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Preface 
 
 

n 1963, the TRB Committee on Traffic Flow Theory (TO-9) and the Committee on 
Characteristics of Traffic Flow (TO-12) were formed, with D. L. Gerlough and H. L. Michael 

as chairs, respectively. In 1971, the two committees merged to form the Committee on Traffic 
Flow Theory and Characteristics (AHB45). In recognition and celebration of these 50 years of 
traffic flow theory, several special events were organized in 2014, including a Sunday workshop 
held on January 12, 2014, at the Marriott Wardman Park Hotel in Washington, D.C.  

With the accomplishments of the past 50 years in mind, the workshop focused on traffic 
and transportation simulation—looking back and looking ahead. Coincidentally, this theme was 
also consistent with the Transportation Research Board 93rd Annual Meeting theme, Celebrating 
Our Legacy, Anticipating Our Future. That year’s theme was adopted because it was the year
of the final TRB Annual Meeting at the Connecticut Avenue hotels, where it was held for 
nearly 60 years.  

It was an appropriate time to recognize past accomplishments in the simulation field, 
reflect on the present state of the research community, and identify key future directions. 

The committee invited top experts in the field to provide discussion papers on the history, 
current status, and future of traffic simulation. The audience was asked to provide input and 
frame a forward-looking discussion of future trends and research needs. We are very pleased to 
publish eight of these papers in this e-circular as part of our legacy.  

The views expressed in the technical papers are those of the individual authors and do not 
necessarily represent the views of TRB or the National Research Council. The papers have not 
been subjected to the formal TRB peer review process. 

 
—Constantinos Antoniou, National Technical University of Athens, Greece 

George List, North Carolina State University 
Robert Lawrence Bertini, Portland State University 
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Traffic Flow Modeling 
Genealogy 

 
FEMKE VAN WAGENINGEN-KESSELS 

SERGE P. HOOGENDOORN 
KEES VUIK 

HANS VAN LINT 
Delft University of Technology 

 
 

ighty years ago, Bruce Greenshields presented the first traffic flow model at the Annual 
Meeting of the Highway Research Board. Since then, many models and simulation tools 

have been developed. We show a model tree with four families of traffic flow models, all 
descending from Greenshields’ model. The tree shows the historical development of traffic flow 
modeling and the relations between models. Based on the tree we discuss the main trends and 
future developments in traffic flow modeling and simulation. 
 
 
INTRODUCTION 
 
Traffic flow models have been applied for almost a century to describe, simulate, and predict 
traffic. The first model showed a relation between the distance between vehicles and their speed 
(1). Later, dynamics were included in the models and models were applied for predictions (2, 3). 
Now, traffic flow simulation tools are used for long-term planning as well as for short-term 
predictions based on actual traffic data. In the future, the models and simulation tools may be 
developed further to (better) support, for example, adaptive cruise control, dynamic traffic 
management, and evacuation planning.  

In this contribution, we give an overview of past developments in traffic flow modeling 
and simulation in the form of a model tree showing the genealogy of traffic flow models (Figure 1). 
It shows how four families of traffic flow models have developed from one common 
ancestor: the fundamental diagram by Greenshields (1). Each of the families, namely the 
fundamental diagram, microscopic models, mesoscopic models, and macroscopic models, will be 
discussed in separate sections below. Finally, using the model tree, we identify the main trends 
and give an outlook for future developments. 
 
 
FUNDAMENTAL DIAGRAM 
 
The fundamental diagram, as it was originally introduced at the 13th Annual Meeting of the 
Highway Research Board in 1934, relates the distance between two vehicles (spacing) to their 
speed (1) (Figure 2). However, the author, Bruce Greenshields, became famous for the 
fundamental he introduced 1 year later at the 14th Annual Meeting (4). This fundamental diagram 
relates the number of vehicles on one unit length of road (density) to their speed (Figure 3). 
  

E 
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FIGURE 1  Genealogy of traffic flow models. Black dots indicate models, black lines 
between dots indicate that the same (or a very similar) model has been proposed multiple 

times, and colored lines indicate descent. A full (and much larger) version of the genealogy 
can be found in van Wageningen-Kessels (63, 75). 
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FIGURE 2  Greenshields’ original fundamental diagram (1934), showing a  
linear relation between spacing and speed (1). 

 
 

 

FIGURE 3  Greenshields’ fundamental diagram (1935), showing a  
linear relation between density and speed (4). 
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Shape of the Fundamental Diagram 
 
Since its first introduction the shape of the fundamental diagram has been much debated. Table 1 
shows some of the proposed shapes (4–7). It also shows an alternative representation of the 
fundamental diagram, relating the density to the flow: the number of vehicles per time unit. Del 
Castillo (8) recently introduced a set of requirements for the fundamental diagram. Of the 
fundamental diagrams in Table 2, the ones by Greenshields, Smulders and Daganzo, satisfy the 
criteria. However, it is argued that they do not represent scatter in observed density–flow (or 
density–speed) plots well enough.  
 
Scatter in the Fundamental Diagram 
 
Scatter in observed density–flow plots (Figure 4) is partly introduced by the measurement 
method and the aggregation of data. The remaining scatter is explained and modeled in different 
ways. In 1961, Edie (9) proposed a fundamental diagram with a capacity drop. The capacity drop 
models that the outflow out of a congested area is lower than the flow just before breakdown.  
 
 

TABLE 1  Different shapes of fundamental diagrams, 
in density–flow and in density–speed plane. 

Density–flow 

  
Density–speed 

  
Shape Parabolic Bell Parabolic–linear Bilinear 
Author Greenshields Drake Smulders Daganzo 
Year 1934 1967 1990 1994 
Reference 4 5 6 7 
 
 

TABLE 2  Fundamental Diagrams of Multiclass Kinematic Wave Models 
(Effective) Density–
Speed  

Reference multiclass Benzoni-Gavage and 
Colombo (56) 

Logghe and Immers 
(59) 

Chanut and Buisson 
(13); Van Wageningen-
Kessels et al. (61) 

Author mixed class  Greenshields (4) Daganzo (7) Smulders (6) 
NOTE: Solid line = cars; broken line = trucks. 
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FIGURE 4  Scatter in an observed density–flow plot (76). 
 
 
Using the graphs in Figure 5, Edie showed that a fundamental diagram with capacity drop better 
represents scattered data. A few years later, in 1965, Newell (10) introduced the concept of 
hysteresis: in congestion, when accelerating the density–speed relation is different from the 
relation when decelerating. Almost a decade later, Treiterer and Myers (11) showed that 
hysteresis could explain much of the observed scatter (Figure 6). In 1997, Kerner and Rehborn 
(12) take a different approach by proposing another nonunique relation between density and 
flow. They argue that in congestion, traffic may be in any state in the gray area in Figure 7. 
Finally, in 2003, Chanut and Buisson (13) propose a three-dimensional fundamental diagram. In 
this fundamental diagram the density of cars is taken into account separately from the density of 
trucks. Therefore, with the same total number of vehicles, a larger share of trucks leads to lower 
speeds (Figure 8). 
 
 
MICROSCOPIC TRAFFIC FLOW MODELS 
 
The three other families in the model tree include dynamics. They describe how traffic states 
evolve over time. The microscopic model family is the oldest of those families. Microscopic 
models describe and trace the behavior of individual vehicles and have evolved into car-
following models, including three branches and one separate branch including cellular-automata 
models. 
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(a) 

 
(b) 

FIGURE 5  Fundamental diagram (a) without and (b) with capacity drop. The graph shows 
a better fit with the data of the fundamental diagram with capacity drop (9). 
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FIGURE 6  Observed densities and speeds showing the hysteresis phenomenon. At 
relatively low densities, speeds are higher when accelerating (diamonds) than when 

decelerating (circles), at relatively high densities, it is the other way around (11). 
 
 

 

FIGURE 7  Fundamental diagram with infinitely many admissible states in the congestion 
branch (shaded area) (77). For detailed explanation of the labels, see Kerner (77). 
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FIGURE 8  Three-dimensional fundamental diagram where a high  
trucks proportion leads to lower speeds and flows (13). 

 
 
Safe-Distance Models 
 
The earliest car-following model was a safe-distance model and was introduced by Pipes in 1953 
(2). In his model, vehicles adjust their speed according to a safe distance to their leader, as 
illustrated in Figure 9. Safe-distance car-following models were refined by Gipps in 1981 by 
introducing two regimes (14). In one regime the speed is limited by the vehicle or the (legal) 
speed limit and in the other regime the speed is reduced because the drivers keeps a safe distance 
to the leading vehicle. 

A revival of safe-distance models took place in the last decade, starting by Newell with a 
simplification of his 1961 car-following model (15, 16). This simplified car-following model has 
been shown to be equivalent to certain models in the cellular-automata branch and in the 
kinematic wave branch (17, 18). The equivalence is used to develop hybrid models combining 
properties of microscopic and macroscopic models (19, 20). 
 
Stimulus–Response Models 
 
The second branch of car-following models consists of stimulus–response models. The model 
tree shows a rapid development of these models in around 1960 (21–24). The authors propose 
that acceleration of drivers can be modeled as a reaction to three stimuli: 
 

1. Own current speed, 
2. Distance to leader, and  
3. Relative speed with respect to leader. 

 
A lot of effort has been put into calibrating and validating stimulus–response models. 

However, in 1999 Brackstone and McDonald (25) concluded that the models were used less 
frequently because of contradictory findings on parameter values. Nevertheless, new stimulus–
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FIGURE 9  Variables and parameters in Pipes’ safe-distance model. The position xn of the 
nth vehicle is determined the position xn – 1 of its leader and the safe distance between them. 

The safe distance is a constant distance determined by the distance at standstill d, the 
vehicle length ln – 1 and a variable safe stopping distance Tvn with T being safe time 

headway and vn the speed. 
 
 
response models have been developed since, including the optimal velocity model (26) and the 
intelligent driver model (27). Again, it is argued that it is often difficult, if at all possible, to find 
good parameter values (28). Wilson and Ward argue that researchers should focus on a small 
subset of stimulus–response models with good qualitative properties. Wilson also proposes a 
framework to assess the models with respect to qualitative properties (29). 
 
Action Point Models 
 
Action point models form the third, and last, branch of car-following models. They were first 
introduced by Wiedemann in 1974 (30). For these models, it is assumed that drivers only react if 
the change is large enough for them to be perceived. In contrast to other car-following models, 
this implies that driving behavior is only influenced by other vehicles if headways are small and 
if changes in relative velocity or headways are large enough to be perceived. 
 
Cellular-Automata Models 
 
Cellular-automata models are usually categorized in the microscopic model family, as a branch 
separate from the car-following models. In cellular-automata models, the movement of individual 
vehicles is described and traced, just like in other microscopic models. In contrast to car-following 
models, space and sometimes time is discretized as well. The first model in this branch stems from 
1986 (31) but the model introduced in 1992 by Nagel and Schreckenberg (32) is regarded as the 
prototype cellular-automata model. The road is discretized into cells and in each time step each 
vehicle is advanced zero, one, or more cells, according to a certain algorithm. Some of the most 
popular cellular-automata models are compared in Knospe et al. (33). 
 
 
MESOSCOPIC MODELS 
 
Mesoscopic models fill the gap between microscopic models that model and trace the behavior 
of individual vehicles and macroscopic models that describe traffic as a continuum flow. 
Mesoscopic models describe vehicle movements in aggregate terms such as probability 
distributions. However, behavioral rules are defined for individual vehicles. The family of 
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mesoscopic models includes headway distribution models (34, 35) and cluster models (36). 
However, the oldest and most extended and popular branch within this family consists of gas–
kinetic traffic flow models.  

Gas–kinetic traffic flow models were first introduced in the early 1960s (37, 38). It 
describes traffic flow in a way similar to how gas is modeled in gas–kinetic models. The 
movements of vehicles (or molecules in a gas) are not modeled individually. Instead, 
distributions of density and speeds are used to calculate and lead to expected densities and 
speeds. A first revival of the branch took place in the mid- and late 1970s with an improved 
model (39) and a continuum gas–kinetic model (40). A second revival of gas–kinetic traffic flow 
models took place from the mid-1990s. The older models were extended and generalized (41, 42) 
and more continuum models were derived (43–46). 
 
 
MACROSCOPIC MODELS 
 
The fourth and last family in the model tree consists of macroscopic models. They describe 
traffic as if it were a continuum flow. Only aggregated variables such as (average) density, 
(average) flow, and (average) speed are considered. The family consists of two major branches: 
kinematic wave models and higher-order models. In order to include differences between types 
of vehicles (e.g., passenger cars and trucks), multiclass versions of both types of macroscopic 
models are developed as well. 
 
