are traveling close to each other, the third 
condition becomes dominant and controls the behavior of the follower vehicle while 
decelerating. The speed of the follower vehicle (see Equation 6) is affected by the driver reaction 
time, the spacing between the leader and follower vehicles, the speed of the leader and follower 
vehicles, and the deceleration rates they are willing to employ. Gipps pointed out that a safety 
margin should be added to the driver’s reaction time. The safety margin would assure the 
vehicle’s ability to stop even when there is a delay to initiate its reaction for some reason. The 
safety margin was assumed to be constant in value and equal to T/2 (half the reaction time). This 
safety value is implicit in Equation 6. 
 

  (6) 
 
Here b and b´ are deceleration parameters of vehicle n (m/s2); b is the actual most severe 
deceleration rate the vehicle is willing to employ in order to avoid a collision; and b´ is the 
estimated most severe deceleration rate the leader vehicle is willing to employ. It is an estimated 
value because it is impossible for the follower to evaluate the real intention of his/her leader; Ln-1 is 
the effective length of vehicle n-1 (the actual length plus a safety margin); sn(t) is the spacing 
between vehicle n and n-1 at time t (m); and un-1(t) is the speed of the preceding vehicle (km/h). 

The parameters related to deceleration rates (b and b´) are very important for the braking 
process modeling. These parameters influence the spacing between the follower and leader 
vehicles and thus affect the lane capacity. 

Assuming the vehicles will travel as close to their desired speed as possible and 
considering the dynamics limitations, the speed of vehicle n at time t +T can be computed as 
 

  (7) 
 
According to the above formulation, once the road is unconstrained and the space headways 
between the vehicles are large enough to allow them to travel at their desired speed, the first 
argument of Equation 7 is applied. In this case, the following vehicle is able to accelerate 
according to the empirical equation of vehicle dynamics. Alternatively, in congested conditions, 
where short headways are typical, the second argument of Equation 7 is applied. In such a case, 
the speed is limited by the leader vehicle performance. Each vehicle establishes its speed in order 
to avoid a collision based on the assumption that the leader deceleration rate will not exceed b´.  

A detailed mathematical analysis of Gipps’ car-following model under steady-state 
conditions was presented in two earlier publications (11, 12). Consequently, the paper will only 
summarize the major findings of these studies and then develop an analytical calibration 
procedure of the model. In his study, Wilson (12) presented a mathematical analysis of 
simplified scenarios and identified parameter regimes that deserve further investigation. The 
paper also showed the derivation of uniform flow solutions (steady-state) and speed-spacing 
functions under simplifying conditions concerning parameters b, b’, and T, and an analysis of the 
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linear stability of the uniform flow, identifying stable and nonstable flow regimes. Wilson 
demonstrated that the steady-state car-following model can be cast as 
 

 . (8) 
 
Rakha et al. (11) demonstrated that in the case that b and b´ are identical the driver reaction time 
can be computed as 
 

 . (9) 
When b is set greater than b´, Wilson (12) demonstrated that the car-following relationship may 
become unphysical and produce multiple solutions for some sets of parameters. Consequently, b 
should be set less than or equal to b´. In the case that b is less than b´, Rakha et al. (11) 
demonstrated that the steady-state car-following relationship can be cast as 
 

 . (10) 
 

Starting with Equation 8 the speed-flow relationship can be derived as 

  (11) 
 
Using the function of Equation 11 Rakha et al. developed lookup tables to estimate the facility 
capacity considering different microscopic car-following parameters. This paper extends the 
research by developing analytical expressions to estimate the microscopic car-following model 
parameters based on macroscopic traffic stream measurements. 

Considering that the maximum flow rate occurs when the first derivative of flow with 
respect to speed equals to zero, the speed-at-capacity can be computed as 
 

  (12) 
 
Consequently, we derive the relationship between the microscopic car-following and 
macroscopic traffic stream parameters as  
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  (13) 
 
where b < b´, and 
 
  (14) 
 
 
The calibration of the model entails assuming the most severe deceleration rate the driver is 
willing to employ (b´) and then computing b using Equation 13 for a desired facility-specific 
mean speed-at-capacity and jam density. The reaction time (T) can then be computed using 
Equation 14, as demonstrated in Table 2. It should be noted that in the case that b = b´ Equation 
14 reverts to Equation 9 given that the speed-at-capacity equals the free-flow speed as computed 
using Equation 12. 

The calibration procedure was applied to the same sample data set gathered along an 
arterial, as illustrated in Figure 2. The figure demonstrates a reasonable fit to the data, however 
given that the data demonstrate that traffic stream speed is sensitive to the traffic stream flow in 
the uncongested regime; the model offers a suboptimal fit to the field data for the uncongested 
regime with a good fit for the congested regime. The speed-at-capacity is different from the free-
flow speed and thus the model is able to capture this phenomenon. 
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FIGURE 2  Example illustration of Gipps model calibration. 
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VISSIM SOFTWARE 
 
The car-following model used in VISSIM is a modified version of two models developed by 
Wiedemann (Wiedemann74 and 99 models) and belongs to a family of models known as 
psychophysical or action-point models. This family of models uses thresholds or action points 
where the driver changes his/her driving behavior. Drivers react to changes in spacing or relative 
speed only when these thresholds are crossed. The thresholds and the regimes they define are 
usually presented in the relative speed/spacing diagram for a pair of lead and follower vehicles.  

First the Wiedemann74 model is described followed by a description of the Wiedemann 
99 model. For the purposes of this study only the area identified as steady-state is of interest. 
This area as was mentioned before has the following steady-state criteria (snsdesired, Δun0). In 
the case of the Wiedemann74 model, the desired vehicle spacing is an interval (ABX ≤ s ≤ SDX) 
instead of a single value as was the case with previously mentioned models. Given that Δun0, 
only the boundaries of desired vehicle spacing interval (ABX & SDX) determine the steady-state 
characteristics of the VISSIM car-following model. The expected value of ABX and SDX 
parameters can be calculated as 
 

 
 
where the BX and EX random variables are computed as 
 

  
 
Here RND1n and RND2n are user specified vehicle-specific (where n is the vehicle index) 
normally distributed random variables with a default mean value of 0.5 and a standard deviation 
of 0.15. NRND is also a normally distributed random variable with a default mean value of 0.5 
and standard deviation of 0.15. The expectation of SDX given as E(SDX) ranges between 1.5 to 
2.5 times the expected value of ABX (E(ABX)), where BXadd, BXmult , EXadd, and EXmult are user-
defined calibration parameters. 

Equations 16 and 17 demonstrate that the parameters ABX and SDX are not internally 
constrained and thus an external maximum speed constraint (u ≤ udesired) must be enforced. Given 
that the desired speed is insensitive to traffic conditions (udesired = uc = uf), the uncongested 
steady-state behavior has a flat top, as illustrated in Figure 3.  

In order to calibrate the steady-state Wiedemann74 model the following calibration 
procedure is developed. The calibration of the Wiedemann74 model can be achieved by deriving 
the speed-flow relationship for the congested regime as 
 
  (20) 
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Here u is the traffic stream space-mean speed (km/h); q is the traffic stream flow rate (veh/h), 
and kj is the traffic stream density (veh/km). By taking the derivative of flow with respect to 
speed the relationship is demonstrated to be a strict monotonically increasing function as shown 
in Equation 21. 
 
 
  (21) 
 
 
 
 
Consequently, the maximum flow occurs at the boundary of the relationship and thus at the 
maximum desired or free-flow speed. As was the case with the Pipes’ model, the speed-at-
capacity equals the free-flow speed. By inputting the maximum flow (capacity) and free-flow 
speed in Equation 20, removing the E(EX) term to compute the capacity upper bound, and re-
arranging the equation; the expected value of BX can be computed as 
 
 . (22) 
 
 
 

By considering that the expected value of SDX is α times the expected value of ABX (i.e. 
E(SDX) = α × E(ABX)), where the parameter α ranges from 1.5 to 2.5; the expected value of EX 
can be computed as 

 
 
  (23) 
 
 
 
Given that kjuf/qc is typically very large, the expected value of EX is approximately equal to the 
parameter α.  

The proposed calibration procedure was applied to the same arterial dataset and the fit is 
illustrated in Figure 3. Again, as was the case with the Pipes’ model the fit to the field data is 
unable to reflect the reduction in traffic stream speed as the arrival rate increases in the 
uncongested regime. Furthermore, the curvature of the car-following model (speed-spacing 
diagram) contradicts typical driver behavior (curvature is convex instead of concave). The model 
does provide a range of behavior for the congested regime as illustrated by the two lines. 

In an attempt to validate the calibration procedure a simple network was coded and 
simulated using the VISSIM software. The network was composed of two single-lane links in 
order to isolate the car-following behavior (i.e., remove any possible impact that lane-changing 
behavior might have on the traffic stream performance). Initially the capacity of both links was 
set equal using the proposed calibration procedure. The arrival rate was increased gradually until 
it exceeded the capacity of the entrance link. The traffic stream flow and speed were measured 
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FIGURE 3  Sample calibration of the Wiedemann74 model. 