Kinematic Wave Models 
 
The prototype macroscopic model is a kinematic wave model introduced in the mid-1950s by 
Lighthill (3) and, independently, Richards (47). This model, also known as the LWR model, has 
received much attention and critique. The main critique is that vehicles are assumed to attain new 
speeds immediately after a change in the density. This implies infinite acceleration or 
deceleration. The issue has mainly been dealt with in higher-order macroscopic models (see next 
section), but also by relatively recent variants of the LWR model including bounded acceleration 
(48, 49). In the original LWR model, the transition from free-flow to congestion regime 
(breakdown) always happens at the same density and without capacity drop. This is considered 
as a second major drawback. It was addressed by introducing lane changes (50, 51) and by 
introducing breakdown probabilities (52).  

LWR models are often used for simulations studies as they are relatively simple and 
computations can be done fast. Therefore, space and time are discretized into spatial cells of 
typically 200 m long and time steps of 0.5 s to several seconds. Densities in each cell are 
computed using the old densities and the flow into and out of the cell each time step. This 
approach is used in the cell transmission model introduced by Daganzo in 1994 (7) and the 
Godunov scheme (53). More advanced and accurate simulation methods have been introduced in 
the past few years (18, 54). 

Furthermore, since 2001, many multiclass kinematic wave models have been proposed 
(13, 55–62). They address the issue of breakdown taking place at various densities place by 
introducing multiple vehicle classes. This model approach also allows for different speeds and 
other distinctive features for each class. As discussed in the section on fundamental diagrams, 
multiclass models can reproduce scattered fundamental diagrams. Multiclass models often 
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include different fundamental diagrams for different classes (Table 2). Furthermore, the speed 
does not depend on the total number of vehicles per time unit (density) but most models apply an 
“effective density” to which some classes contribute more than other classes. For example, 
trucks are supposed to have a higher impact on traffic flow than passenger cars. Therefore, 
relatively few trucks can create a breakdown, while many passenger cars are needed to do the 
same. Multiclass kinematic wave models were generalized in the Fastlane model (61, 63), which 
can also be used to assess multiclass kinematic wave models (63, 64). 
 
Higher-Order Models 
 
Higher-order models form the other main branch in the family of macroscopic traffic flow 
models. They were first introduced by Payne in 1971 (65). Higher order models include an 
equation to account for the acceleration and deceleration towards the equilibrium speed 
prescribed by the fundamental relation. This way, they address the issue of infinite acceleration–
deceleration in the LWR model. However, also this type of models received much critique. In 
1995, Daganzo initiated an ongoing discussion on whether or not higher order models are flawed 
because they are not anisotropic and on whether traffic flow models ought to be anisotropic (66, 
67). The most important implication of a traffic flow model that is not anisotropic is that, in the 
model and the simulation, vehicles do not only react on their leader but also on their follower 
which results in vehicles driving backward in certain situations. Since the start of this discussion, 
many anisotropic models have been developed (68–70), including a multiclass higher-order 
model (71).  

Other recent models in the higher-order branch include the generalized higher-order 
model by Lebacque et al. (72) and a hybrid model that couples a higher-order model with a 
microscopic version of it (73, 74). 
 
 
DISCUSSION AND OUTLOOK 
 
The model tree is used to identify recent trends and provide outlooks for the future.  
 
Trends 
 
We identify four main trends in the model tree. 
 

1. Certain branches converge to a generalized model. Del Castillo develops a framework 
that includes most fundamental diagrams (8); many car-following models are generalized in 
Wilson’s model (29); Hoogendoorn and Bovy generalize gas–kinetic models (42); a generalized 
multiclass kinematic wave model is proposed by Van Wageningen-Kessels et al. (61, 63); and a 
generalized higher-order model is proposed by Lebacque et al. (72). 

2. The LWR model is extended and adapted to better reproduce observations. Zhang 
proposes a model that includes hysteresis (68); Lebacque includes bounded acceleration and 
deceleration (48); and multi-class models are introduced by Wong and Wong (55) and many 
other authors thereafter. 

3. Multiclass versions of different types of models are introduced. Hoogendoorn 
introduces a multiclass gas–kinetic model (44); a multiclass higher order model is introduced by 
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Bagnerini and Rascle (71); and, again, multiclass kinematic wave models are introduced by 
Wong and Wong (55) and many other authors thereafter. 

4. Hybrid models are introduced to combine the advantages of both microscopic and 
macroscopic models. Bourrel and Lesort (19) and Leclercq (20) apply the LWR model for 
hybridization and a higher-order model is combined with a car-following model by Moutari and 
Rascle (74). 
 
Outlook 
 
From the model tree, we see that the cellular-automata and the mesoscopic model families do not 
receive much research attention recently. Cellular-automata models are used in simulations, but 
less often than microscopic and macroscopic models. Mesoscopic models are often hard to 
discretize and are therefore seldom applied in simulation tools. Therefore, we expect that future 
traffic flow modeling and simulation will focus on new and improved car-following and 
macroscopic models. Especially for the macroscopic models and simulation tools, good 
fundamental diagrams will be needed as well.  

Furthermore, we expect the other trends discussed above to set in. The development of 
generalized models as described in the first trend is valuable to assess models and to select 
qualitatively appropriate models. Future developments include even more generalized models 
and assessment of existing and new models. This way, it can be prevented that qualitatively 
inferior models, which inevitably lead to quantitatively poor results, are applied in simulations. 
Furthermore, it is prevented that resources are spend in quantitatively calibrating models that will 
give qualitatively undesirable results.  

Microscopic models and simulation tools predict traffic in more detail than macroscopic 
models. Therefore, they are well-suited for adaptive cruise control and similar applications where 
it is necessary to predict the behavior of individual vehicles. However, in many applications the 
details are less important and fast computations achieved with macroscopic models are 
necessary. This includes dynamic traffic management for large areas and evacuation 
optimization. For these applications more realistic macroscopic models as described in the 
second and third trend are valuable. Finally, some applications require on the one hand detail and 
accuracy in a small area and on the other hand fast computations to make predictions over a 
longer time horizon. These applications benefit from the fourth trend in which hybrid models are 
developed. Detailed predictions can be made, for example for a small urban area, and the less 
detailed prediction for the larger surrounding area allow for fast computations. 
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his paper presents a brief history of the development of traffic simulation from the 1950s to the 
present time, largely from an autobiographical perspective. Since I participated in some of the 

early developments and had personal exposure to those pioneers who preceded me, I am hopeful that 
this perspective can provide insights that a chronological literature survey, alone, could not provide. 
General-purpose digital computers became available in 1952. A small number of researchers at 
universities which had access to these early computers became interested in simulation technology 
and developed software applied to individual intersections and short freeway sections. Other 
researchers recognized the need to represent traffic flow in analytical terms and developed 
formulations which could be utilized by simulation modelers. In the 1960s and 1970s, as computers 
became more plentiful and of greater power, FHWA, NCHRP, and other national research agencies, 
supported the development of useful network simulation models. As a result, the technology’s value 
in the field of traffic operations and control became apparent to an increasing number of 
practitioners. In the 1980s, simulation models that integrated traffic operations with traffic 
assignment were introduced; these attracted transportation planners who were seeking more 
effective, equilibrium-based tools. The continuing development of personal computer (PC) 
technology has fostered the development of regional simulation-based multimode models which are 
now routinely applied by practitioners worldwide. The pressing need to manage transportation 
systems to be increasingly productive and efficient in an environment of increasing demand will 
require simulation-based tools well into the future. 
 
 
INTRODUCTION 
 
Traffic simulation-based models describing all modes of transportation are now applied routinely by 
practitioners and researchers to analyze facilities ranging from individual intersections to extensive 
regional networks of some 50,000 links. The ability of simulation models to reliably detail the 
dynamic traffic environment and to be integrated with a range of other analytical models used by 
traffic engineers, transportation planners, and system designers, provides professionals with powerful 
tools. The widespread use of such models is reflected in the hundreds of papers presented at 93rd 
Annual Meeting of the Transportation Research Board in 2012 that discussed simulation models. 

The emergence of traffic simulation parallels the emergence development of digital 
computers; the first developments in both technologies occurred some 60 years ago in the United 
States and in Europe; later developments originated in Asia. To provide an historical perspective, this 
paper presents a chronological account which identifies the “prime movers” and events, with an 
acknowledged bias to those who contributed in the United States. The development of simulation 
models did not take place in a vacuum: there were many relevant and supportive contributions by 
innovators in related fields who are likewise identified. Since the author participated in the simulation 
activity, several anecdotal tales derived from personal communication will be included to present a 
picture of the professional environment of each historical period. 
 

T 
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THE FIRST DECADE: 1950s  
 
As the decade began, the only digital computers available were special-purpose computers, most 
designed for the military. In the United States, the dominant player in the design and 
manufacture of digital computers during this decade was the IBM Corporation. The IBM 701, 
known as the Defense Calculator while in development, made its debut in 1952 as IBM’s first 
commercial scientific computer. It provided a total memory of 2,048 words of 36 bits each with a 
memory cycle time of 12 microseconds. A multiplication or division operation required 38 
cycles (456 microseconds). A year later, the IBM 650 Magnetic Drum Data-Processing Machine 
was introduced; almost 2,000 systems were produced over 10 years. Its rotating drum memory 
provided up to 4,000 words of memory, each consisting of 10 digits or five characters. The IBM 
704 computer, which followed in 1955 and was dubbed a “super-computer,” included core 
memory (RAM) of 4,096 36-bit words, three index memories, could execute up to 4,000 
operations per second, and provided a floating-point (hardware) unit. The 704, which was not 
compatible with the 701, sold 123 systems over 5 years. None of these computers had an 
operating system or a high-level language compiler. Programming was implemented using a 
numerical machine language or assembler; FORTRAN for the IBM 704 was released in 1956. 
The UNIVAC computer, a rotating drum machine, was introduced in 1956 to the commercial 
market. The IBM 709, introduced in 1958, had 32,768 words of 36-bit memory and could 
execute 42,000 add or subtract instructions per second. An optional hardware emulator executed 
legacy IBM 704 programs on the IBM 709. A transistorized version, named the IBM 7090, was 
introduced the following year. An upgraded version, the IBM 7094, was first installed in 
September 1962. IBSYS, an IBM-supplied operating system, was included, as was a “Floating-
point Assembler Program.”  

It is seen that early simulation model developers of this period had to deal with an 
adverse computing environment. Not only were computers in limited supply and computer time 
very costly, software developers had to deal with severe computer storage and programming 
constraints. To illustrate this environment, I relate the experience of Jim Kell (as told to me) 
during his final year as a graduate student at University of California–Berkeley. He chose as his 
master’s thesis the development of a simulation model to analyze traffic flow at two intersections 
controlled with stop signs. During that year, he taught himself to program the IBM 701 
computer, and collected and analyzed field data to design and calibrate his model. Finally, near 
the end of the school year, he reserved time on the computer to generate the results. As that day 
dawned, he entered the computer lab and was greeted by an empty space where the computer had 
been. Upon inquiry, he was told that the computer was just shipped out that morning and would 
be replaced by an IBM 704 computer. Knowing that the two computers were not compatible, Jim 
rushed to the loading dock to find the 701 on the truck about to be driven away. Fortunately, Jim 
was a large man who was able to persuade the dock workers to move the computer off the truck 
and back into the lab, whereupon he was able to complete his thesis (1, 2).  

Possibly the first simulation program in the United States was developed by Harry H. 
Goode of University of Michigan (3). Goode was a professor of Electrical and Industrial 
Engineering and an expert on computers. His work attracted the attention of a graduate student at 
University of California–Los Angeles (UCLA) named Daniel Gerlough which resulted in his 
1955 dissertation (4, 5, 6, 6a) and launched a pioneering career in traffic simulation and flow 
theory. In fact, it was Gerlough who proposed that the Highway Research Board create a 
committee on traffic flow theory (Committee No. 9) (7). One of the best-known results obtained 
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from simulation in this decade was that by F. V. Webster on delay at signalized intersections (8) 
which took the form of the classical equation documented in the monograph by Webster and 
Cobbe in 1966 (9).  

While the limited availability of computing equipment restricted the development of 
simulation software in the 1950s, theoretical developments were taking place which would 
profoundly promote the development and use of traffic simulation in the future. It should be 
noted that the profession of transportation engineering was itself emerging during this decade 
and that most of the pioneers migrated from other disciplines: operations research; physics; civil, 
electrical, and computing engineering; aerospace; and economics and mathematics. Examples 
include John Nash who formulated the Nash Equilibrium in 1950 (10, 11), established the 
foundation for John Wardrop’s equilibrium laws in 1952 (12) which forms the basis for traffic 
assignment and the present application of simulation-based network modeling (13); fluid flow 
analogies of traffic flow developed by Lighthill and Witham in 1955 (14) and by Richards in 
1956 (15) (LWR theory) which form the basis for most macroscopic simulation models; car-
following theoretical development which forms the core of microscopic simulation models was 
pursued by many researchers including R. E. Chandler, Robert Herman, E. W. Montroll, R. B. 
Potts, R. W. Rothery, and D. C. Gazis (16–19); and statistical modeling of traffic flow (20). The 
growing interest in traffic flow theory led to the organization of the first International 
Symposium on the Theory of Traffic Flow, held in 1959 in Detroit, Michigan, which was 
sponsored by GM. While only one simulation model was presented (21), several papers 
addressed simulation concepts (22), thereby establishing the close relationship between 
simulation modeling and traffic flow theory. 
 
 
SIMULATION AS AN EMERGING TOOL: 1960s  
 
This decade ushered in major improvements and affordability in computer technology and in 
programming ease. Other vendors joined IBM and UNIVAC, including Bendix, Hewlett-
Packard, Control Data, Digital Equipment, and Data General; the latter two introduced the 
concept of the minicomputer. New high-level languages were developed, including COBOL, 
ALGOL, PL/1, and BASIC. Of particular interest was the development of simulation languages 
such as the General Purpose Simulation System (GPSS) in 1961 (23); SIMSCRIPT, a 
FORTRAN-based language in 1963; and SIMULA, an object-oriented superset of ALGOL in 
Norway, which inspired the later development of C++.  

The efforts of researchers in the fields of traffic flow theory and transportation planning 
continued to lay the groundwork for simulation development. The second international 
symposium on the theory of road traffic flow in 1963 (23a) had a separate section on area traffic 
control and simulation which included a description of the work performed by Wagner and 
Gerlough (see below). The third symposium in 1965 (23b) presented papers on the subject of 
traffic assignment, as an adjunct of traffic flow theory. An important development was 
establishing the relationship between “car hopping” and traffic flow theory, which set the stage 
for mesoscopic simulation models and those employing computer automata procedures (23c).  

When the Washington, D.C., District Department of Traffic (DCDOT) took delivery of a 
minicomputer, none of the engineers at DCDOT had experience with computers (as related to 
me). Finally, after trying to decide what to do with it, someone suggested that they sponsor the 
development of a traffic simulation model to evaluate proposed signal timings. This was done; 
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Planning Research Corp. with a proposed team of Fred Wagner (engineer), Dan Gerlough 
(simulation design), and Jesse Katz (programmer) won the competition. The resulting product, 
which had to be designed for the DCDOT minicomputer as a contractual requirement, was a 
network simulation model named, TRANS (24). The constraints imposed by the relatively small 
computer significantly limited the model design: there was no car-following or lane-change 
logic, vehicles hopped from one cell to the next (each lane was subdivided into cells) at a 
constant speed until a queue was reached, and a constant simulation time-step of 2 s was applied 
for all vehicle movements. Nevertheless, the model worked and demonstrated the potential of 
traffic simulation as a viable tool for evaluating control systems and network designs. The model 
was applied in three NCHRP projects (25–27) and was one of the first to employ a mesoscopic 
representation and a cellular-automata technique to move vehicles (although those terms were 
not used at the time). Unfortunately, the compromises in model design required to meet the 
contractual requirements led to criticisms as an outcome of validation studies conducted.  

A new application of simulation technology appeared towards the end of the decade in 
the form of the TRANSYT signal optimization model (28, 29). Here, the traffic flow model, in 
the form of a cycle-based macroscopic simulation model (which took the form of a statistical 
histogram acted upon by a platoon dispersion formulation) was embedded as a component of a 
signal timing iterative procedure, rather than as a stand-alone evaluation tool. This application, 
which is still applied worldwide in various versions, expanded the application of traffic 
simulation and was a forerunner of modern developments. 

While the research community’s interest in simulation increased over the decade, most 
practitioners were either oblivious or dubious of the value of simulation, a posture that extended 
into the 1980s. The 1965 Highway Capacity Manual (HCM) (30) made no mention of the 
potential application of simulation as an analytical tool. One prominent practitioner who was an 
exception and who made many innovative contributions to the profession, particularly in the 
field of urban traffic operations, was Henry Barnes (31). He was probably best known for 
“Barnes’ Dance” where traffic signals at intersections that serviced heavy pedestrian traffic had 
an extended phase of all-red indications for all approaches which permitted pedestrians to safely 
cross in all directions. He was also credited with the concept of semi-actuated control and the 
pedestrian pushbutton to call a signal phase. At the time (1968) I became interested in Traffic 
Engineering, and in simulation, he was Commissioner of Traffic in New York City. 

My friend and former classmate, Lou Pignataro (32), arranged a meeting with him where 
I described the technology and offered to demonstrate the value of simulation, pro bono. Barnes 
immediately recognized the potential value of simulation and identified a problematic signalized 
interchange in the Bronx that experienced extreme congestion during the p.m. peak period; this 
congestion in the interchange caused queues on the exit ramps from the Whitestone Parkway to 
extend onto the freeway—a condition that resulted in many collisions. This effort resulted in the 
DAFT model (33), coded in the GPSS/360 block language released to the public by IBM, which 
was used iteratively as a design tool to incrementally improve the signal policy when installed at 
the interchange. As a result of the improvements in signal timing, traffic congestion which had 
extended to 8 p.m. originally dissipated at 6:15 p.m. and the queues on the exit ramps no longer 
spilled back on the freeway. While the demonstration was a success, there was no following 
activity as Barnes suffered a heart attack about a month after our meeting. 

At about that time, the FHWA launched a research and development project entitled 
Urban Traffic Control System (UTCS). One activity was the development, calibration, and 
validation of an urban network microscopic traffic simulation model to be named, UTCS-1. The 
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intended use of this model was to evaluate traffic signal timing policies to be developed under 
this project. The technical representative for FHWA was Guido Radelat who developed a 
simulation model of bus operations along arterials, named SUB, as his dissertation (34). This 
was a one of the first hybrid models, which represented the background traffic macroscopically 
while moving bus vehicles as a mesoscopic process.  

The UTCS-1 model was coded in FORTRAN which made it computer-independent and 
scalable. While the original contract called for a network size of 25 intersections, UTCS-1 (and 
its successor, NETSIM) were capable of simulating much larger networks, limited only by 
computer size. The model used a 1-s time-step with a resolution of 0.1 s and included car-
following and queuing and lane-change logic; the model assigned driver behavioral 
characteristics stochastically and accommodated many vehicle types as well as pedestrian–
vehicle interaction effects. Traffic data for calibration and for validation were collected using 
timelapse photography from an aerial platform (helicopter) and recorded on 70-mm film. The 
model was completed, documented (35, 36) and applied to several networks to demonstrate its 
utility (37). The developer team of Peat Marwick Mitchell and General Applied Science 
Laboratories was headed by Dick Worrall and me, with technical oversight by Jim Kell, and with 
important contributions by others. The support provided by FHWA provided the impetus for 
further simulation development which continues to the present time. 
 
 
THE MATURATION OF SIMULATION DEVELOPMENT  
AND APPLICATION: 1970s 
 
Computer systems became more powerful (more RAM and faster processors) and more plentiful, 
making them accessible to more organizations and spurring interest in computer-based tools such 
as simulation. The UNIX operating system was developed as well as the C programming 
language; structured programming standards were developed to increase the reliability of 
software while reducing its cost. Companies such as Atari, Commodore, Tandy, Data General, 
and Apple were formed to produce small computers; Intel was formed to produce 
microprocessors; and Microsoft was formed to produce software. These latter developments had 
no immediate impact on simulation modeling, but would revolutionize the computing 
environment for simulation-based models in coming decades. 

Advances continued in traffic flow theory and were compiled in a handbook (38). After a 
lag of almost 20 years, Wardrop’s Laws were expressed as mathematical algorithms (39) and in 
software, which opened a new frontier for traffic simulation models. The LWR theory was 
further refined by Pete Payne (40) and later realized as a macroscopic freeway simulation model. 

The success of UTCS-1 prompted FHWA to add more features: simulation of bus 
operations and adaptive control, calculation of vehicle emissions and fuel consumption, and 
expanded output capabilities. These extensions continued throughout the decade and into the next. 
The source code was distributed and researchers across the country gained experience and 
exposure to simulation (e.g., 41–44). The agency extended simulation model development to 
freeways with the INTRAS model (45). With a view of extending the scope of simulation to larger, 
regional networks, the agency sponsored the development of the “hybrid” TRAFLO system (46–
48) which was an integration of individual mesoscopic and macroscopic models for simulating 
traffic over a general network of freeways and surface roads and incorporated the Sang Nguyen 
algorithm for static equilibrium assignment which permitted demand data to be entered as origin–
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destination (O-D) volumes. Another hybrid model integrated a microscopic urban model with a 
mesoscopic freeway model (48a). In contrast, FHWA supported the very detailed microscopic 
TEXAS simulation model which was designed to examine safety aspects at individual intersections 
(49). This model has been refined and extended many times over the years. 

Towards the end of the decade, the development of simulation models of traffic flow on 
two-lane rural roads was begun in the United States, Europe, and Australia. This activity was 
preceded by research in traffic flow and in formulating the performance of vehicles on grades to 
capture the behavior of platoon formation (50). Another development that was to have a major 
impact on the application of simulation models was the publication of the original papers on 
dynamic traffic assignment (50a, 50b). 
 
 
THE EMERGENCE OF THE PC AND FURTHER DEVELOPMENT OF  
INTEGRATED SIMULATION MODELS: 1980s 
 
The IBM PC was introduced in August 1981 and sold 100,000 computers by year-end. Thirteen 
years later, there were 100 million PCs worldwide running Microsoft’s MS-DOS. In 1982, the 
Compaq Corp. released their PC-compatible portable computer. The first PC with a hard drive 
was released in early 1983. The PC had little influence on simulation modeling until 1985 when 
Intel released the 80386 DX processor, which could address up to 4 GB of RAM. Compaq Corp. 
released the first PC with this processor. FORTRAN compilers for the PC meant that mainframe 
software could be ported to the PC. High-performance graphical processors were also being 
developed along with software that could bind with high-level programming languages. The C++ 
language was introduced in 1983. 

At mid-decade, the practitioner community had a limited acceptance of simulation 
technology. For example, the 1985 HCM (51) does not contain the word “simulation” in its 
index, although the procedures in Chapter 8: Rural Roads, reflect in part the results of 
microscopic simulation analysis. The vast majority of consultants are small firms whose budgets 
precluded the procurement of large computer systems. The subsequent PC revolution was to 
have a major impact upon the acceptance of traffic simulation by practitioners. FHWA led the 
way by porting the NETSIM model to a PC (52) and by sponsoring the development of 
animation software to display simulated vehicle movements on PC screens (53). By now, most 
schools had included simulation courses as part of their curricula. Over the following years, 
practitioners discovered that simulation software, provided free of charge by FHWA (54, 55) 
(which offered training courses), operated on affordable PCs and became an essential part of 
their services. 

This decade also witnessed the availability of simulation models designed for rural roads. 
These included the VTI model from Sweden (56), the TRARR model from Australia (56), and 
the TWOPAS (58) and ROADSIM (59) models from the United States; all these models are 
microscopic. While developed on mainframe computers, all were ported to the PC. FHWA 
sponsored the development of the FRESIM freeway microscopic simulation model, a refinement 
and extension of INTRAS for the PC (59a). 

Development of integrated simulation-based models which incorporated both operational 
and planning components intensified. Among the first to appear came from the United Kingdom 
in the form of the CONTRAM model (60) closely followed by the SATURN model (61). From 
Canada came the INTEGRATION mesoscopic simulation model as the dissertation of Michel 
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Van Aerde in 1983 (62); working with Sam Yagar, the model was refined (it became 
microscopic) and extended (63–65). The INTEGRATION model has been periodically extended 
and applied since then and is supported at VTI since Van Aerde’s death in 1999. The 
development of large-scale integrated simulation-based models designed for the PC were begun 
in Europe and released in the following decade. 

Research in traffic flow theory continued to support the growth in the number and 
functionality of simulation models (66–74). In addition, increasing attention became focused on 
the accuracy and reliability of simulation models (75), an emphasis that was intensified over the 
ensuing years. 
 
 
AN EXPLOSION OF SIMULATION R&D AND RISING PC COMPUTING POWER: 
1990s 
 
This decade witnessed the continued evolution of the integrated simulation model as the 
dominant medium in network modeling: for multiple modes of traffic operations and for 
transportation planning. All simulation software has now targeted the PC computer. Even the 
TRANSIMS development which was originally designed for parallel processing (76) was 
eventually ported to the PC. In 1993 the multitasking Windows NT 3.1 was released along with 
the first Pentium chip-set with a speed of 66 MHz; in 1998 a Pentium at 333MHz was released. 