 
 
using a number of loop detectors along the first link. The default model randomness was set 
(AXadd = 2, BXadd = 3, and BXmult = 4). The results demonstrate that the uncongested regime 
is flat as was suggested earlier, as illustrated in Figure 4. Subsequently, the capacity at the 
downstream link was reduced by selecting the input parameters using the calibration procedures 
presented earlier. The demand was fixed at the capacity of the upstream link and thus a 
bottleneck was created at the entrance to Link 2. The departure flow rate and speed were directly 
measured upstream of the bottleneck to construct the congested regime of the fundamental 
diagram. As demonstrated in Figure 4 the simulated data appear to initially follow the ABX 
curve and then move towards the SDX curve as the capacity of the downstream bottleneck 
increases. Given that the movement between the two regimes is not documented in the literature 
it is not clear how this is done. The figure clearly demonstrates that the proposed calibration 
procedures are consistent with the VISSIM model output. 

The VISSIM software also offers a second car-following model, namely the 
Wiedemann99 model. The model is formulated as 
 
 
 . (24) 
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FIGURE 4  Wiedemann74 calibration procedure validation. 

 
 
This model, as was the case with the Gipps model, computes the vehicle speed as the minimum 
of two speeds: one based on the vehicle acceleration restrictions and the other based on a steady-
state car-following model. The model considers a vehicle kinematics model with a linear speed-
acceleration relationship where CC8 is the maximum vehicle acceleration at a speed of 0 km/h 
(m/s2) and CC9 is the maximum vehicle acceleration at a speed of 80 km/h (m/s2). The VISSIM 
software also allows the user to input a user-specified vehicle kinematics model that appears to 
override the linear model. This user-specified relationship allows the user to modify the desired 
and maximum driver speed-acceleration relationship. The second term of Equation 24 computes 
the vehicle’s desired speed using a linear car-following model and thus is identical to the Pipes 
model. 

Consequently, as was done with the Pipes model, the model constants CC0 and CC1 (also 
known as the driver sensitivity factor) can be computed as 
 
   (25) 
 
and     
 
 . (26) 
 
 
where CC0 is the spacing between the front bumper of the subject vehicle and the rear bumper of 
the lead vehicle. This equals the jam density spacing minus the average vehicle length. The DSF 
(CC1) can be calibrated using three macroscopic traffic stream parameters, namely, the expected 
roadway capacity, jam density, and free-flow speed. 
 
 
PARAMICS SOFTWARE 
 
The car-following model utilized in the Paramics software, as was the case with the VISSIM 
software, is a psychophysical car-following model that was developed by Fritzsche (13). 
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Fritzsche’s model uses the same modeling concept as the Wiedemann74 car-following model. 
The difference between these two models is the way thresholds are defined and calculated. 
Figure 5 depicts the Fritzsche model’s thresholds in the Δu – Δx plane.  

The area corresponding to steady-state conditions is almost identical to Wiedemann’s 
car-following model. The vehicle spacing for this regime lies between the desired spacing (AD) 
and the risky spacing (AR). These two boundaries are determined as 

 

 0 3.6
n

r

u
A R A T= + ´  (27) 

and 

 1
0 3.6

n
D

u
A D A T -= + ´  (28) 

 
where A0 is the vehicle spacing at jam density, Tr is the risky time gap (usually 0.5 s), TD is the 
desired time gap (with a recommended value of 1.8 s). The resulting steady-state car-following 
model can be written as 
 

   
 
Similar to the Wiedemann car-following model, the desired speed constraint must be enforced 
externally. Again, as was the case with the Wiedemann74 model, the relationship provides a 
range of car-following behavior within the congested regime. Unlike the Wiedemann74 model, 
 
 

 
FIGURE 5  Fritzsche’s car-following model.  
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the car-following model is linear and thus a Pipes model. Using similar calibration procedures, 
the various car-following model parameters are related to macroscopic traffic stream parameters 
as 
 

 0
1000

j

A
k

=  (29) 
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and 
 
 . (31) 
 
           
 
The calibration procedure was applied to the same arterial data set and the results are similar to 
those of the Wiedemann74 model, as illustrated in Figure 6. It should be noted that the car-
following model provides a range of data in the congested regime considering a linear car-
following modeling. 
 
 
INTEGRATION SOFTWARE 
 
The steady-state functional form that is utilized in the INTEGRATION software is the Van 
Aerde nonlinear functional form that was proposed by Van Aerde (14) and Van Aerde and 
Rakha (15), which is formulated as 
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where c1, c2, and c3 are model constants. Demarchi (16) demonstrated that by considering three 
boundary conditions the model constants can be computed as 
 
   
  (33) 
 
 
 
As was demonstrated by Rakha and Crowther (17) this functional form amalgamates the 
Greenshields and Pipes car-following models. 
 
 .  
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FIGURE 6  Sample calibration of the Fritzsche model. 

 
 

Ignoring differences in vehicle behavior within a traffic stream and considering the 
relationship between traffic stream density and traffic spacing, the speed–density relationship can 
be derived as 
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Of interest is the fact that Equation 34 reverts to Greenshields’ linear model, when the speed-at-
capacity and density-at-capacity are both set equal to half the free-flow speed and jam density, 
respectively (i.e., uc = uf/2 and kc = kj/2). Alternatively, setting uc = uf results in the linear Pipes 
model given that  
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Rakha (3) demonstrated that the wave speed at jam density (denoted as wj) can be computed by 
differentiating the speed–density relationship with respect to density at jam density, to be  
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By applying Equation 32 to 34 and ignoring differences between vehicles Rakha derived 
 
.  
  (36) 
 
 
 
 
Considering, a typical lane capacity of 2,400 veh/h, a free-flow speed of 110 km/h (which is 
typical of U.S. highways), and a jam density of 140 veh/km/lane, the wave velocity at jam 
density ranges between approximately -11.5 and -20.3 km/h, when the speed-at-capacity is 
varied from 80% to 100% the free-flow speed (which is typical on North American freeways). 

As was demonstrated earlier, the Van Aerde model reverts to the Pipes linear model 
when the speed-at-capacity is set equal to the free-flow speed. Consequently, it can be 
demonstrated that under this condition the wave speed of Equation 36 reverts to 
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which is the speed of the linear model. Furthermore, when uc = uf/2 and kc = kj/2 the wave speed 
at jam density is consistent with the Greenshields model estimates and is computed as 
 
 j fw u= -  (38) 

 
Field observations demonstrate a concave speed-headway relationship. Consequently, the 
derivative of the speed-density relationship was computed as 
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Given that the c2, c3, and uf parameters are always positive, Rakha (3) demonstrated the function 
is a strictly increasing monotonic function. Alternatively, the speed-density relationship is a 
strictly decreasing monotonic function as  
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While a strict monotonic function is desired from a theoretical standpoint, it is not necessarily 
reflective of real-life driving behavior. For example, drivers might abide by a facility speed limit 
if they are the only vehicle on a roadway, however if other vehicles are present on the roadway 
slower drivers might be encouraged to follow faster vehicles recognizing the lower likelihood of 
being ticketed for over-speeding. This behavior may only hold when the traffic stream density is 
very low but contradicts typical traffic flow theory. 
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The Van Aerde model was calibrated to the same arterial data that were presented earlier, 
as illustrated in Figure 7. The figure demonstrates that the model is extremely flexible and thus is 
capable of providing a good fit to the field data for the entire range of data both in the 
uncongested and congested regimes. It should be noted that the fit provides the expected 
relationship. Differences in driver behavior can be captured by introducing differences in the 
four traffic stream parameters, namely: free-flow speed, speed-at-capacity, capacity, and jam 
density. 
 
 
TRAFFIC STREAM MODEL CALIBRATION 
 
The estimation of the four traffic stream parameters (uf, uc, qc, and kj) requires the calibration of a 
traffic stream model to loop detector data. This effort entails four decisions, namely: (1) define 
the functional form to be calibrated, (2) identify the dependent and the independent variables, (3) 
define the optimum set of parameters, and (4) develop an optimization technique to compute the 
set of parameter values. Van Aerde and Rakha (15) and later Rakha and Arafeh (18) developed a 
calibration approach that minimizes the orthogonal error about the 3-D fundamental diagram to 
estimate the expected value of the four traffic stream parameters. The model is briefly described 
here; however a more detailed description is provided elsewhere (18). The approach is unique 
because it does not require the identification of dependent and independent variables since it 
applies a neutral regression approach (minimizes the orthogonal error). 
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FIGURE 7 Sample calibration of the Van Aerde model. 
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If we consider the Van Aerde functional form given that it provides the highest level of 
flexibility, as was demonstrated in the previous section, the optimization model can be 
formulated as 
 

 
 
where ui, ki, and qi are the field observed space-mean speed, density, and flow measurements, 
respectively. The speed, density, and flow variables with hats (^) are estimated speeds, densities, 
and flows while the tilde variables (~) are the maximum field observed speed, density, and flow 
measurements. All other variables are defined as was done earlier in describing the Van Aerde 
functional form.  

The objective function ensures that the formulation minimizes the normalized orthogonal 
error between the three-dimensional field observations and the functional relationship, in this 
case the Van Aerde functional form. The three error terms are normalized in order to ensure that 
the objective function is not biased towards reducing the error in one of the three variables at the 
expense of the other two variables. This data normalization ensures that the parameters in each of 
the three axes range from 0.0 to 1.0 and thus a minimization of the orthogonal error provides a 
quality of fit that is equivalent across all three axes.  