The trend toward integrated simulation models continued. The FHWA sponsored the 
development of CORSIM by integrating the urban NETSIM and freeway FRESIM microscopic 
models (77, 78). Since then, CORSIM has enjoyed continuing support and has been expanded to 
include rural roads, diamond interchanges and other features. In addition, several universities 
formed “breeding grounds” for simulation-based software products that have been further 
developed by organizations in the private sector; others were developed solely by private 
organizations. All commercial simulation-based products are now marketed worldwide. Some of 
the more prominent packages include 
 

• Aimsun: Transport Simulation Systems (TSS); 
• CUBE: Citilabs; 
• Dynameq: INRO; 
• MITSIMLab: MIT; 
• PARAMICS: Quadstone; 
• Simtraffic: Trafficware; 
• Transmodeler: Caliper; and 
• VISSIM–VISUM: PTV. 

 
All these products provide microscopic or mesoscopic simulation models and most 

provide the option of macroscopic simulation modeling as well. Dynamic traffic assignment 
based on equilibrium theory and route choice models are included. All provide user interfaces, 
graphical (and animation) displays, and a wide range of data formats for displaying the analysis 
results. Many provide application programmer interfaces (APIs) so that skilled users can 
customize these packages, using high-level programming languages, to suit their needs. These 
integrated packages generally consider many traffic modes including pedestrian simulation 
models. While many were not widely available until the present millennium, the basic 
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development effort occurred during the 1990s when PC technology permitted. All operate on PC 
equipment or on UNIX workstations and can be applied to regional networks of 10,000+ links. 

Other large-scale network simulation-based models emerged from sponsored research 
activities, including DYNASMART (79), TRANSIMS (80, 82), and HUTSIM (81); the first uses 
a mesoscopic representation of traffic, the second employs a “vehicle hopping,” cellular-
automaton process, while the third is microscopic. All models are currently supported, have been 
extended over time, and are available for use. 

This decade also witnessed advances in research which influenced simulation modeling 
going forward. Carlos Deganzo (83, 84) developed the cell transmission model (CTM) based on 
LWR theory to provide a macroscopic simulation treatment. The CTM has been investigated by 
many researchers and extended (85). Given the wide variety of simulation-based models 
available at the end of the decade, attention focused on the selection procedures of a model for a 
specific project (86, 87) and on the calibration and validation of selected simulation models (88–
91). These activities would continue to the present time. 
 
 
FURTHER EXPANSION OF SIMULATION-BASED SYSTEMS AND NEW 
APPLICATION PROTOCOLS: 2000+ 
 
Desktop computer speeds and RAM capacity continued to improve while costs continued to 
drop. The Intel dual and quad Core chipsets were launched in 2006 and are used by Apple 
computers, as well. Simulation software developers were no longer constrained by hardware 
limitations and were able to expand their products subject only to market constraints and by 
developments in network theory.  

The FHWA sponsored the Next Generation Simulation (NGSIM) project in 2004 as a 
public–private partnership which prevails to this day (92). The project developed core simulation 
algorithms which were introduced into many commercial and public software products and an 
empirical database of vehicle trajectories along I-80, US-101 (a freeway), and Lankershim 
Boulevard, a surface artery that included four signalized intersections. These data sets, which 
include geometrics and control settings, are available without charge to those engaged in 
research worldwide and are proving to be a long-lived legacy of the project. These data are not 
only an outstanding resource for model developers; they have also prompted valuable research in 
data analysis (93). 

Advances in simulation led to the development of more efficient software for 
implementing dynamic network loading models in support of dynamic traffic assignment 
algorithms. In particular, the introduction of the link transmission model by Yperman (94) in 
2007 paved the way for additional developments (95, 96) which enabled computing times to 
decline. These lower computing times, along with new operating systems that support parallel 
processing, enhanced the development of network software that could be deployed on-line as 
traffic management systems (97–99). The emphasis on developing vehicle-to-vehicle (V2V), 
vehicle-to-infrastructure (V2I), and infrastructure-to-vehicle (I2V) communication and 
management architectures involves the online deployment of simulation-based models. 

There were over 500 papers presented at the 2012 TRB meeting that involved traffic 
simulation. All modes of travel were represented, with many papers addressing various 
combinations of travel modes interacting in the same environment. This testifies to the interest 
in, and need for simulation development. While simulation is now a mature technology, it 
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continues to evolve to meet society’s needs as the demand for travel services increase while the 
expansion of the physical infrastructure is severely constrained. 
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he Traffic EXperimental and Analytical Simulation Model for Intersection Traffic (TEXAS 
Model) was developed by the Center for Transportation Research at the University of Texas 

at Austin beginning in the late 1960s under the leadership of Dr. Clyde E. Lee. Dr. Thomas W. 
Rioux was leader of the team of graduate students that developed the TEXAS Model and has 
been upgrading the TEXAS Model since its initial development. The TEXAS Model is being 
enhanced to include connected vehicle messages by Harmonia Holdings Group and Rioux to be 
a test bed for connected vehicle applications. The TEXAS Model source code is available for 
use by the public under the GNU General Public License as published by the Free Software 
Foundation. The TEXAS Model source code for the standard version may be downloaded from 
http://groups.yahoo.com/neo/groups/TEXAS_Model while the version with Connected Vehicle 
applications may be downloaded from http://www.etexascode.org. This paper chronicles the 
evolution of the TEXAS Model simulation animation from the early 1970s through 2008 and the 
early traffic flow theory concepts of triangular acceleration, triangular deceleration, equations of 
motion, car following, intersection conflict checking, intersection conflict avoidance, sight 
distance restriction checking, lane changing, and crashes. 
 
 
INTRODUCTION 
 
Microscopic traffic simulation involves defining the movement of individual driver–vehicle units 
through a roadway system in response to driver desires and control, other driver–vehicle units in 
the system, and the absence or presence of traffic control. A driver–vehicle unit is a vehicle with 
specified characteristics (such as type of vehicle, length, maximum acceleration, maximum 
speed, etc.) controlled by a driver with specified characteristics (such as driver type, reaction 
time, desired speed, etc.) that has an intersection origin leg and lane and a destination leg. Every 
driver–vehicle unit in the system is processed every small time-step increment (generally 1 s or 
less) wherein each individual driver makes many decisions (change lanes, slow down, speed up, 
stop, turn, avoid crash, etc.), vehicle detectors and signal controllers are simulated, and many 
measures of effectiveness (MOEs) are gathered and reported. 

Clyde E. Lee was the faculty member who, in the late 1960s, conceived the idea of 
applying the University of Texas at Austin’s (UT) new Control Data Corporation (CDC) 1604 
mainframe digital computer for simulating traffic flow through an intersection. He initiated the 
first development efforts and supervised several ensuing research projects that culminated in the 
TEXAS Model (a name suggested by Guido Radelat of the FHWA Turner–Fairbank Highway 
Research Center) being initially released in 1977. Lee continued supervising research projects 
that enhanced or used the TEXAS Model until his retirement from UT in 1999. The TEXAS 
Model was developed by the Center for Highway Research and later the Center for 
Transportation Research (CTR) at UT using FORTRAN and mainframe computers. Initial 

T 
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funding for the development efforts was provided by the Texas Department of Transportation 
(DOT) in cooperation with the FHWA with later funding by the FHWA and the UT College of 
Engineering. 

Tom Rioux developed an interactive graphics system (a) to display and manipulate a 
finite elements model mesh during the 1969–1970 school year and (b) to display the theoretical 
and observed dynamic forces between the tires and pavement of a moving truck allowing the 
spring constants and damping coefficients to be modified during the 1970–1971 school year at 
UT using the CDC 250 Display System. 

The original TEXAS Model simulated a single intersection with no control, yield-sign 
control, less-than-all-way stop-sign control, all-way stop-sign control, pretimed signal control, 
semiactuated–signal control, or full-actuated–signal control using time-step increments between 
0.5 and 1.5 s, inclusive, for a total of 4,500 s (1.25 h). The geometry included up to six legs 
with up to six inbound and six outbound lanes per leg; up to 1,000 ft straight lanes that could be 
blocked at the near end, far end, or in the middle; specification of movements allowed to be 
made from each inbound lane; specification of movements allowed to be accepted for each 
outbound lane; sight distance restrictions; detailed intersection path geometry using arcs of a 
circle and tangent sections; and the calculation of potential points of geometric conflicts between 
intersection paths. The traffic stream was stochastically generated using constant, Erlang, 
Gamma, lognormal, negative exponential, shifted negative exponential, and uniform 
distributions for headways with user-specified parameters; the normal distribution for desired 
speeds; and discrete percentages for turn movements, lane assignments, and other percentage- 
based parameters. For each inbound leg, the user specified the hourly volume, the headway 
distribution name and any parameters, the mean and 85th percentile speed, and the percentage of 
each vehicle class in the traffic stream. For each vehicle class (10 provided with a maximum of 
15), the user specified the percentage of each driver class (three provided with a maximum of 
five).The model included intersection conflict checking; sight-distance restriction checking; 
cooperative lane changing using a cosine curve for the lateral position; car following using the 
Gazis–Herman–Rothery model with user-specified values for lambda (power for relative 
position), mu (power for speed), and alpha (constant); jerk-rate-driven equations of motion; 
triangular acceleration; triangular deceleration; and crashes with the driver–vehicle unit in front. 
MOEs included  

 
1. Total delay (actual travel time minus the time to travel the same distance at the time-

averaged desired speed);  
2. Queue delay (time from initially joining the end of the queue of driver–vehicle units 

at the stop line until crossing the stop line); 
3. Stopped delay (time stopped from initially joining the end of the queue of driver–

vehicle units at the stop line until crossing the stop line); 
4. Delay below a user-specified speed such as 10 mph;  
5. Vehicle-miles of travel;  
6. Travel time;  
7. Volume;  
8. Time and space mean speed;  
9. Turn percentages;  
10. Maximum and average queue length in 20-ft vehicles; and  
11. Number of crashes.  
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The MOEs could be printed per driver–vehicle unit and were summarized per lane or 
movement, per inbound leg, and for the entire intersection. 

Initial model development effort began in 1968. Many students, faculty, and staff at UT 
have been involved in the development and use of the TEXAS Model: 
 

• James W. Thomas, a graduate student in Civil Engineering at the time, began defining 
the concepts and techniques for modeling traffic flow through an intersection. 

• Roger S. Walker, a graduate student in Electrical Engineering at the time, wrote some 
of the earliest CDC 1604 computer code for the TEXAS Model. His work included the 
development of the COordinated Logic Entity Attribute Simulation Environment (COLEASE) 
program which provided extremely efficient storage of model data and implemented an efficient 
means for processing logical binary networks. He was assisted by Dennis Banks. 

• Thomas W. (Tom) Rioux, a graduate student in Civil Engineering at the time, started 
work on the project in 1971 and followed up on Walker’s initial work and became the leader of 
the team that developed the TEXAS Model into a viable tool for practical use in traffic 
engineering and research using the CDC 6600 computer system until the TEXAS Model was 
released in 1977 (Rioux 1973 TexITE; Rioux 1973 thesis; Fett 1974 thesis; Rioux 1977 
dissertation; Rioux et al. 1977 TRB TRR 644; Lee et al. 1977 184-1; Lee et. al. 1977 184-2; Lee 
et al. 1977 184-3; and Lee et al. 1978 184-4F). Rioux was the primary person who developed the 
field data analog-to-digital processing software that was used for model validation, DISFIT, 
GEOPRO, SIMPRO, the CDC 250 Display System version of DISPRO, SIMSTA, REMOVEC, 
REPLACEC, and gdvsim. He also participated in the development of DVPRO, the Intergraph 
UNIX X Windows version of DISPRO, the Java version of geoplot, and the Java version of 
dispro. In 1973, Rioux developed an animation on the CDC 250 Display System that was used 
during initial development efforts. Field measurements of queue delay using specifically 
designed recording devices were used to calibrate and validate the TEXAS Model at a four-leg 
intersection with pretimed-signal control in Austin, Texas. 

• Charlie R. Copeland, Jr., an undergraduate and then a graduate student in Civil 
Engineering at the time, was part of the original development team and was the primary person 
who developed DVPRO and EMPRO. He also participated in the development of the field data 
analog-to-digital processing software, DISFIT, GDVDATA, GDVCONV, SIMDATA, 
SIMCONV, and SIMPRO. 

• Robert F. “Bobby” Inman, an undergraduate student in Mechanical Engineering at the 
time, was part of the original development team and was the primary person who developed the 
field data collection hardware, GDVDATA, GDVCONV, SIMDATA, SIMCONV, DISPRE, and 
the DOS version of DISPRO. He also led the development effort of the Texas Diamond and 
NEMA traffic signal controller simulators within SIMPRO. Harold Dalrymple assisted him in 
the development of the field data collection hardware. 

• Ivar Fett, a graduate student in Civil Engineering at the time, was the person who 
collected and analyzed the field data and developed the original lane changing geometry and 
decision models, developed the initial all-way-stop sign control logic, and developed the initial 
pre-timed signal control logic for SIMPRO. He participated in the development of the car-
following logic for SIMPRO. 