The initial set of constraints, which is nonlinear, ensures that the Van Aerde functional 
form is maintained, while the second set of constraints is added to constrain the third dimension, 
namely the flow rate. The third and fourth set of constraints guarantees that the results of the 
minimization formulation are feasible. The fifth set of constraints, ensures that the four 
parameters that are selected do not result in any inflection points in the speed–density 
relationship (i.e., it ensures that the density at any point is less than or equal to the jam density). 
A detailed derivation of the final constraint is provided elsewhere (3). The sixth set of equations 
provides estimates for the three model constants based on the roadway’s mean free-flow speed 
(uf), speed-at-capacity (uc), capacity (qc), and jam density (kj). The final set of constraints 
provides a valid search window for the four traffic stream parameters that are being optimized 
(uf, uc, qc, and kj).  
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The total number of independent decision variables equals twofold the number of field 
observations plus the four traffic stream parameters uf, uc, qc, and kj. For example a problem with 
100 observations results in a total of 204 independent decision variables (2 x 100 + 4). The  
heuristic approach that was developed earlier was applied to the data to estimate the four traffic 
stream parameters (15, 18). Once the four traffic stream parameters are estimated the individual 
car-following models can be calibrated using the equations provided in Table 2. 
 
 
CONCLUSIONS 
 
The paper developed procedures for calibrating the steady-state component of various car-
following models using macroscopic loop detector data. The paper then compared the various 
steady-state car-following formulations and demonstrated that the Gipps and Van Aerde steady-
state car-following models provide the highest level of flexibility in capturing different driver 
and roadway characteristics. However, the Van Aerde model, unlike the Gipps model, is a 
single-regime model and thus is easier to calibrate given that it does not require the segmentation 
of data into two regimes. An analysis of existing software demonstrated that a number of car-
following parameters are network- and not link-specific and thus do not offer model users with 
the flexibility of coding different roadway capacities for different facility types. In some 
software, however, arterial and freeway roadway car-following parameters can be coded 
separately, as in the case of CORSIM and VISSIM. However, major roadway capacity 
differences can be observed within the broad range of facility categories. For example, the 
saturation flow rate may vary from 1,300 to 2,000 veh/h on an arterial depending on the roadway 
and driver characteristics. Consequently, the paper recommends that modifications be made to 
the various software to allow more flexibility in setting link-specific car-following parameters. 
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Mesoscopic traffic simulation models combine macroscopic supply (e.g., link performance functions and 
capacities) with microscopic demand (e.g., individual drivers and disaggregate behavior models) to 
capture the time-varying evolution of congestion patterns, queues, and spillbacks on traffic networks. 
Such systems are being applied to solve a variety of off-line and online traffic management problems. 
Often, the link performance function takes the form of a speed–density relationship for each link or 
segment in the study network. These functions are based on the fundamental diagram and model the 
variation of average vehicle speed with traffic density. Since each network link or segment can have a 
separate speed–density function (each with a few parameters), the total number of parameters to be 
calibrated is potentially very large. This paper presents some experiences with calibrating speed–density 
functions on a variety of real networks. Flexible off-line and on-line calibration frameworks are discussed. 
The calibrated functions are embedded within the DynaMIT dynamic traffic assignment model, whose 
accuracy is evaluated against real data. The expected benefits from recalibrating speed–density functions 
during on-line operations using real-time sensor data are also illustrated. 

 
 

esoscopic simulation tools such as DynaMIT (1) and DYNASMART (2) have been 
developed to model large-scale traffic networks. Such dynamic traffic assignment (DTA) 

tools combine detailed demand and supply model components together with their complex 
interactions to provide accurate depictions of queues, spillbacks and congestion evolution. 
Macroscopic simulation models also are used for modeling freeway corridors (3, 4). The demand 
components of these models typically include time-varying origin–destination (O-D) matrices 
and route choice models, while the supply side captures link capacities, queuing models and 
macroscopic traffic dynamics relationships. Critical for modeling traffic dynamics are speed–
density functions that play an important role in both mesoscopic and macroscopic traffic 
simulation models.   

Numerous studies have focused on estimating various demand-side inputs and 
parameters. For example, many papers focus on the estimation of dynamic O-D flows from 
traffic counts (5–10). Route choice models have been estimated from surveys (11) and refined 
with aggregate data (12, 13). The supply side seems to have received relatively less attention, 
though it plays a critical role in determining network performance. Speed–density functions are 
particularly challenging, as they must encapsulate a variety of effects including traffic dynamics, 
lane speed distributions, vehicle and driver mix, and weather conditions. Many of these aspects 
vary with location within the network, and require careful calibration against real-world sensor 
data. 

M
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This paper reviews methods for calibration of speed–density relationships and presents 
some experiences with calibrating speed–density functions in the context of dynamic traffic 
assignment (DTA) models, on a variety of real networks including Irvine and Los Angeles 
(California), Lower Westchester County (New York) and Southampton (United Kingdom). Both 
off-line and on-line calibration frameworks are discussed, that allow the incorporation of any 
available source of data, including data from automated vehicle identification (AVI) systems and 
probe vehicles. The calibrated functions are embedded within the DynaMIT dynamic traffic 
assignment model, whose accuracy is evaluated against real data. The expected benefits from re-
calibrating speed–density functions during on-line operations using real-time sensor data are 
illustrated.   
 
 
APPROACHES FOR CALIBRATION OF SPEED–DENSITY RELATIONSHIPS 
 
The calibration of a DTA’s speed–density functions involves a potentially large set of 
parameters. Recent studies have employed systematic algorithms for the calibration of DTA 
supply models, in particular speed–density relationships, with varying degrees of success. The 
typical data used for the calibration of these parameters are sensor records of at least two of the 
three primary traffic descriptors: speeds, flows (or counts) and densities (or detector 
occupancies). In this section we review the experience with optimization algorithms applied to 
this problem. We classify the applications as off-line (archived sensor data) and on-line (real-
time sensor data and calibration). 
 
Off-Line Calibration Approaches 
 
Link performance functions in much of the literature are calibrated by fitting a curve to the 
observed traffic data. For example, Leclercq (14) estimates four parameters of a two-regime 
flow-density function with data from arterial segments in Toulouse, France. The function is 
comprised of a parabolic free-flow part and a linear congested regime. An interior point, 
conjugate gradient method is employed to optimize the fit to observed sensor flows, with the 
fitted flows obtained from the assumed flow-density function. Van Aerde and Rakha (15) 
describe the calibration of speed-flow profiles by fitting data from loop detectors on I-4 near 
Orlando, Florida. Links without sensors are allotted a speed-flow profile from a physically 
similar link that is instrumented (and for which a profile was fitted).  

A major drawback of the above approach is one of localized fit. The estimated link 
performance functions reflect spot measurements at discrete sensor stations, and do not 
necessarily correspond to overall link dynamics (especially in the presence of congestion). The 
estimation procedure also does not enforce consistency across contiguous links or segments, 
stressing the need for an expanded approach that considers larger sections of the network. For 
example, it may be beneficial to relax the fit at a lightly traveled link so as to improve the fit at 
several links further downstream. 

In the context of traffic simulation and DTA models, most calibration approaches focus 
on the independent estimation of subsets of supply parameters. Munoz et al. (16) describe a 
calibration methodology for a modified cell transmission model (MCTM), applied to a 14-mile 
westbound stretch of the I-210 freeway in Pasadena, Calif. Free-flow speeds are obtained 
through least squares, by fitting a speed-flow plot through each detector's data. Free-flow speeds 
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for cells without detectors are computed by interpolating between the available speed estimates. 
In the case of bad or missing sensor data, a default of 60 mph was assumed. Speed-flow 
functions are obtained through constrained least squares on sensor data from congested cells. 

Many applications of macroscopic traffic models focus on freeway corridors or sections. 
Ngoduy and Hoogendoorn (4) calibrate 10 METANET parameters for a section of the A1 
freeway in The Netherlands using the Nelder-Mead method (a gradient-free algorithm working 
directly with objective function evaluations). The calibrated terms include fundamental diagram 
parameters such as free-flow speed, minimum speeds and maximum density, and other 
coefficients that capture the effects of merging, weaving and lane drops. Ngoduy et al. (17) 
calibrate six of these METANET parameters for a freeway section with no ramps. An objective 
function measuring the fit to count and speed data is minimized.    

Park et al. (18) apply DynaMIT to a network in Hampton Roads, Va. and estimate speed–
density functions for segments. They adopt the procedure in Van Aerde and Rakha (15) and 
conclude that the initial calibration results need adjustments to improve DynaMIT’s overall 
ability to estimate and predict traffic conditions.  

Kunde (19) describes a three-stage approach to speed–density calibration. At the 
disaggregate level, segment speed–density relationships are estimated similarly to Van Aerde 
and Rakha (14). In the second stage, a suitable subnetwork is chosen, and the estimates from the 
previous stage are refined by accounting for interactions between the segments. The choice of a 
subnetwork depends on the structure of the network and the location of sensors. An ideal 
subnetwork would allow one to deduce the true O-D flows for the subnetwork from the available 
sensor count information, so that the supply parameters may be inferred under known demand 
conditions. The final stage utilizes the entire network to incorporate demand–supply interactions 
into the calibration process. The approach was demonstrated with the DynaMIT DTA model, 
using data from Irvine, Calif. A total of 1,373 segments were divided into 11 groups and a 
speed–density function fitted for each group. 