• William P. Bulloch, a graduate student in Civil Engineering at the time, developed the 
initial acceleration, deceleration, and car-following models for SIMPRO. 
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• Elia King Jordan, a graduate student in Civil Engineering at the time, developed the 
initial version of DVPRO. 

• Glenn E. Grayson, a graduate student in Civil Engineering at the time, assisted in the 
development of the actuated signal control logic for SIMPRO and supervised the field data 
collection and analysis which was used to validate the TEXAS Model. 

• Vivek S. Savur, a graduate student in Civil Engineering at the time, assisted in the 
field data collection and analysis and assisted in the development of GEOPRO. 

• Scott Carter, a graduate student in Civil Engineering at the time, was the primary 
person that developed the Intergraph UNIX X Windows version of DISPRO. 

• Moboluwaji “Bolu” Sanu, a graduate student in Electrical and Computing 
Engineering at the time, was the primary person who developed the Java versions of geoplot and 
dispro. He later participated in the Small Business Innovative Research Projects performed by 
Rioux Engineering (Rioux 2004 DTRS57-04-C-10007; Rioux 2008 DTRT57-06-C- 10016). 

• Zhonghui Ning participated in the development of gdvsim in the Small Business 
Innovative Research Projects performed by Rioux Engineering (Rioux 2004 DTRS57-04- C-
10007; Rioux 2008 DTRT57-06-C-10016). 
 

Many research projects have used the TEXAS Model and their results are documented 
elsewhere. The original software programs proved to be a very robust and logically sound 
platform upon which numerous evolutionary enhancements, revisions, and new features were 
subsequently added through additional projects at CTR and Rioux Engineering as the TEXAS 
Model migrated from batch mode on a mainframe computer to interactive mode on modern 
microcomputers, including the following: 
 

• 1977/12/01 V1.00, initial release. 
• 1983/08/01 V2.00, Emissions Processor added (Lee et. al. 1983 250). 
• 1985/11/01 V2.50, converted to run on the DOS operating system on a 

microcomputer using 16-bit FORTRAN compilers, user-friendly interface added, and DOS 
animation added (Lee et. al. 1985 361). 

• 1989/01/01 V3.00, diamond interchange geometry and Texas DOT Figure 3, 4, 6, and 
7 dual-ring actuated diamond signal controller added (Lee et. al. 1989 443). 

• 1992/01/31 V3.10, replicate runs added, wide or narrow output selection added, left-
turn pull-out option added, hesitation factor added, maximum number of loop detectors per lane 
was increased from three to six, blocked lane processing modified, intersection conflict 
avoidance added, and driver–vehicle unit delay for unsignalized lanes modified. 

• 1992/03/25 V3.11, intersection conflict avoidance error fixed, lane change errors 
fixed, and look ahead algorithms modified. 

• 1992/12/15 V3.12, converted to run on the Unix operating system on a workstation, 
Headway Distribution Fitting Processor added, Geometry Plotting Processor added, Simulation 
Statistics Processor added, UNIX X Window animation added, free u-turns at diamond 
interchange added, Dallas diamond signal controller phase numbering added, NEMA TS 1-1989 
signal controller with volume–density operation added, replicate runs for specified number of 
runs added, replicate runs to specified statistical tolerance added, spreadsheet macros developed, 
car following modified, and many small enhancements to numerous algorithms (Rioux et. al. 
1993 1258). 

• 1993/11/23 V3.20, car following modified and NEMA controller errors fixed. 
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• 1994/05/10 V3.21, lane change error fixed. 
• 1994/06/07 V3.22, NEMA and Texas diamond controller errors fixed. 
• 1996/02/28 V3.23, car-following logic modified. 
• 1998/09/21 V3.24, utility programs from80d.exe and to80d.exe added and Y2K-

compliant modifications made. 
• 2000/08/03 V3.25, Java animation added. 
• 2003/08/29 V4.00, compiled using 32-bit FORTRAN compilers and initial vehicle 

messages added. 
• 2005/08/12 V5.00, Java user interface added; Geometry Plotting Processor converted 

to Java; source code released under GNU General Public License as published by the Free 
Software Foundation; increased number of driver types to nine; increased number of vehicle 
types to 99; classify detector added; modified logical binary networks to use type LOGICAL 
variables; added vehicle message system (VMS) messages for special driver– vehicle units— 
forced go time and duration, forced stop location and duration, and forced run red signal time 
and duration; changed minimum time-step increment to 0.01 s; converted all REAL variables to 
double precision; added VMS message types—driver DMS, driver IVDMS, and vehicle IVDMS; 
added VMS messages—accelerate or decelerate to speed xx using normal acceleration or 
deceleration, accelerate or decelerate to speed xx using maximum vehicle acceleration or 
deceleration, stop at the intersection stop line, stop at location xx, stop immediately using 
maximum vehicle deceleration, stop immediately using crash deceleration, change lanes to the 
left, change lanes to the right, forced go, and forced run the red signal; add VMS message— start 
time, active time, location (lane or intersection path and beginning and ending positions), driver–
vehicle unit number (0 = all), and reaction time distributions and parameters; Surrogate Safety 
Assessment Methodology (SSAM) file support added; Linux version developed (Rioux 2004 
DTRS57-04-C-10007 and Rioux 2005 DTFH61-03-C-00138). 

• 2008/07/31 V6.00, all user interface software made Section 508 compliant; built-in 
help and tool tips added; displaying the sight distance restrictions added; displaying the detector 
geometry and activity added; Java application developed to automate the running of the TEXAS 
Model; total simulation time extended to 9999.99 s (2.777775 h); lane length extended to 4,000 
ft; Java application to display statistics from one run or replicate runs developed; stop on crash 
using crash deceleration and remain stopped option added; crashes between driver–vehicle units 
on different intersection paths added; automated the running of SSAM; attach and display 
orthorectified image file added; updated the NEMA traffic signal controller simulator to NEMA 
TS 2-2003; pedestrians added as they affect the operation and timing of the NEMA and 
hardware-in-the-loop traffic signal controllers; pedestrian signal operation added to animation; 
caused other driver–vehicle units to react to a crash; dilemma zone statistics added; time-varying 
traffic for two or more periods added; hardware-in-the-loop traffic signal controller added; 
additional vehicle attributes added to articulate vehicles; distracted driver VMS message added; 
an optional lane change before or after the intersection to move from behind a slower driver–
vehicle unit added; and simulation of bicycles, emergency driver–vehicle units, and rail driver–
vehicle units added (Rioux et. al. 2008 DTRT57-06-C-10016-F). 

• 2010, Small Business Innovative Research (SBIR) project Topic 10.1-FH3 
“Simulating Signal Phase and Timing with an Intersection Collision Avoidance Traffic Model” 
adding SAE J2735 Basic Safety Message (BSM), Signal Phase and Timing Message (SPAT), 
and Map Data Message (MAP) awarded to Harmonia Holdings Group, LLC., Blacksburg, 
Virginia; Phase I completed; Phase II in progress. 
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• 2011, SBIR project Topic 11.1-FH2 “Augmenting Inductive Loop Vehicle Sensor 
Data with SPAT and GrID (MAP) via Data Fusion” adding National Transportation 
Communications for ITS Protocol (NTCIP) 1202 vehicle detector, traffic signal controller 
parameter, and traffic signal display messages awarded to Harmonia Holdings Group, LLC., 
Blacksburg, Virginia; Phase I completed; Phase II in progress. 
 
 
EVOLUTION OF THE TEXAS MODEL SIMULATION ANIMATION 
 
1970s 
 
In 1973, Rioux developed an animation on the CDC 250 Display System that was used during 
initial development efforts (Rioux 1977 dissertation, and Lee et. al. 1977 184-1). The CDC 250 
Display System (see Figure 1) was channel connected to a CDC 6600 mainframe system which 
was the fastest computer in the world when purchased, had a vector refresh display, a 4,095-
word display buffer, a 60-times-per-second refresh rate, a 1,024 by 1,024 first quadrant 
coordinate system, a light pen, and a standard keyboard entry device. An analog line could be 
drawn from any coordinate to any other coordinate, horizontal text could be placed at any 
coordinate, and the system would return the address of the object in the display buffer that the 
light pen touched thus the software had to keep track of the location in the display buffer of 
objects that could be triggered by the light pen. Computer code was directly added to the 
TEXAS Model simulation source code to display the animation thus the user could pause the 
animation but could not reverse the animation. Each driver–vehicle unit was updated on the 
screen each time step increment, was individually characterized, had blinking left- and right-turn 
 
 

 

FIGURE 1  CDC 250 display system. 
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signals, and had brake lights on the rear bumper. To make the animation movie, a 16-mm single-
frame movie camera was mounted on a tripod, a photocell was attached to the lower right corner 
of the screen, the animation was updated one time–step increment, a flash of light was produced 
in the lower right corner of the screen to take one frame of movie film, and the process continued 
taking 3 h to produce 3 min of film. This animation can be viewed at http://www.youtube.com 
/watch?v=1z4WIeIOfbw. 
 
1980s 
 
In 1985, Robert F. “Bobby” Inman developed the DOS version of the animation named DISPRO 
(Lee et. al. 1985 361). The simulation model produced a file with records for each driver–vehicle 
unit for each time-step increment. A preprocessor program DISPRE read this data and 
reformatted and processed the data to make it easier to animate. The animation program DISPRO 
read the data from the preprocessor program DISPRE, took direct control of a display monitor 
turning on and off individual pixels on the color screen, and took input from the keyboard and 
function keys. The animation could be paused and go backward and forward in single step, slow, 
or fast mode. Vehicles appeared as a series of dots making up the edge of the vehicles and again 
had blinking left- and right-turn signals and brake lights on the rear bumper. The lane edges and 
stop lines were drawn as lines and traffic signal indications were displayed near the stop line. For 
development purposes, the traffic signal controller timers and states as well as detector actuations 
were displayed. This animation can be viewed at http://www.youtube.com/watch?v=S0utMJ9fZls. 
 
1990s 
 
In 1992, Scott Carter and Rioux developed the X Windows version of the animation named 
DISPRO on an Intergraph Corporation RISC-processor-based Unix workstation (Rioux et. al. 
1993 1258). The animation program DISPRO read the data from the preprocessor program 
DISPRE, opened one control X Window, opened one to four intersection X Windows so the user 
could compare two or more different runs, and took input from the keyboard and mouse. Each X 
Window could be separately panned, zoomed, sized, and moved around the screen. The 
animation could be paused and go backward and forward in single step, slow, or fast mode. 

Vehicles appeared as lines making up the edge of the vehicles and again had blinking left- 
and right-turn signals and brake lights on the rear bumper. The lane edges and stop lines were drawn 
as lines and traffic signal indications were displayed beyond the stop line as green, yellow, or red 
arrows or squares. This animation can be viewed at http://www.youtube.com/watch?v=PcU6W 
caOAcE. 
 
2000s 
 
In 2000, Moboluwaji “Bolu” Sanu and Rioux developed the proof of concept version of the Java 
animation (Rioux 2005 DTFH61-03-C-00138). In 2005, Sanu and Rioux developed the Java 
version of the animation (Rioux 2004 DTRS57-04-C-10007 and Rioux 2005 DTFH61-03-C-
00138). The animation program runs on any computer with the Java Runtime Environment 
(JRE) or the Java Development Kit (JDK) which is a free download from http://www.oracle.com 
/technetwork/java/index.html. The animation program texasdis.jar reads the data from the 
preprocessor program DISPRE, opens one control window, opens one to two intersection 
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windows so the user can compare two different runs, and takes input from the keyboard and 
mouse. Each window can be separately panned, zoomed, sized, and moved around the screen. 
The animation can be paused, restarted, and go forward or backward in single step, slow, or 
variable speed fast mode. The user can enter the start time for the animation. 

Optionally, the user can enable Presentation Mode so that it would restart at the end rather 
than stopping at the end. Vehicles appear as filled shapes with angled front ends, a blue 
windshield, blinking left- and right-turn signals, and brake lights on the rear bumper. The 
TEXAS Model had been upgraded to have articulated vehicles and these are drawn to scale. The 
lane edges and stop lines are drawn as lines and traffic signal indications are displayed beyond 
the stop line as green, yellow, or red arrows or squares. The user can optionally  

 
1. Display the driver–vehicle unit number,  
2. Change the vehicle color by vehicle class,  
3. View turn signals,  
4. View brake lights,  
5. Identify vehicles blocked by a major collision,  
6. Identify vehicles involved in a major collision,  
7. Identify emergency vehicles running calls,  
8. View vehicles reacting to emergency vehicles running calls,  
9. View vehicles reacting to VMS messages,  
10. View an attached image file,  
11. View pedestrian activity if there is a NEMA traffic signal controller with pedestrians,  
12. View vehicle detector activity (vehicle front bumper crossing the front edge, vehicle 

rear bumper crossing the rear edge, and vehicle within or spanning the detector),  
13. View sight distance restriction locations,  
14. View user-defined arcs of circles, and 
15. View user-defined lines.  
 
This animation can be viewed at http://www.youtube.com /watch?v=oah6nCGKwig. 

Table 1 describes some of the vehicle animation features of the Java animation. 
 
 
TEXAS MODEL TRAFFIC FLOW THEORY 
 
The TEXAS Model defines the Perception, Identification, Judgment, and Reaction Time (PIJR) 
as a user-specified parameter for each driver class in seconds. Typical values are 0.5 for 
aggressive drivers, 1.0 for average drivers, and 1.5 for slow drivers. Throughout the remainder 
of this document, several functions and constants are used as follows: 
 

ABS(A) = the absolute value A 

ACOS(A) = the arccosine of A 
COS(A) = the cosine of Ad 

DT = the time step increment in seconds 
Max(A,B) = the maximum value of A and B 

PI = the value for PI 
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TABLE 1  Java Animation Features 
1 Display the driver–vehicle unit number  

2 Change the vehicle color by vehicle class  

3 

View turn signals: if the vehicle is making a u-turn or a left turn then 
blinking yellow turn signals are displayed near the front bumper and near 
the rear bumper on the left side of the vehicle  

View turn signals: if the vehicle is making a right turn then blinking 
yellow turn signals are displayed near the front bumper and near the rear 
bumper on the right side of the vehicle  

4 View brake lights: if the vehicle’s new deceleration rate is less than or equal 
to DECBRK or the vehicle’s new speed is equal to zero then a red bar is 
displayed near the rear bumper of the vehicle  

5 Identify vehicles blocked by a major collision: if the vehicle is blocked 
by a major collision then the vehicle color is displayed in orange 

 

6 Identify vehicles involved in a major collision: if the vehicle is involved in 
a major collision then the vehicle color is displayed in red 

7 Identify emergency vehicles running calls: if the vehicle is an emergency 
vehicle then a flashing red rectangle is displayed behind the windshield of the 
vehicle representing a “light bar” seen on most fire, EMS, and police vehicles  

8 View vehicles reacting to emergency vehicles running calls: if the 
vehicle is reacting to an emergency vehicle then a “E” is displayed 
behind the windshield of the vehicle  

9 View vehicles reacting to VMS messages: if the vehicle is reacting to a VMS 
message then a “V” is displayed behind the windshield of the vehicle 

 

11 View pedestrian activity if there is a NEMA 
traffic signal controller with pedestrians: the 
status of the pedestrian signal and detector is 
displayed for each phase 

 

12 

View vehicle detector activity: vehicle front bumper crossing the front edge 
 

View vehicle detector activity: vehicle rear bumper crossing the rear edge 
 

View vehicle detector activity: vehicle within or spanning the detector 
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Triangular Acceleration 
 
An investigation of existing acceleration models was undertaken in the early 1970s by Lee and 
Rioux and it was found that the uniform acceleration model did not match observed behavior 
accurately when considered on a microscopic scale. Using a Chi-squared goodness-of-fit test, a 
best-fit uniform acceleration model was calculated and the results plotted (see Figure 2 below) 
along with observed data points (Beakey 1938 HRB). This figure illustrates that the uniform 
acceleration model computes velocities which are too low during initial acceleration and which 
result in the driver–vehicle unit’s reaching desired velocity much sooner than it should. A linear 
acceleration model which hypothesizes use of maximum acceleration when vehicular velocity is 
zero, zero acceleration at desired velocity, and a linear variation of acceleration over time was 
investigated. Comparisons of this model with observed data (see Figure 2) indicate excellent 
agreement. This model also compared favorably with the nonuniform acceleration theory (Drew 
1968 TFT&C) used in describing the maximum available acceleration for the driver–vehicle 
unit. 

This work lead to the development of the triangular acceleration model used in the 
TEXAS Model. The author will use the term “jerk rate” to describe the rate of change of 
acceleration or deceleration over time and is usually in units of feet per second per second per 
second. Starting from a stopped condition, a driver–vehicle unit will use a maximum positive 
jerk rate until it reaches the maximum acceleration then the driver–vehicle unit will use a 
negative jerk rate until the acceleration is zero at the driver–vehicle unit’s desired speed. The 
maximum acceleration is defined by the driver–vehicle unit’s desired speed and the maximum 
acceleration for the driver–vehicle unit. 
 
 

 

FIGURE 2  Uniform versus linear acceleration and observed data. 
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Triangular Deceleration 
 
An investigation of existing deceleration models was also undertaken in the early 1970s by Lee 
and Rioux and it was found that the uniform deceleration model did not match observed behavior 
accurately when considered on a microscopic scale. Using a Chi-squared goodness-of- fit test, a 
best-fit uniform deceleration model was calculated and the results plotted (see Figure 3 below) 
along with observed data points (Beakey 1938 HRB). This figure illustrates that the uniform 
deceleration model yields a higher velocity during the first part of the deceleration maneuver 
and, as the velocity approaches zero, produces values that are lower than observed values. A 
linear deceleration model which hypothesizes use of a zero initial deceleration, maximum 
deceleration at the instant the driver–vehicle unit stops, and a linear variation of deceleration 
over time was investigated. Comparisons of this model with observed data (see Figure 3) 
indicate excellent agreement. 

This work led to the development of the triangular deceleration model used in the 
TEXAS Model. Starting from a moving condition, a driver–vehicle unit will use a maximum 
negative jerk rate until it reaches the maximum deceleration when the driver–vehicle unit stops. 
The maximum deceleration is defined by the driver–vehicle unit’s current speed and the 
maximum deceleration for the driver–vehicle unit. If a driver–vehicle unit is to decelerate to a 
stop, the time to stop and then the distance to stop is calculated each time step increment using 
current speed, current acceleration–deceleration, and current maximum deceleration. A 
deceleration to a stop is initiated when the driver–vehicle unit’s distance to the location for a stop 
becomes less than or equal to the distance to stop. 
 
 

 

FIGURE 3  Uniform versus linear deceleration and observed data. 
 



Evolution of the TEXAS Model 41 
 
 

Equations of Motion 
 
With the development of the triangular acceleration and triangular deceleration models, it was 
clear that the equations of motion had to include jerk rate as follows: 
 
AN = AO + J * DT 
 
VN = VO + AO * DT + 1/2 * J * DT2 
 
PN = PO + VO * DT + 1/2 * AO * DT2 + 1/6 * J * DT3 
 
where 

 
AN = acceleration/deceleration new in ft/s/s;  
AO = acceleration/deceleration old in ft/s/s;  
DT = time step increment in seconds; 

J = jerk rate in ft/s/s/s; 
PN = front bumper position new in feet;  
PO = front bumper position old in feet;  

VN = velocity new in ft/s; and 
VO = velocity old in ft/s. 

 
In the TEXAS Model, only the jerk rate is possibly changed each time step increment and 

limits are placed on the maximum positive and negative values for jerk rate. Only in collisions 
are extremely large values of jerk rate used to stop a driver–vehicle unit in about 3 to 6 ft. 
 
Car Following 
 
An investigation of existing car-following models was undertaken in the early 1970s by Lee and 
Rioux and the noninteger, microscopic, generalized Gazis-Herman-Rothery (GHR) car-following 
model (Gazis et. al. 1960 OR and May et. al. 1967 HRR 199) was selected because of its 
superiority and flexibility. If there is no previous driver–vehicle unit (no driver–vehicle unit 
ahead of the current driver–vehicle unit) then it cannot car follow and thus other logic is used. If 
the previous driver–vehicle unit is stopped then it cannot car follow and thus other logic is used. 
The GHR model equation is as follows: 
 
RelPos = PVPos – PO 
RelVel = PVVel – VO 

AN = CarEqA * VOCarEqM/RelPosCarEqL * RelVel 
 
where 
 

AN = current driver–vehicle unit acceleration/deceleration new in ft/s/s;  
CarEqA = user-specified GHR model alpha parameter (min = 1, def = 4,000, max = 

10,000); 
CarEqL = user-specified GHR model lambda parameter (min = 2.3, def = 2.8, max = 4.0) 
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CarEqM = user-specified GHR model mu parameter (min = 0.6, def = 0.8, max = 1.0); 
PO = current driver–vehicle unit front bumper current position old in feet; 

PVPos  = previous driver–vehicle unit rear bumper position in feet; 
PVVel = previous driver–vehicle unit velocity in ft/s;  
RelPos = relative position in feet; 
RelVel = relative velocity in ft/s; and  

VO = current driver–vehicle unit velocity old in ft/s. 
 

The acceleration–deceleration new AN is not allowed to exceed the maximum 
deceleration for the vehicle. The jerk rate to go from the current driver–vehicle unit acceleration–
deceleration old AO to the current driver–vehicle unit acceleration–deceleration new AN is not 
allowed to exceed the maximum jerk rate. A conservative car-following distance is defined as 
follows: 
 
RelVel = PVVel – VO 
 
CarDis = (1.7 * PVVel + 4 * RelVel2) / DrivChar 
 
where 
 

CarDis = car-following distance in feet;  
DrivChar  = user-specified driver characteristic (<1 = slow, 1 = average, >1 = aggressive,  

min. = 0.5, and max. = 1.0); 
PVVel = previous driver–vehicle unit velocity in ft/s; 
RelVel = relative velocity in ft/s; 

VO = current driver–vehicle unit velocity old in ft/s. 
 

If the relative velocity RelVel is greater than or equal to zero (the previous driver–vehicle 
unit is going faster than the current driver–vehicle unit) and the relative position RelPos is greater 
than some minimum value then the driver–vehicle unit is allowed to accelerate to its desired speed. 

If the relative position of the vehicle RelPos is less than or equal to zero then emergency 
braking is applied. If the relative position of the vehicle RelPos is greater than the 1.2 times the 
car-following distance CarDis then the driver–vehicle unit is allowed to accelerate to its desired 
speed. 

If the previous driver–vehicle unit is decelerating then calculate where it will stop and 
calculate the deceleration to stop behind the driver–vehicle unit ahead when it stops and if this 
deceleration is less than the car-following deceleration then use it. 

If the traffic signal changed from green to yellow and the current driver–vehicle unit 
decides to stop on yellow then calculate a deceleration to a stop at the stop line. If the traffic signal 
is yellow and the driver–vehicle unit previously decided to stop on yellow then continue a 
deceleration to a stop at the stop line. 
 
Intersection Conflict Checking and Intersection Conflict Avoidance 
 
Intersection conflict checking (ICC) and intersection conflict avoidance (ICA) are essential 
algorithms for microscopic traffic simulation. ICC is the algorithm that determines whether a 
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driver–vehicle unit, seeking the right to enter the intersection, has a predicted time–space 
trajectory through the intersection that does not conflict with the predicted time–space trajectory 
through the intersection of all other driver–vehicle units that have the right to enter the 
intersection. ICA is the algorithm used to simulate the behavior of driver–vehicle units that have 
the right to enter the intersection and try to maintain a nonconflict time–space trajectory through 
the intersection with the predicted time–space trajectory through the intersection of other driver–
vehicle units that have the right to enter the intersection. Certain driver–vehicle units 
automatically gain the right to enter the intersection when there are no major collisions within 
the system: driver–vehicle units on an uncontrolled lane at a sign-controlled or signal-controlled 
intersection, driver–vehicle units going straight or right on intersection paths that do not change 
lanes within the intersection when the signal displays circular green, and all driver–vehicle units 
on signalized lanes when the signal displays protected green for their movement. Typical 
applications of ICC and ICA include a left-turning driver–vehicle unit crossing opposing leg 
straight through driver–vehicle units. The TEXAS Model included the ICC algorithm in Version 
1.00 released 12/01/1977, added the ICA algorithm in Version 3.10 released 01/31/1992, and 
enhanced both algorithms in subsequent versions. The functionality and effectiveness of these 
algorithms has been verified extensively over the years by evaluation of the animation and 
analysis of the corresponding summary statistics from many, varied simulations. 

The TEXAS Model Geometry Processor (GEOPRO) calculates intersection paths starting 
at the coordinate for the middle of the stop line for an inbound lane, ending at the coordinate for 
the middle of the entry line for a diamond interchange internal inbound or outbound lane, tangent 
to the inbound lane, tangent to the outbound lane, and using the largest radius circular arc when 
needed. The user defines the turn movements that can be made from an inbound lane and the turn 
movements that can be accepted by an outbound lane. An intersection path consists of four 
segments in sequence. Each segment may or may not be used in the intersection path and is 
tangent at each end. The first segment is a tangent section, the second segment is an arc of a 
circle, the third segment is an arc of a circle, and the fourth segment is a tangent section. After 
calculating the geometry for all intersection paths, GEOPRO calculates the geometric conflicts 
between intersection paths including dual left-turn side swipes (the intersection paths come 
within a user- specified distance but do not cross) and merges into the outbound lane. Finally, 
GEOPRO creates a list of geometric conflicts ordered by the distance from the beginning of the 
intersection path down the intersection path centerline to the point of geometric conflict. Data for 
each geometric conflict include the intersection path information and the conflict angle. 