A least squares objective function measuring the fit to count data was then minimized on 
a sub-network with known demands inferred from sensor counts. Simultaneous perturbation 
stochastic approximation (SPSA) was used to fine tune the speed–density function parameters. 
This algorithm approximates the components of the gradient vector from just two objective 
function evaluations, after perturbing all components of the parameter vector simultaneously 
(20). The Box-Complex algorithm (21) was applied with better success, though the numerical 
example was too small to draw general conclusions. 

In the previous approaches, the calibration variables were limited to the speed–density 
function parameters. However, the optimization depends on several other DTA inputs such as O-
D flows and route choice model parameters. The values selected for these other inputs and 
parameters thus impact the outcome of the supply calibration. One may thus iterate between 
demand and supply calibration steps until convergence (as defined by the modeler) is reached. 
This iterative procedure can be time consuming and inefficient, as only a subset of the available 
data is used in either calibration. 

Balakrishna (22) and Balakrishna et al. (23) present a calibration framework that allows 
the simultaneous calibration of all supply and demand parameters and unknown inputs typical to 
DTA models (e.g., O-D flows, route choice parameters, capacities, and speed–density 
parameters) using any available data (e.g., counts, speeds, densities, and queue lengths). Thus all 
significant DTA inputs and parameters may be estimated simultaneously, providing the most 
efficient result. The problem is solved with the SPSA algorithm. 
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This calibration approach provides a unique advantage. Since the parameters of the 
speed–density functions for all segments are estimated simultaneously, the function parameters 
for each segment can be calibrated to better fit the traffic data at the network level. 
 
On-Line Calibration Approaches 
 
In the current DTA framework, only the O-D f ows are calibrated on-line. In most cases, the 
approach to the problem of calibration of the other parameters has been to calibrate the 
simulation models off-line using a database of historic information. The calibrated parameter 
values are then used in the on-line simulations. The calibrated model parameters, therefore, 
represent average conditions over the period represented in the data. Models that were calibrated 
this way may produce satisfactory results in off-line evaluation studies, which are concerned 
with the expected performance of various traffic management strategies. However, this may not 
be the case in real-time applications, which are concerned with the system performance on the 
given day. If the model that was calibrated off-line is used without adjustment, the system is not 
sensitive to the variability of the traffic conditions between days, which are the result of 
variations in the parameters of the system, such as weather and surface conditions. Such 
variations may cause traffic conditions to differ signif cantly from the average values. Thus, the 
predictive power of the simulation model may be reduced. To overcome this problem, real-time 
data can be used to recalibrate and adjust the model parameters on-line so that prevailing traffic 
conditions can be captured more accurately. The wealth of information included in the off-line 
values can be incorporated into this process by using them as a priori estimates. 

Doan et al. (24) outline a framework for periodic adjustments to a traffic management 
simulation model to maintain an internal representation of the traffic network that is consistent 
with that of the actual network. A similar approach is proposed in Peeta and Bulusu (25), where 
consistency is sought in terms of minimizing the deviations of the predicted time-dependent path 
flows from the corresponding actual flows. He et al. (26) develop an on-line calibration process 
that complements their off-line approach and adjusts an analytical dynamic traffic model’s 
output to be consistent with real-world traffic conditions.  

Tavana and Mahmassani (27) use transfer function methods (bivariate time-series 
models) to estimate dynamic speed–density relations from typical detector data. Huynh et al. 
(28) extend the work of Tavana and Mahmassani (27) by incorporating the transfer function 
model into a simulation-based DTA framework. Qin and Mahmassani (29) evaluate the same 
model with actual sensor data from several links of the Irvine, Calif. network. 

Wang and Papageorgiou (30) present a general approach to the real-time estimation of 
the complete traffic state in freeway stretches. They use a stochastic macroscopic traffic flow 
model and formulate it as a state-space model, which they solve using an extended Kalman filter 
(EKF). The formulation allows dynamic tracking of time-varying model parameters by including 
them as state variables to be estimated. A random walk is used as the transition equations for the 
model parameters. Wang et al. (31) present an extended application of this approach. 

Antoniou et al. (32) formulate the problem of on-line calibration of a DTA model as a 
nonlinear state-space model that allows for the simultaneous calibration of all model parameters 
and inputs. The methodology is generic and flexible and does not make any assumptions on the 
underlying model structure, the parameters to be calibrated or the type of available 
measurements. Because of its nonlinear nature, the resulting model cannot be solved by the 
Kalman f lter, and therefore, nonlinear extensions are considered: the EKF; the limiting EKF 
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(LimEKF); and the unscented Kalman f lter. The solution algorithms are applied to the on-line 
calibration of the state-of-the-art DynaMIT DTA model, and their use is demonstrated in a 
freeway network in Southampton, U.K. The LimEKF shows accuracy that is comparable to that 
of the best algorithm but with vastly superior computational performance.  
 
 
CASE STUDIES AND RESULTS 
 
We now present results related to the application of the state-of-the-art methods reported in 
Balakrishna et al. (23) and Antoniou et al. (32). These studies respectively focus on the off-line 
and on-line calibration of speed–density parameters used in the DTA model DynaMIT. The 
focus of the discussion is on the impact of data used in the calibration and the importance of 
calibration with respect to the ability of the model to replicate actual conditions. In all studies the 
quality of the calibration was ascertained using the normalized root mean square error (RMSN) 
statistic to evaluate the fit to both count and speed data: 
 

 









 S

i i

S

i ii

y

yyS
RMSN

1

1
2ö

       

 
where iy are observed measurements, iyö  are simulated values and S is the total number of 
measurements.  
 
Off-Line Calibration Results 
 
The above method has been applied to the Los Angeles network (Figure 1), an area of heavy 
traffic throughout the year owing to commuters and the regularity of sporting and convention 
special events. The network has 740 segments. 

Table 1 summarizes the numerical results. cRMSN  represents the fit to counts while 
sRMSN  is the fit to speeds. RMSN was used to evaluate the quality of the results.  It is seen that 

the estimator S(c), denoting supply calibration using count data, results in a significant 
improvement in replicating the counts and traffic dynamics (speeds) in the area. Further, the 
increased accuracy is reflected on both freeway and arterial links. In the base case (Ref), the 
speed–density parameters were fitted at individual sensor locations and attributed to all segments 
in the respective groups.  

Vaze (33) presented a case study, using the framework suggested by Balakrishna et al. 
(23), in which demand and supply parameters were simultaneously calibrated using not only loop 
detectors data but also AVI data. In the network of Lower Westchester County, N.Y. (shown in 
Figure 2), sensors deployed for an electronic toll collection system at various locations detect 
vehicles equipped with transponders and report, among other information, point-to-point travel 
time for specific locations. Using synthetic data for this setup, Vaze calibrated a total of more 
than 6,400 parameters (3,856 demand parameters, i.e., 482 O-D pairs for each of the eight 
intervals of simulation, and 2,624 supply parameters, including 10 groups of parameters for 
speed–density relationship). SPSA was used as the solution algorithm. 
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Vaze confirmed that simultaneous demand–supply calibration was found to be superior 
compared to the demand-only calibration and it increased the calibration accuracy substantially. 
He also found that the use of AVI data had improved the calibration accuracy, both in terms of 
sensor count error as well as travel time (Table 2).  

 
 
 

 
 

FIGURE 1  Los Angeles network (SOURCE: www.mapquest.com). 
 
 
 

TABLE 1  RMSN Statistics for Los Angeles Study 
 

Estimator 
Fit to Counts (RMSNc) Fit to Speeds (RMSNs) 
Freeway Arteri al Freeway Arterial 

Ref 0.218 0. 239 0.181 0.203 
S(c) 0.149 0. 178 0.119 0.131 
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On-Line Calibration Results 
 
Antoniou et al. (32) present an application of their on-line DTA calibration methodology using 
data from a freeway network in Southampton, U.K. (Figure 3).  The study demonstrates the 
performance gains that can be obtained through the dynamic, simultaneous calibration of the 
speed–density relationships and other supply-side parameters.  
 
 

 
 

FIGURE 2  Lower Westchester County network. 
 
 
 

TABLE 2  RMSN Statistics for Lower Westchester County Study 
 

  Fit to Counts (RMSNc) Fit to Speed (RMSNs) 

A priori 0.253 0. 291 
Count data 0.200 0. 222 

Count+AVI data 0.182 0. 212 
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FIGURE 3  Lower Westchester County network. 
 
 

Table 3 summarizes the DTA model estimation accuracy improvements due to the impact 
of the on-line calibration of the supply parameters. The base case in this table is the situation 
where only the demand parameters (O-D flows) are calibrated on-line. The initial off-line 
calibration of the DTA model has been based on data from several days with normal (dry) 
weather conditions. When the on-line calibration is performed for a day with similar 
environmental conditions, the simultaneous on-line calibration of both the demand and supply 
parameters results in an improvement of the model estimation accuracy of more than 10% both 
in terms of fit to counts and fit to speed (over the base case in which only the demand parameters 
are calibrated on-line). 

The power of the on-line calibration procedure is further demonstrated by applying the 
same model (initially calibrated using data from days with dry weather) to a rainy day. Again, 
the on-line calibration allows the model to adapt and capture the prevailing conditions 
satisfactorily.   

Figure 4 presents examples of the estimated speed–density relationships. As expected, the 
average curve falls between the relationships obtained for intervals with dry and wet weather 
conditions respectively. For the same density, lower speeds are experienced under wet weather 
conditions, while in general dry weather conditions allow for higher speeds for the same density 
values.  
 
 

TABLE 3  RMSN Statistics for Southampton Study 
 

  Demand-Only Demand and Supply 

  Fit to Counts 
(RMSNc) 

Fit to Speeds 
(RMSNs) 

Fit to Counts 
(RMSNc) 

Fit to Speeds 
(RMSNs) 

Dry weather 0.128 0. 126 0. 109 0.112 
Wet weather 0.115 0. 131 0. 102 0.117 
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FIGURE 4  Speed–density relationships for average, dry and wet weather conditions.  

 
 
CONCLUSION 
 
Speed–density functions are important supply-side inputs to many DTA models, and help 
capture traffic dynamics. Owing to the wide variation in the factors that affect traffic dynamics 
(such as merging and weaving behavior, vehicle and driver mix, weather conditions, etc), these 
functions must be calibrated with traffic data. This paper reviews some applications of the 
DynaMIT DTA model in a variety of locations, focusing on the calibration of its segment-
specific speed–density functions. 

The local calibration of speed–density functions is generally straightforward, but has 
some potential drawbacks. The functions can be over-fit in each specific location resulting in a 
suboptimal calibration at the network level. Grouping of segments due to sparse sensor coverage 
can also result in the discarding of spatial differences. Further, the availability of modern data 
such as point-to-point travel times can help to better explain traffic dynamics. A flexible 
calibration approach that addresses these aspects is reviewed, and its benefits outlined. Case 
studies drawn from real-world applications of DynaMIT, a mesoscopic DTA model, are 
presented to illustrate that speed–density functions can be accurately and reliably calibrated with 
a wide range of data. The validity of these calibrations is confirmed through off-line and on-line 
tests of state estimation and prediction performance. 
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SIMULATION AND CALIBRATION OF TRAFFIC FLOW MODELS 
 

Lane-Change Maneuver Detection with Differential Global 
Positioning System Data from Probe Vehicle  

 
YIGUANG XUAN 

BENJAMIN COIFMAN 
 
 

The impact of lane-change maneuvers is fundamental to microscopic traffic flow theory. Due to the difficulty 
of tracking many vehicles over time and space, most of the published research in this area seeks to find lane-
change maneuvers visually from wayside cameras. This paper presents a different approach, finding the lane-
change maneuvers of a probe vehicle itself using differential global positioning system data. The authors first 
use multiple probe vehicle trajectories through a study corridor to establish a reference trajectory from the 
median of all trajectories, and this reference trajectory will be used to define the position of the current lane. 
This approach eliminates the need for high-resolution maps accurate enough to capture the exact position of 
the individual lanes. The lane change maneuver detection is then divided into two parts, controlling for the 
impacts of mandatory lane change maneuvers (MLC) and then for discretionary lane change maneuvers 
(DLC). MLC are detected by comparing the difference between the mean and median of lateral distance of all 
trajectories relative to a reference trajectory. After distinguishing all the MLC, the DLC are found by setting 
lateral thresholds around the reference trajectory, i.e., when a given trajectory leaves this virtual lane. In the 
process the authors control for the impacts of GPS errors, such as multipath, arising from obstructions. DLC 
are then found by comparing the out-of-threshold-line time and length to a threshold acquired empirically 
from data. 
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SIMULATION AND CALIBRATION OF TRAFFIC FLOW MODELS 
 

Effect of Lane-Change Maneuvers on a  
Simplified Car-Following Theory 

 
CHAO WANG 

BENJAMIN COIFMAN 
 
 

This paper investigates the linearity of empirically observed spacing-speed relation for various drivers in the 
context of car-following theory and how lane change maneuvers perturb the relation. It is shown that the 
impacts of lane-change maneuvers are not balanced; the response time to an exiting vehicle is much longer 
than the response time to an entering vehicle. This accommodation imbalance will propagate upstream and as 
discussed, it appears to be a source of speed and flow fluctuations within a queue. The present work is 
motivated by Newell’s simplified car-following theory, namely that during congested periods the trajectory of 
a given vehicle is essentially identical to the preceding vehicle’s trajectory except for a translation in space 
and time. One of the basic assumptions in Newell’s presentation is that spacing and speed are linearly related. 
While other researchers have found macroscopic evidence supporting Newell’s theory, they have also found 
that it fails in the presence of frequent lane-change maneuvers. This paper takes a microscopic approach, 
employing vehicle trajectory data. This paper provides support for Newell’s assumed linear relation between 
spacing and speed over a large range of speeds when vehicles are not impacted by lane-change maneuvers. It 
also offers a possible explanation for the degraded performance of Newell’s theory in the presence of heavy 
lane-change maneuvers. Although the focus is on Newell’s simplified car-following theory, the empirical 
results of this study have similar implications for many other car-following theories as well. 
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Strategies to Improve Dissipation into Destination Networks 
Using Macroscopic Network Flow Models 

 
VINAYAK V. DIXIT 
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Department of Civil & Environmental Engineering 
University of Central Florida 

 
 

Backups originating from destinations have been observed during evacuation. These backups usually occur 
due to congestion at the destination network, which results in spillbacks onto the evacuation routes. These 
spillbacks result in queuing and delays that hamper evacuation operations. This paper presents theoretical 
proofs for the fundamental flow–speed–concentration relationship and the speed–accumulation relationship 
(Greenshields, Greenberg, and bell-shaped model) at a network level. These relationships and the 
relationships between inflow-accumulation and outflow-accumulation at a network level are studied using 
microscopic simulation. A strategy is developed (called the network breathing strategy) to improve 
dissipation of vehicles into the destination network using these relationships between network level variables. 
A comparison of the network breathing strategy to a do-nothing strategy in a simulation network showed a 
statistically significant increase in the number of vehicles dissipated into the network. This indicates that the 
application of such strategies on the destination networks would help improve evacuation operations by 
clearing evacuation routes and reducing queuing. 

 
 

ecent natural disasters like hurricanes Katrina and Rita in 2005 have highlighted the 
importance of efficient transportation strategies to ensure smooth and effective evacuation 

of people out of harm’s way. Strategies such as improving capacity by starting contraflow 
operations and demand staging have been widely studied and implemented as effective plans to 
reduce evacuation time.  

During the South East U.S. Regional Transportation Analysis Meeting in 2000, it was 
observed that “more than half the evacuees felt like it took them more than 5 hours longer to 
reach their destination than they thought that it would” (1). This is mainly due to the limited 
capacity of the exit ramps as well as congestion caused due to the large number of vehicles in the 
destination network. Evacuation routes usually terminate at large cities, and road networks in 
these cities are not designed to handle the large number of vehicles entering them during 
evacuation. This results in congestion which in turn leads to backups that can extend for miles on 
the evacuation route. Though such phenomena have been observed repeatedly, limited literature 
on evacuation seems to have addressed this issue of network congestion at the termination node. 
Most simulation studies tend to assume ideal destinations, where vehicles leave the system as 
soon as they reach the destination irrespective of the number of vehicles already present in the 
destination road network. This is a myopic perspective of analyzing evacuation routes. Therefore 
it is important to understand network-level properties of traffic variables. 

Initial attempts to understand relationships between network-level variables consisted of 
Zahavi’s (2, 3) work on the  -relationship between network-level parameters of traffic intensity 
(I, the distance traveled per unit area), road density (R, length of road per unit area) and the 

R
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weighted space mean speed (v).  Using data from England and the United States he arrived at the 
relationship in Equation 1.  
 
 /I R v           (1) 
 
Buckley and Wardrop (4) later showed that   was strongly correlated to the space mean speed. 
In a later field study, Ardekani (5) proved that the  parameter had a positive correlation to 
network concentration. This made the   parameter model highly inaccurate. Chapter 6 of the 
Traffic Flow Theory monograph revised in 1997 (6) contains a comprehensive review of these 
macroscopic flow models. 

In order to characterize flow of vehicles in urban network Prirgogine and Herman (7) 
proposed the two-fluid theory. The two-fluid model assumes that vehicular traffic in an urban 
network can be differentiated as stopped vehicles and running vehicles. These models were 
constructed between the average travel time per mile (T) versus the average running time per 
mile (Tr) using regression (Equation 2). The parameters (k, Tm) involved in this two-fluid model 
were indicative of the quality of service of the networks. 

 

 
1

1 1

k
k k

r mT T T   (2) 

 

Mahmassani et al. (8) and Williams et al. (9) during their study of two fluid models using 
computer simulation showed that relationships between the three fundamental traffic variables 
speed-flow-concentration (Equation 3) at a network level were similar to those on individual 
road facilities.  
 
 Q KV  (3) 
 
In a later simulation study Mahmassani et al. (8) found that both the linear V-K model proposed 
by Greenshields, and the nonlinear bell-shaped function proposed by Drake et al. (11) were able 
to describe the relationship between V and K fairly well. In their paper they also studied the 
effect of length and width of links as well as various traffic controls (perfectly coordinated, 
isolated and simultaneous signal operation) on the speed-concentration relationships and the 
flow-concentration relationships. 