For each intersection path involved in a geometric conflict, the TEXAS Model 
Simulation Processor (SIMPRO) maintains a linked list of driver–vehicle units whose rear 
bumper plus a time safety zone has not crossed the point of geometric conflict. When a driver–
vehicle unit gains the right to enter the intersection, SIMPRO adds the driver–vehicle unit to the 
end of the linked list for each geometric conflict for the driver–vehicle unit’s intersection path. 
When a driver–vehicle unit is denied the right to enter the intersection, such as when a driver–
vehicle unit decides to stop on a yellow signal indication, SIMPRO removes the driver–vehicle 
unit from the linked list for each geometric conflict for the driver–vehicle unit’s intersection 
path. As the rear bumper plus a time safety zone crosses the point of geometric conflict, 
SIMPRO removes the driver–vehicle unit from the linked list for the geometric conflict for the 
driver–vehicle unit’s intersection path. 

To process the intersection conflicts for ICC for a driver–vehicle unit on an inbound lane 
or diamond interchange internal inbound lane that has not gained the right to enter the 
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intersection, SIMPRO first checks whether there are any geometric conflicts for the driver–
vehicle unit’s intersection path and if there are none, then intersection conflicts are clear. Next, 
SIMPRO processes each geometric conflict for the driver–vehicle unit’s intersection path in 
distance order. If a geometric conflict does not have a driver–vehicle unit whose rear bumper 
plus a time safety zone has not crossed the point of geometric conflict, then the geometric 
conflict is clear and the next geometric conflict is tested, else this geometric conflict is 
processed. In this discussion, “I”, “me”, or “my” refers to the driver–vehicle unit being processed 
while “he”, “him”, or “his” refers to the next driver–vehicle unit whose rear bumper plus a time 
safety zone has not crossed the point of geometric conflict. The time for my front bumper to 
arrive at the geometric conflict (TCM), velocity at the geometric conflict for me (VCM), 
acceleration at the geometric conflict for me (ACM), and jerk rate at the geometric conflict for 
me (SCM) are predicted using my current distance to the geometric conflict, velocity, 
acceleration, jerk rate, driver characteristics, vehicle characteristics, speed limit for my 
intersection path, and information about any lead driver–vehicle unit that must be car-followed. 
The time for his front bumper to arrive at the geometric conflict (TCH), velocity at the geometric 
conflict for him (VCH), acceleration at the geometric conflict for him (ACH), and jerk rate at the 
geometric conflict for him (SCH) are predicted using his current distance to the geometric 
conflict, velocity, acceleration, jerk rate, driver characteristics, vehicle characteristics, speed 
limit for his intersection path, and information about any lead driver–vehicle unit that must be 
car-followed. A mini-simulation is used by SIMPRO to determine the time it takes the driver–
vehicle unit to traverse the specified distance assuming that the driver–vehicle unit can accelerate 
to its desired speed or speed limit of its intersection path or car follow any lead driver–vehicle 
unit. The lead driver–vehicle unit, if any, is assumed to continue its current jerk rate. The 
velocity, acceleration, and jerk rate of the driver–vehicle unit when it has traversed the specified 
distance is also calculated. For ICC and ICA purposes, the lead gap is the space between my rear 
bumper and his front bumper when I go ahead of him through the geometric conflict whereas the 
lag gap is the space between his rear bumper and my front bumper when I go behind him through 
the geometric conflict. 

SIMPRO then calculates the time for the front safety zone for him (TFZ) and the time for 
the rear safety zone for him (TRZ) will arrive at the geometric conflict (see the top diagram in 
Figure 4) using the following equations: 
 

ERRJUD = if TCH > 5 then max(0.0,PIJR*(TCH-5.0)/7.0), else 0; 
TPASSM = LVAPM/VCM; 
TPASCM = DISCLM/VCM TPASSH = LVAPH/VCH TPASCH = DISCLH/VCH; 

TFZ = TCH – TPASSM – TPASCM – (TLEAD – APIJR) – PIJR – ERRJUD/2; 
TRZ = TCH + TPASSH + TPASCH + (TLAG – APIJR) + PIJR + ERRJUD/2 

+ TPASCM 
 
where 

 
APIJR = average PIJR time for all driver–vehicle units in the entire traffic stream in 

seconds (calculated by the TEXAS Model DVPRO); 
DISCLH = safety distance for him for merge into the same outbound lane in feet; 
DISCLM = safety distance for me for merge into the same outbound lane in feet; 
ERRJUD = error in judgment in seconds for TCH values greater than 5; 
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FIGURE 4  TEXAS Model intersection conflict checking gap calculations. 
 
 

LVAPH = length of vehicle along the intersection path for him at his current position in 
feet; 

LVAPM = length of vehicle along the intersection path for me at my current position in 
feet; 

PIJR = Perception, identification, judgment, and reaction time for the current driver–
vehicle unit in seconds; 

TCH = time for his front bumper to arrive at the geometric conflict in seconds; 
TFZ = the time for the front safety zone for him in seconds; 

TLAG = user-defined lag time gap for ICC in seconds (min = 0.5, def = 0.8, max = 3.0); 
TLEAD = user-defined lead time gap for ICC in seconds (min = 0.5, def = 0.8, max = 3.0); 

TPASCH = time for his driver–vehicle unit to pass through the geometric conflict because 
of a merge into the same outbound lane in seconds (0, if no merge); 

TPASCM = time for my driver–vehicle unit to pass through the geometric conflict because 
of a merge into the same outbound lane in seconds (0, if no merge); 

TPASSH = time for his driver–vehicle unit to pass through the geometric conflict in 
seconds; 

TPASSM = time for my driver–vehicle unit to pass through the geometric conflict in 
seconds; 

TRZ = time for the rear safety zone for him in second; 
VCH = velocity at the geometric conflict for him in ft/s; and  
VCM = velocity at the geometric conflict for me in ft/s. 

 
The time period from TFZ until TRZ is blocked for me by his driver–vehicle unit. See the 

bottom diagram in Figure 4 to look at the time sequences from a gap perspective. If I can go 
safely in front of him (TCM is less than TFZ) or I can go safely behind him (TCM is greater than 
TRZ), then there is no conflict with his driver–vehicle unit at this geometric conflict. If I am 
blocked by his driver–vehicle unit at this geometric conflict (TCM is greater than or equal to 
TFZ and TCM is less than or equal to TRZ), then there is a conflict with his driver–vehicle unit 
at this geometric conflict. If there is a conflict, then the ICC process is completed with a conflict 
found.  



46 Transportation Research Circular E-C195: Traffic and Transportation Simulation 
 
 

If there is no conflict, I go behind him (TCM is greater than TFZ), and there is another 
driver–vehicle unit whose rear bumper plus a time safety zone has not crossed the point of 
geometric conflict, then I check the next driver–vehicle unit whose rear bumper plus a time 
safety zone has not crossed the point of geometric conflict. If there is no conflict and I go before 
him (TCM is less than or equal to TFZ), then I check the next geometric conflict for his 
intersection path because if I can go before him, then I can go before all other driver–vehicle 
units behind him. If all geometric conflicts for his intersection path have been checked and there 
are no conflicts, then the ICC process is completed with no conflict found. There are many 
special cases accommodated within the actual code when the geometric conflict is a merge, when 
there is a major collision somewhere within the system, when the other driver–vehicle unit is 
stopped and blocked by a major collision, when there is an emergency driver–vehicle unit in the 
system, or when a driver–vehicle unit is currently processing a forced go or forced run the red 
signal VMS message. 

ICA is the algorithm used to simulate the behavior of driver–vehicle units that have the 
right to enter the intersection and try to maintain a nonconflict time–space trajectory through the 
intersection with the predicted time–space trajectory through the intersection of other driver–
vehicle units that have the right to enter the intersection. The linked list of driver–vehicle units 
whose rear bumper plus a time safety zone has not crossed the point of geometric conflict as 
described for ICC is also used for ICA. The jerk rate used for ICA (SLPCON) is initialized to 0.0. 

To process the intersection conflicts for ICA for a driver–vehicle unit on an inbound 
lane or diamond interchange internal inbound lane that has gained the right to enter the 
intersection or a driver–vehicle unit that is within the intersection, SIMPRO uses a similar 
process as described for ICC. TCM, TCH, TFZ, TRZ, and the other variables are calculated in 
the same manner and the same tests are performed to determine whether there is a conflict. The 
difference between the ICC and ICA process is the action that is taken when a conflict is found. 
A variable TIM is calculated based upon TCH, the turn movement for my intersection path, the 
turn movement for his intersection path, and whether there is a new green signal setting for me. 
TIM gives priority to a straight driver–vehicle unit over a turning driver–vehicle unit when they 
are both predicted to arrive at the geometric conflict at approximately the same time. If my 
turning movement is straight and his turning movement is straight, then TIM is set to TCH. If 
my turning movement is straight and his turning movement is left or right, then if I have a new 
green signal setting, then set TIM to TCH – 1.0, else set TIM to TCH + 1.5. If my turning 
movement is left or right and his turning movement is straight, then set TIM to TCH – 1.5. If 
my turning movement is left or right and his turning movement is left or right, then set TIM to 
TCH. Finally, if I am not an emergency driver–vehicle unit and he is an emergency driver–
vehicle unit, then set TIM to TCH – 5.0. The jerk rate SLPTCM required for me to travel from 
my current position to the geometric conflict in time TCM starting with my current velocity and 
acceleration is calculated. This jerk rate represents the average value from the prediction 
process. If I have already passed the geometric conflict (TCM is less than or equal to 0.0), then 
nothing is done for this geometric conflict and the next driver–vehicle unit or the next 
geometric conflict is processed. 

The following logic is used when I am trying to go in front of him (TCM is less than or 
equal to TIM) therefore I try to accelerate to avoid the conflict. If the front safety zone for him 
has already arrived at the geometric conflict (TFZ is less than or equal to 0.0), then I should 
accelerate as fast as possible (set SLPTFZ to six times the critical jerk rate CRISLP). If the 
front safety zone for him has not already arrived at the geometric conflict (TFZ is greater than 
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0.0), then I should accelerate to go in front of him (set SLPTFZ to the jerk rate required for me 
to travel from my current position to the geometric conflict in time TFZ starting with my 
current velocity and acceleration). A temporary jerk rate SLPTMP is set to the maximum of 
(SLPTFZ – SLPTCM) and 0.0. If I need to accelerate more than normal (SLPTMP is greater 
than 0.0), and there is no driver–vehicle unit ahead that I must car follow, and the temporary 
jerk rate is greater than the jerk rate used for ICA (SLPTMP is greater than SLPCON), then set 
SLPCON to SLPTMP. If I need to accelerate more than normal (SLPTMP is greater than 0.0), 
and there is a driver–vehicle unit ahead that I must car follow, and my speed is less than my 
desired speed, and the distance between me and the driver–vehicle unit ahead that I must car 
follow is greater than the car following distance, and the temporary jerk rate is greater than the 
jerk rate used for ICA (SLPTMP is greater than SLPCON), then set SLPCON to SLPTMP. The 
next driver–vehicle unit or the next geometric conflict is processed. This procedure will find 
the maximum positive jerk rate needed to accelerate to go in front of any driver–vehicle unit 
where a conflict has been found. 

The following logic is used when I am trying to go behind him (TCM is greater than 
TIM) therefore I try to decelerate to avoid the conflict. If his rear safety zone has not reached 
the geometric conflict (TRZ is greater than 0.0), then I should decelerate to go behind him (set 
SLPTRZ to the jerk rate required for me to travel from my current position to the geometric 
conflict in time TRZ starting with my current velocity and acceleration). A temporary jerk rate 
SLPTMP is set to the minimum of 4.5 × (SLPTFZ – SLPTCM) and 0.0. If I need to decelerate 
more than normal (SLPTMP is less than 0.0), then set SLPCON to SLPTMP and the ICA 
checking process is completed. This procedure will find the negative jerk rate needed to 
decelerate to go behind the first driver–vehicle unit where a conflict has been found. If 
SLPCON is not set to SLPTMP, then the next driver–vehicle unit or the next geometric conflict 
is processed. 

If the jerk rate used for ICA has been set (SLPCON is not equal to 0.0), then SLPCON 
is added to the jerk rate calculated for this driver–vehicle unit (SLPNEW) if it is the critical 
value. There are many special cases accommodated within the actual code when the geometric 
conflict is a merge, when there is a major collision somewhere within the system, when the 
other driver–vehicle unit is stopped and blocked by a major collision, when there is an 
emergency driver–vehicle unit in the system, or when a driver–vehicle unit is currently 
processing a forced go or forced run the red signal VMS message. 
 