Even though these studies showed interesting results, due to the very few (six) data points 
used for the analysis, the conclusions in the paper are prone to major skepticism. Also, each 
simulation run was done for constant concentration conditions, in which constant concentration 
was maintained by allowing vehicles to circulate in the network. Such concentration conditions 
generally do not prevail in real urban networks, where vehicles enter and leave, and 
concentrations in the network vary more dynamically. 

Mahmassani et al. (12) conducted microscopic simulation experiments on larger urban 
networks than the ones studied in Mahmassani et al. (8, 10) and Williams et al. (9, 13). The 
experiments concluded that the relationship between speed and concentration remained 
significantly identical for various network sizes. This indicated that these relationships between 
various network-level variables were independent of network size and consistent. During their 
analysis they observed that the average network speed at a given concentration was lower when 
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the intersections were operated as an unsignalized (stop-sign control) as compared to signalized 
intersections. 

Ardekani (5) studied the two -fluid characterizations urban road networks and proved the 
validity of these models on real urban road networks. Ardekani through field studies also 
concluded that the fundamental Equation 3 holds true.  

Recently Daganzo (14), using average network flow and accumulation, suggested various 
recipes for improving city mobility through gridlock control. The paper proposed a relationship 
between the outflow (exit function (G(n))) and the number of vehicles in the network. The paper 
derived a differential equation (Equation 4) describing the number of vehicles in the network, 
based on the inflow (f(t)) and outflow (G(n)). 
 

 ( ) ( ( )), 0    for dn f t G n t t
dt

    (4) 

 
These relationships are used in the paper to determine an optimal control strategy (A–B strategy) 
to control inflows so as to maximize outflow. One of the practical drawbacks of this approach is 
that due to the stochastic nature of traffic flow there are periods where inflow is greater than the 
outflow, leading to eventual jam conditions, hence in the strategy proposed for efficient 
operations real-time monitoring and control of the network is required. In this paper the proposed 
strategy overcomes this drawback. 

Geroliminis and Daganzo (15) as a continuation of Daganzo’s (14) theoretical work 
conducted simulation experiments with the San Francisco network. They showed a linear 
dependence between the travel production in the network and the outflow from the network, and 
an inverted U-shaped relationship between the travel production and accumulation. In addition 
the paper also describes the behavior of inflow with respect to accumulation. They showed that 
inflow remained constant up to a certain degree of accumulation and then started decreasing. The 
paper also proposed control strategies based on real-time observation of accumulation and were 
tested using simulation. 

The network breathing strategy proposed in this paper is a cyclic process of allowing 
vehicles to enter the network, and allowing the network to become congested, followed by 
closure of their entry into the network, in which the congestion in the network is allowed to 
dissipate. After this, entrance into the network is allowed again. This process will be referred to 
as “network breathing.” The period during which vehicles are allowed to enter is referred to as 
“network inhalation” and when vehicles are held from entering the network is referred to as 
“network relaxation.” The advantage of such an approach is that the times for network inhalation 
and network relaxation can be predetermined depending on the network properties and would not 
need real-time feedback. 

This paper presents the derivation for the fundamental flow-speed-concentration 
relationship, Greenshields’ model, Greenberg’s model, and the bell-shaped function proposed by 
Drake, Schofer, and May (11) at a network level. It also compares the performance of each of 
these models in explaining network level speed–accumulation relationships. It defines the 
various variables that are used in the rest of the paper and presents the derivation for 
relationships between various network-level variables. It also outlines the methodology for the 
strategy and discusses the results of applying the developed strategies to a simulated network. It 
concludes by discussing the advantages of these strategies and ideas for expansion of this work 
for further research. 

for 
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DEFINITIONS 
 
This section summarizes all the relevant variables that are used throughout this paper. 
 

iQ  Flow on link I; 

OutQ  Total outflow from network; 

inQ  Total inflow into the network; 

iK  Concentration on link i;  

jK  Network level jam concentration; 

jv  Speed of the jth vehicle on the network; 

iV  Average speed on link i;  

fV  Inverse of the average minimum time taken to travel a mile in the network, at free flow 

conditions; 

in  Number of vehicles on link i; 
n Total number of vehicles on the network (sum of all in ) (accumulation); 

cn  Number of vehicles in the network, when the outflow from the network is the maximum; 

pn  Maximum number of vehicles the network can accommodate at a given time; 

il  Lane-mile of link i;  
l  Total lane-mile in the network (sum of all il ); 

pq  The average flow in the network when number of vehicles in the network is pn ; and  

x Number of vehicles in the network after network relaxation. 
 

The three fundamental traffic variables speed, concentration and flow at network level are 
defined as average over all vehicles during an observation period . These were defined by 
Ardekani (5) and Mahmassani et al. (7, 9). Average speed in a network is defined as the total 
number of vehicle miles traveled divided by the total number of vehicle hours in the network 
during an observation period . This is consistent with the generalized definitions defined by 
Edie (15). If there are n vehicles in the network and the velocity of the jth vehicle in the network 
is jv , then the average velocity of vehicles in the network represented by V is 

Total vehicle mile = 
1

n

j
j

v 

  

 
Total vehicle hours = n  
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The average concentration K in the network is defined as the total number of vehicles in the 
network per unit lane mile. l  is the total lane miles of roadway in the network. 
 

 
nK
l

  (7) 

 
The average network flow Q is defined as the average number of vehicles that pass through a 
random point in the network per unit time. The average network flow is given by 
 

 i i

i

l Q
Q

l
 


 (8) 

 
In Kalfastas and Peeta’s work (16) on the cell transmission model they observed that on 
individual links the backward propagating wave speed is lower than the free-flow speed, 
indicating that the link can never reach maximum jam density, since only a part of the available 
space would be filled up. Since a network is a combination of individual links, it is fair to assume 
that during maximum congestion, there exists a maximum accumulation (np) in the network and 
it corresponds to some minimum outflow (qp). In Ardekani’s (5) field study a maximum 
concentration of 30 vehicles/lane mile was observed in the network. 

With the next generation of technology of Vehicle Infrastructure Integration (V.I.I.), data 
of the network will be available during every time instant. Hence the average velocity, flow and 
density of the network would be known at every time instant. This will help provide real-time 
state of the network, enabling us to develop real-time strategies for the network. 
 
 
MACROSCOPIC PROPERTIES 
 
Measurements and relationships between macroscopic variables—flow, concentration, and 
speed—have been extensively studied for traffic streams both in theory and in field [Edie (15 
and Gazis (17)]. The relationships between these macroscopic variables at a network scale have 
been studied in simulation experiments (7, 9, 8, 12) and field studies (1). This section provides 
theoretical proofs for the validity of relationships at a network scale. These relationships are then 
validated using microscopic simulation (VISSIM) for a network shown in Figure 1. The network 
is a small grid network of two-lane, one-way roads, and the entire length of the roadway is 2.12 
miles. The intersections consisted of two-phase signals with a cycle length of 60 seconds.  
 



Dixit and Radwan 217  

 
 

FIGURE 1 Simulation network considered for the study. 
 
 
The simulation for the network consisted of multiple runs with each run of 3,240 seconds. An 
input of 2,000 veh/h was provided at each input. The average concentrations, speeds, flows, 
inflows and outflows were averaged over 120 seconds for the network. The demands were 
allocated to routes from origin to destinations. We also assume a fixed percentage of demand for 
each route on the network, to ensure that the average trip lengths are constant. 
 
 
FUNDAMENTAL NETWORK SPEED-FLOW-CONCENTRATION RELATIONSHIP 
 
This subsection derives the fundamental speed-flow-concentration relationship on a general 
network.  

On an individual link i of length li in the network, it is known that 
 

 i i iQ K V  (9) 

 
where Vi is the average velocity on link i defined by Equation 10 
 

 vehicle  is in Link 
j

j i
i

i

v
V

n



 (10) 

 
Multiplying both sides of Equation 9 with li, we get 
 
 i i i i il Q l K V  (11) 
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Summing both sides of Equation 11 over all links i in the network and dividing by the total lane 
miles in the network, we get 
 

 i i i i i

i i

l Q l K V
l l

 
 

 (12) 

 
It is observed that the left hand side of Equation 12 is the definition for average network flow. It 
is also observed that liKi is the number of vehicles in link i. Substituting liKi with ni, and the 
definition of average network flow in Equation 12. 
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 (14) 

 
Substitute network concentration and definition of Vi from Equation 10 in Equation 14. 
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In Equation 16, 

vehicle  is in Link 
j

j i
v  is the sum of velocities of all vehicles on the network. Hence 

by definition vehicle  is in Link 
j

j i

i

v

n

 
 
 
 
 

 


 is the average velocity on the network.  

 
    Q KV   (17) 
 
Equation 17 is the fundamental network speed-flow-concentration relationship.  

The interesting aspect of Equation 17 is that there are no inherent assumptions involved 
in the derivations, indicating that the fundamental network speed-flow-concentration relationship 
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holds for a network in any state as long as the variables are defined in the correct manner. The 
fundamental relationship for speed-flow-concentration should hold when the vehicles are non-
homogenously loaded in the network or when the network is in a transient state. 

Using data of network density and average network speed from the simulation runs the 
average network flow was calculated using Equation 17 and was compared to the observed 
average network flow from the simulation. A plot (Figure 2) between the calculated and 
observed average network shows a perfect regression fit for y=x.  
 
 
SPEED–ACCUMULATION RELATIONSHIP AT NETWORK LEVEL  
 
This section derives Greenshields,’ Greenberg’s and the bell-shaped model (11) to describe the 
relationship between average network speed and accumulation in a homogenous network (a 
network in which the concentration, jam concentration and free-flow speeds do not significantly 
differ between different links). The theoretical results are validated through simulation for the 
network described earlier. A plot was constructed for data points, such that vehicles are 
homogenously distributed.  
 
Greenshields’ Relationship 
 
To derive the Greenshields’ model for a network, it is assumed that the speed-density 
relationship on an individual link i in a homogenous network follows the Greenshields model.  
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Since the free flow speed ( fV ) and jam density (Kj) do not significantly vary between links of 

the network. 
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Since the link densities do not significantly differ between links and is approximately equal to 
the network density Ki ~ K. 
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This proves that Greenshields’ relationship holds for average network speed and accumulation in 
a homogenous network.  
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y = x

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Observed Average Flow (veh/hrs)

C
al

cu
la

te
d

 A
ve

ra
g

e 
F

lo
w

 (
ve

h
/h

rs

 
 

FIGURE 2  Observed flow versus flow calculated using 
speed and density in Equation 2. 

 
 
Greenberg’s Relationship 
 
To derive the Greenberg model for a network, it is assumed that the speed-density relationship 
on an individual link i in a homogenous network follows Greenberg’s model.  
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Since the free-flow speed ( fV ) and jam density (Kj) do not significantly vary between links of 

the network. 
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Since the link densities do not significantly differ between links and is approximately equal to 
the network density Ki ~ K. 
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This proves that Greenberg’s relationship holds for average network speed and accumulation in a 
homogenous network.  
 
Bell-Shaped Relationship 
 
To derive the bell-shaped model for a network, it is assumed that the speed-density relationship 
on an individual link i in a homogenous network follows the bell-shaped model.  
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Since the free-flow speed ( fV ) and jam density (Kj) do not significantly vary between links of 

the network. 
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Since the link densities do not significantly differ between links and is approximately equal to 
the network density Ki~K. 
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This proves that relationship proposed by Drake, Shofer and May (10) holds for average network 
speed and accumulation in a homogenous network.  
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The plot (Figure 3) for the simulation results were fitted with Greenshields’, Greenberg’s, 
and the bell-shaped model. When the results were fitted with a linear regression the R-square was 
found to be 0.79. A logarithmic fit showed to perform better with an R-square of 0.93. The fit for 
the bell-shaped model proposed by Drake, Shofer and May (10) performed the best with an R-
square of 0.964. The bell-shaped fit for the results showed to perform significantly better in 
explaining the speed–accumulation relationship than Greenshields’ model and Greenberg’s 
model.  
 
 

Speed vs. Accumulation

y = -0.0133x + 8.5469

R2 = 0.79

0

2

4

6

8

10

12

0 100 200 300 400 500 600

Accumulation averaged over 120 sec

S
p

ee
d

 (
m

il
es

/h
r)

 
 

FIGURE 3a  Model fit for Greenshield’s model for 
speed–accumulation relationship. 
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FIGURE 3b  Model fit for Greenberg’s model for 
speed–accumulation relationship. 
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FIGURE 3c  Model fit for Bell-shaped model for 
speed–accumulation relationship. 

 
 
OUTFLOW-ACCUMULATION RELATIONSHIP AT NETWORK LEVEL  
 
To understand the relationship between outflow and accumulation, the outflow and accumulation 
averaged over 120 seconds collected during the simulation of the network described earlier was 
plotted (Figure 4).  

The plot shows two distinct regimes. The first regime corresponds to the constrained 
regime, where the outflow increases to a maximum value (qc=178 veh/120 s) as the accumulation 
increases. This maximum outflow corresponds to an accumulation of nc equal to 212 veh. The 
second regime corresponds to the constrained regime, where the outflow decreases from its 
maximum value as the accumulation increases. The reason for the reduction in outflow during 
the constrained regime is due to blockage of exits by vehicles accessing other exits. Observing 
the trend in Figure 4, it is fair to assume a piecewise linear relationship to describe the two 
regimes of the outflow-accumulation relationship (Figure 5). The piecewise formulation 
describing the outflow-accumulation relationship is written as 
 

 ( ) c
out

p c

n                                                      n n
Q n

n                            n  s.t. n n n

 

 
      

   (21) 

 
For this network   was equal to 0.84,   was equal 0.084 to and   was found to be 179. It was 
observed that the maximum accumulation was 480 vehicles, the flow at which was found to be 
(qp) 130 veh/120 s. 
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FIGURE 4  Plot of inflow and outflow versus accumulation and the trend assumed. 
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FIGURE 5  Conceptualization of relationship between outflow and accumulation. 

 
 
INFLOW-ACCUMULATION RELATIONSHIP AT NETWORK LEVEL  
 
Simulation studies by Geroliminis and Daganzo (14) showed that the dependence of inflow on 
accumulation had a trend similar to as seen in Figure 4. The inflow remains constant until the 
accumulation reaches nc and then begins to decrease. The accumulation nc corresponds to the 
boundary of the constrained and unconstrained outflow. During the unconstrained regime 
vehicles have an inflow equal the maximum possible flow qin, since none of the entries into the 
network are blocked. The moment the constrained conditions begin to set in, the outflow reduces 
leading to queuing of vehicles and blocking of inflows. This results in the inflow being 
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constrained. Under the constrained regime the inflow keeps reducing, as the accumulation 
increases until the maximum accumulation (np) allowed in the network. The moment the number 
of vehicles in the network reaches np, the inflow drops to the outflow qp. Under the assumption 
that the network can have a maximum of np accumulation, if the inflow is greater than outflow 
(qp) the accumulation would increase to a value greater than np, resulting in a violation of the 
assumption. Therefore the inflow will be equal to the outflow at the accumulation np. Therefore 
there is a discontinuity for the inflow at np. It will be later seen in this paper that if the inflow has 
a continuous trend and the constrained regime of the inflow intersects the outflow at the 
maximum accumulation (np), then infinite time would be taken to reach congested conditions 
(accumulation of np). In reality networks do reach congested conditions and are regularly 
observed in road networks around the world. To get around this problem of infinite convergence 
to congestion, discontinuity was assumed at the maximum accumulation (np). The inflow into the 
network is greater than qp just before an accumulation of np. Due to stochastic effects there are 
fluctuations in the accumulations, and may be periods when the total accumulation is just lower 
than the maximum accumulation (np). Therefore, the traffic inflow needs to stop for brief 
periods, so as to maintain an average inflow of qp. These kinds of stop-and-go behaviors with 
large oscillations in flows (6) have been observed in congested conditions and can be explained 
by such a formulation. Therefore it is fair to assume a discontinuity. The relationship between 
the inflow and accumulation is shown in Figure 6, and can be formulated as 
 

 ( )
in c

p cin
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q                                                      n n
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 (22) 

 
A plot describing the conceptualization of the trends of the outflow-accumulation relationship 
and the inflow-accumulation relationship are shown in contrast to the observed values in Figure 
4. Since the inflow was large the network quickly progressed towards constrained condition. As 
can be seen in Figure 4, the vehicles remained in unconstrained regime for a brief period, during 
which the inflow was found to be 460 vehicles/120 s. The inflow of vehicles just before np was 
taken to be 155 veh/120 s and the value of outflow at accumulation np (qp) was found to be 
around 138 veh/120 s, which was also the value of the inflow at an accumulation of np.   was 
found to be 0.87 and   was equal to 573. These values were calibrated for do-nothing strategy.  
 
 
MODELING AND METHODOLOGY 
 
This section presents a formal methodology for the network breathing strategy. In the network 
breathing strategy the inflow is allowed into the network until the network reaches jam 
conditions, after which the network is allowed to relax, implying that inflow into the network is 
shut down. The intuitive reason in adopting this cyclical approach is to ensure that no sustained 
constrained flow (qp)  at maximum accumulation (np) exists. This can be observed more clearly 
in Figure 7. A comparison between the area under the curve between Figure 7a and 7b shows 
that the total number of vehicles dissipated into the network is larger with network breathing. 
The important aspect to determine is that relaxing the network for how long would provide the 
benefit being looked for. 
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The dynamics of the number of vehicles (accumulation) in the network can be described 
by a differential equation (Equation 23). The differential equation basically states the rate of 
change of accumulation is the difference between the inflow and the outflow. If the outflow is 
greater than the inflow then the accumulation will decrease with time. If the outflow is less than 
the inflow the accumulation will increase with time. It is assumed that the maximum inflow (qin) 
is greater than the maximum outflow (qc).  
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FIGURE 6  Plots describing relationships between inflow and accumulation. 
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Figure 7a  Inflow profile under normal conditions 
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Figure 7b  Inflow profile under Network breathing scheme. 

 
 
When vehicles initially enter the network the outflow and inflow correspond to the unconstrained 
regime (n < nc). Therefore the time taken to dissipate vehicles during the unconstrained regime 
when accumulation grows from 0 to nc, ts is shown in Equation 25. 
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After the accumulation in the network has reached nc, the equations describing the inflow and 
outflow shift to the constrained regime, where n>nc. The maximum accumulation that can be 
reached in the network is np. The time taken for the accumulation in the network to grow from nc 
to np is represented by td, in Equation 26. 
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If the network has an accumulation at some intermediary value x then the time taken in the 
constrained regime for the accumulation to reach the maximum accumulation np is represented 
by td(x) and is shown in Equation 27. td(x) is the time taken to reach np under constrained 
conditions, therefore the minimum value x can have during constrained conditions is nc, but if x 
≤ nc, then the time in the constrained region is td in Equation 26. 
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It will be interesting to observe here the formulation of td(x) in Equation 27. The numerator 
inside the logarithmic term of Equation 27 is the difference between the inflow and the outflow 
at the maximum accumulation (np). If the inflow describing the constrained region intersected the 
outflow at np without discontinuity, the value of the numerator would tend to 0, making the value 
of td(x) at np infinite. This would indicate that it would take infinite time to reach jam conditions, 
which is obviously not true. For this reason it would be fair to assume a discontinuity at np for 
inflow.  

According to the network breathing strategy proposed, once the network is congested 
with the maximum accumulation possible, the network relaxation is started. During this process 
inflow to the city is prohibited, allowing the accumulation in the network to reduce and, 
therefore, outflow would increase. The basic idea behind this approach is to maintain a total 
inflow to the city greater than the inflow at the maximum accumulation over a given period of 
time. 

If the network is relaxed to an accumulation of x, the time taken to reach an accumulation 
of x from np depends on whether x ≤ nc or x > nc and is represented by tb(x). If x < nc then during 
the reduction of accumulation from np to nc the outflow will correspond to the constrained 
regime, after which the outflow will correspond to the unconstrained regime. Therefore the time 
taken to reach x if x ≤ nc is the sum of the time taken in the two regimes. This is shown in 
Equation 28. 
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If x > nc, then the drop in accumulation in the network from np to x occurs in the constrained 
regime, therefore the outflow corresponds to the constrained regime. Hence the second term in 
the R.H.S. of Equation 28 is dropped, and since the network is relaxed to x. (x>nc), nc is replaced 
with x. Therefore the time taken to relax when x > nc is given by Equation 29. 
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After the network relaxation process, the inflow is allowed back into the network, due to which 
the accumulation begins to increase. tn(x) is defined as the time for the network accumulation to 
grow from x to nc under the unconstrained regime. This is shown in Equation 31.  
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 (31) 

 
The time taken for the accumulation to grow back to np is the sum of the time taken for the 
accumulation to grow from x to nc under unconstrained regime and the time taken for 
accumulation to grow from nc to np under the constrained regime. If x>nc, the accumulation to 
which network was relaxed lies in the constrained regime. Since tn(x) is defined for 
unconstrained conditions, tn(x) is taken to be 0 for x > nc. The functional form for tn(x) is given in 
Equation 32. 
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Since the inflow remains constant during the unconstrained regime the number of vehicles 
dissipated into the network during unconstrained conditions is the product of qin and the time 
spent in the unconstrained region. To determine the number of vehicles dissipated into the 
network during the network breathing process, it is required to determine the increase in 
accumulation during constrained conditions. 

From Equation 22, the inflow during congested conditions can be described by Equation 
33. 
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Using Equation 23 and inserting the equations describing the inflows and outflows during the 
constrained regime, the rate of change of accumulation in the network during constrained 
conditions can be described by Equation 37. 
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To derive a differential equation (Equation 38) describing the dynamics of the number of 
vehicles dissipated into the network with respect to the accumulation, Equation 37 is replaced in 
Equation 36. 
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To determine the number of vehicles dissipated into the network from an accumulation of x to np, 
(nin(x)), under constrained conditions, is shown in Equation 39. 
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When the accumulation grows from an unconstrained region, the dissipation of vehicles will be 
qintn(x), after which the number of vehicles dissipated under constrained conditions is nin(nc). 
Therefore, for x<nc, nin(x) is defined as nin(nc). The functional form for nin(x) is given in 
Equation 40. 
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 (40) 

 
Our objective is to dissipate the maximum number of vehicles into the destination network 
during time T. The total time can then be written as the sum of the initial time taken to reach an 
accumulation of np from 0 and the product of the number of network breathing cycles taken and 
the time spent in each network breathing scheme. The time taken for the network breathing 
scheme is the sum of time required to relax the network to an accumulation of x (tb(x)), the time 
required to get back to nc (tn(x)+td(x)). The cycles might not be able to complete the entire time 
period, hence during the rest of the time (del) the outflow is equal to the inflow (qp). Hence T is 
written as Equation 41. 
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The number of network breathing cycles in the process of dissipation is shown in Equation 42. 
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The excess time left (del) after the network breathing cycles is given by Equation 43.   
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During this time the accumulation in the network is at the maximum and the outflow is equal to 
the inflow at qp. Therefore the number of vehicles dissipated into the network during this period 
(del) is given by Equation 44. 
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 (44) 

 
The total number of vehicles dissipated into the network during time T, can be written as the sum 
of vehicles dissipated into the network during unconstrained conditions, constrained conditions, 
and the number of vehicles dissipated during each cycle and during time del. 
 
 ( ) ( ( ) ( ))in s in c in n inN q t n n m q t x n x excessN      (45) 
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Replacing value of m in Equation 45 we get Equation 46. 
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To determine the strategy that maximizes the dissipation of vehicles into the network, N, in 
Equation 46, is maximized in order to determine the accumulation to which the network should 
be relaxed. Using this value the relaxation time and the time for network inhalation can be 
calculated, which can then be used to meter the inflow into the network.  
 
 
RESULTS 
 
To test the proposed above methodology the relationships between the outflows and inflows with 
the accumulations were calibrated for the network earlier described (Figure 1). The values 
observed during the analysis of the outflow versus accumulation and inflow versus. 
accumulation, were used to calibrate the equation describing these models. 

To determine the accumulation to which the network should be relaxed during the 
network breathing strategy (the variable, x) so that the number of vehicles dissipated into the 
network is maximized, Equation 45 was maximized with respect to relaxation time. The time 
unit taken was 120 seconds, since all flows and number of vehicles were averaged over 120 
seconds. The maximization of Equation 45 indicated that the network should be relaxed for a 
period of 2.25 units (2.25*120 s) to an accumulation of 148 vehicles. A plot (Figure 8) 
constructed between the relaxation time and the number of vehicles dissipated into the network 
indicates that the dissipation of number of vehicles drops significantly quickly after the 
maximum. Therefore to be on the conservative side the network was relaxed for 1 unit of time 
(120 s) after which the inflow was allowed for 360 seconds.  
 

 
 

FIGURE 8  The plot between the number of vehicles dissipated into the network 
and time allowed for the network to relax. 
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The simulation was run for 3,240 seconds for multiple runs. It was found that the average 
number of vehicles dissipated during the do-nothing scenario for the same time period was 3,022 
vehicles and for the network breathing scenario, where the network was relaxed for 120 seconds 
and inflow allowed for 360 seconds had a statistically significant increase in the dissipation of 
vehicles in the network to 4,076 an increase of 154 vehicles in 3,240 seconds. The simulation 
results showed that the network breathing strategy performs very well. Figure 9 indicates the 
results of the observed and predicted number of vehicles dissipated vs. the estimated. The errors 
printed above the observed and predicted number of vehicles in Figure 9, is less than 1%, 
indicating a good performance of our modeling methodology. 
 
 
CONCLUSION 
 
This paper provides a theoretical basis to various relationships observed previously between 
average network level variables in simulation and field experiments. It then utilizes these 
relationships to develop network scale strategies that increase the dissipation of the number of 
vehicles into the network. 

Using the theoretical framework for the network breathing strategy, the relaxation time 
and the network inhalation times were determined and tested using simulation. The network 
breathing strategy considerably outperformed a do-nothing scenario. One of the main advantages 
of the network breathing strategy is that it does not required real time feedback. If the properties 
of the network are known earlier, then the methodology described earlier can be used to come up 
with a prescription for relaxation time and network inhalation time. Under emergency conditions 
when the real-time feedback might not be able to be implemented such an approach will be very 
useful. The network breathing strategy can be implemented using signals of cycle length 
determined by the relaxation time and the network inhalation time.  
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FIGURE 9  Results between prediction of number of vehicles 
dissipated into the network through theoretical methodology 

and actual observed number of vehicles dissipated. 
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Most of the microscopic simulation studies do not consider the effect of the destination 
network. This results in a myopic analysis resulting in a gap between the expectations from 
simulation analysis and reality. The macroscopic relationships and modeling discussed need to 
be used in conjunction with microscopic simulation, in order for the models to incorporate 
effects of destination nodes. 

During evacuation it is crucial to keep the traffic moving at an acceptable rate and reduce 
delays. With present strategies vehicles wanting to exit onto a particular destination are 
constrained by the state of the destination network. This results in backups which result in 
reduction of flows on the mainstream evacuation route, hindering flow of vehicles wanting to go 
to a destination further downstream on the evacuation route. The network breathing scheme can 
be used to effectively increase the dissipation into the destination networks. During the 
restriction of the inflow into one destination network (network relaxation) the evacuating 
vehicles can be redirected to another destination, hence improving the flow on the evacuation 
routes. 
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