Sight-Distance Restriction Checking 
 
The user defines the coordinates of all critical points needed to locate sight obstructions in the 
intersection area and the TEXAS Model Geometry Processor (GEOPRO) calculates the 
distance that is visible between pairs of inbound approaches for every 25-ft increment along 
each inbound approach. The TEXAS Model Simulation Processor (SIMPRO) checks sight 
distance restrictions. Each driver–vehicle unit on an inbound approach assumes that it must stop 
at the stop line until it gains the right to enter the intersection. If the inbound lane is stop sign 
controlled or signal controlled, the assumption is made that sight distance restrictions are not 
critical and therefore do not need to be checked. If adequate sight distance is not available to a 
unit stopped at the stop line, this will not be detected in SIMPRO. 

For driver–vehicle units on inbound lanes to an uncontrolled intersection, if there are 
units stopped at a stop line waiting to enter the intersection and the inbound driver–vehicle unit 



48 Transportation Research Circular E-C195: Traffic and Transportation Simulation 
 
 

being examined is not stopped at the stop line, the approaching driver–vehicle unit will continue 
to decelerate to a stop at the stop line without checking sight distance restrictions again until it 
is stopped at the stop line or until there are no driver–vehicle units stopped at the stop line. This 
procedure eliminates unnecessary computations and gives the right of way to other driver–
vehicle units already stopped at the stop line when the intersection is uncontrolled. If there are 
no sight-distance restrictions for driver–vehicle units on an inbound approach then intersection 
conflicts are checked (see the ICC discussion above). If (a) a driver–vehicle unit is on an 
uncontrolled lane approaching a yield-sign–controlled, (b) the driver–vehicle unit is stopped at 
the stop line, or (c) the intersection path of the driver–vehicle unit has no geometric intersection 
conflicts then it is assumes that there are no sight-distance restrictions. 

The maximum time from the end of the inbound lane that the driver–vehicle unit is 
permitted to begin checking sight-distance restrictions, so that it may decide to proceed to ICC 
if sight-distance restrictions are clear, is initially set to 3 s for all intersections. This prohibition 
prevents the driver–vehicle unit from gaining the right to enter the intersection when it is 
relatively far away from the intersection and thereby unnecessarily affecting the behavior of 
driver–vehicle units on other inbound approaches. If the inbound lane is an uncontrolled lane 
approaching a yield-sign–controlled intersection, the time is increased by 2 s plus the time for 
the lead safety zone for ICC. This longer time allows driver–vehicle units on the uncontrolled 
lanes to gain the right to enter the intersection ahead of other driver–vehicle units on the yield- 
sign-controlled lanes. If the intersection is uncontrolled then the time is reduced to 2 s. 

In SIMPRO, the time required for the driver–vehicle unit being checked to travel to the 
end of the lane is predicted. If this predicted time is greater than the maximum time from the 
end of the lane that the driver–vehicle unit may decide to proceed to ICC then the driver–
vehicle unit cannot clear its sight distance restrictions and it must check again in the next time-
step increment. 

The order in which sight-distance restrictions are checked by SIMPRO is determined by 
the sequence in which intersection conflicts might occur. The sight-distance restriction 
associated with the longest travel time to an intersection conflict is checked first then other 
sight-distance restrictions are checked in descending order of travel time to the intersection 
conflict. This order of checking facilitates early detection of an opportunity to pass in front of a 
driver–vehicle unit approaching on a sight-restricted lane. Checking continues until all inbound 
approaches which have possible sight-distance restrictions with the subject inbound approach 
are cleared. 

To check sight-distance restrictions in SIMPRO, the time required for a fictitious 
driver–vehicle unit, traveling at the speed limit of the approach, to travel from a position that is 
just visible on the inbound approach to the point of intersection conflict is predicted. Next, the 
time required for the driver–vehicle unit being examined to travel to the point of intersection 
conflict is predicted. This prediction assumes that the driver–vehicle unit under examination 
has gained the right to enter the intersection and that it may accelerate to its desired speed. If 
the unit being checked may not safely pass through the point of intersection conflict ahead of 
the fictitious driver–vehicle unit then it may not clear its sight-distance restrictions and it must 
check again in the next time-step increment, otherwise, it clears the sight-distance restriction 
and continues checking other sight-distance restrictions. 

This procedure ensures that a driver–vehicle unit may safely enter the intersection 
even if a driver–vehicle unit were to appear from behind the sight-distance restriction just 
after the decision to enter the intersection was made. 
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Lane Changing 
 
An investigation of lane-changing models was undertaken in the early 1970s by Lee and Ivar 
Fett (Fett 1974 thesis). Fett collected and analyzed the field data, developed the original lead 
and lag-gap acceptance decision models, and used a cosine curve for the lateral position for a 
lane change. 

Rioux developed the concept of distinguishing between two types of lane changes: (a) 
the forced lane change wherein the currently occupied lane does not provide an intersection 
path to the driver–vehicle unit’s desired outbound approach and (b) the optional lane change 
wherein less delay can be expected by changing to an adjacent lane which also connects to the 
driver–vehicle unit’s desired outbound approach. Later, Rioux added cooperative lane changing 
and a lane change to get from behind a slower vehicle. 

When a lane change is forced, a check is made to determine whether an alternate lane is 
geometrically available adjacent to the current position of the driver–vehicle unit being 
examined and is continuous to the intersection ahead. In the case of the alternate lane not being 
accessible from the current position, but available ahead, one of the two following conditions 
exists: (a) there is a lead driver–vehicle unit in the alternate lane ahead in which case the 
driver–vehicle unit sets the lane change jerk rate to car follow the lead driver–vehicle unit in the 
alternate lane or (b) there is not a lead driver–vehicle unit in the alternate lane ahead in which 
case the lane change jerk rate is set to stop the driver–vehicle unit at the end of the alternate 
lane. If the end of the alternate lane has already been passed by the driver–vehicle unit when the 
check for an available alternate lane is made then the driver–vehicle unit is forced to choose 
one of the available intersection paths leading from the currently occupied lane and abandon the 
original destination. Otherwise, the driver–vehicle unit checks for an acceptable gap for lane 
changing. 

When a lane change is optional, SIMPRO delays further lane-change checking until the 
driver–vehicle unit is dedicated to an intersection path. If there are no lane alternates adjacent to 
the current lane then the lane change status flag is set to no longer consider a lane change. If the 
driver–vehicle unit is the first unit in the current lane and its intersection path does not change 
lanes within the intersection then the lane change status flag is set to no longer consider a lane 
change. The expected delay is then computed for the driver–vehicle unit’s current lane as well 
as for its alternate lanes. If less delay can be expected if the driver–vehicle unit changes into 
one of the alternate lanes then that lane is checked for the presence of an acceptable lead gap 
and an acceptable lag gap otherwise the process is repeated the next time step increment. If 
there is an acceptable lead gap and an acceptable lag gap then the driver–vehicle unit is logged 
out of the current lane, logged into the new lane, and the lane change is initiated. 

When the lead gap or the lag gap is not acceptable, the driver–vehicle unit tries to 
maneuver itself to make the gaps acceptable the next time step increment by accelerating, 
decelerating, or asking the lag driver–vehicle unit to car follow the current driver–vehicle unit 
to increase the lag gap (this is cooperative lane changing). 

SIMPRO keeps track of the lateral position for the lane change old LatPosOld in feet 
which starts at the value for the total lateral distance for a lane change in feet TLDIST and 
decreases to zero when the lane change maneuver is completed. The lateral position of the lane 
change is computed using a cosine curve. Each time step increment, the current position on the 
cosine curve XOLD and the new position on the cosine curve XNEW are calculated as follows: 
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XTOT = 3.5 * VO / ( DrivChar * VehChar ) 
 
TLDIST = 1/2 * LanWidOrg + 1/2 * LanWidNew 
 
XOLD = XTOT * ACOS [ 2 * ABS( LatPosOld ) / TLDIST – 1 ] / PI 
 
XNEW = XOLD + VO * DT + 1/2 * AO * Power ( DT,2 ) + 1/6 * JN * Power ( DT,3 ) 
 
where  
 

AO = current driver–vehicle unit acceleration/deceleration old in ft/s/s; 
DrivChar = user-specified driver characteristic (<1 = slow, 1 = average, >1 = aggressive, 

min. = 0.5, max. = 1.5); 
JN = current driver–vehicle unit jerk rate new in ft/s/s/s; 

LanWidNew = new lane width in feet; 
LanWidOrg = original lane width in feet; 
LatPosOld = lateral position for the lane change old in feet; 

TLDIST = total lateral distance for a lane change in feet; 
VehChar = user-specified vehicle characteristic (<1.0 = sluggish, 1 = average,  

>1 = responsive, min. = 0.5, max. = 1.5); 
VO = current driver–vehicle unit velocity old in ft/s; 

XNEW = new position on the cosine curve in feet; 
XOLD = current position on the cosine curve in feet; and 
XTOT = total length of the lane change in feet. 

 
If the new position on the cosine curve XNEW is greater than 95% of the total length of 

the lane change XTOT then the lane change is completed. The lateral position for the lane 
change new LatPosNew is calculated and stored as follows: 
 
LatPosNew = 1/2 * TLDIST * [ 1 + COS( PI * XNEW / XTOT ) ] 

 
where 

 
LatPosNew = lateral position for the lane change new in feet. 
 

If lateral position for the lane change new LatPosNew is less than 0.3 ft then the lane 
change is completed. Note that if the driver–vehicle unit speeds up then the total length of the 
lane change XTOT increases which causes the lane change to lengthen. 

In 2008, Thomas W. Rioux extended the maximum lane length from 1,000 to 4,000 ft 
(Rioux et. al. 2008 DTRT57-06-C-10016-F). This enhancement caused an additional optional 
lane change to be added before or after the intersection to move a driver–vehicle unit from 
behind a slower driver–vehicle unit. If the adjacent lane did not have an intersection path to the 
driver–vehicle unit’s desired outbound approach, a lane change that would temporarily use the 
adjacent lane, pass the slower moving driver–vehicle unit, and lane change back into the original 
lane was performed if possible. 
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Crashes 
 
If the front bumper position of the driver–vehicle unit (lag driver–vehicle unit) is greater than the 
rear bumper position of the driver–vehicle unit ahead (lead driver–vehicle unit) then there is a 
crash. These were called “clear zone intrusions”. A message giving the details of the lead driver–
vehicle unit and the lag driver–vehicle unit involved in the “clear zone intrusion” was output and 
the “clear zone intrusions” were counted. The lag driver–vehicle unit defied physics by placing 
itself 3 feet behind the lead driver–vehicle unit traveling at the speed of the lead driver–vehicle 
unit and with zero acceleration–deceleration and jerk rate and the traffic simulation continued 
normally. Only crashes between a lead driver–vehicle unit and a lag driver–vehicle unit were 
detected. 

In 2008, Thomas W. Rioux added the option to stop a driver–vehicle unit involved in a 
“major” crash using crash deceleration and remain stopped for the remainder of the simulation 
(Rioux et al. 2008 DTRT57-06-C-10016-F). This involved defining a “major” crash. 

Additionally, a crash between driver–vehicle units on different intersection paths was 
detected. Finally, code was added to cause other driver–vehicle units to react to driver–vehicle 
units involved in a “major” crash by slowing down as they passed near a crash if the driver–
vehicle unit was not blocked by the “major” crash. After the driver–vehicle unit stopped because 
it was blocked by the “major” crash and a stochastically generated response time had elapsed, the 
driver–vehicle unit could possibly reverse a lane change maneuver if the driver–vehicle unit was 
still in the original lane or choosing a different intersection path to a possibly different desired 
outbound approach. 
 
 
CONCLUSION 
 
This paper chronicles the evolution of the TEXAS Model which was developed by the CTR UT 
at Austin beginning in the late 1960s. Topics include the TEXAS Model simulation animation 
from the early 1970s through 2008 and the early traffic flow theory concepts of triangular 
acceleration, triangular deceleration, equations of motion, car following, intersection conflict 
checking, intersection conflict avoidance, sight-distance restriction checking, lane changing, and 
crashes. The TEXAS Model is being enhanced to include Connected Vehicle messages by 
Harmonia Holdings Group and Rioux to be a test bed for Connected Vehicle applications. 

The TEXAS Model source code is available for use by the public under the GNU General 
Public License as published by the Free Software Foundation. The source code for the TEXAS 
Model may be downloaded from http://groups.yahoo.com/neo/groups/TEXAS_Model (standard 
version) and http://www.etexascode.org (version with messaging). 

The TEXAS Model Animations may be watched from YouTube (or search YouTube for 
“TEXAS Model for Intersection Traffic Animation”): 

 
1970s: http://www.youtube.com/watch?v=1z4WIeIOfbw 
1980s: http://www.youtube.com/watch?v=S0utMJ9fZls 
1990s: http://www.youtube.com/watch?v=PcU6WcaOAcE  
2000s: http://www.youtube.com/watch?v=oah6nCGKwig 

 

Most of the references may be downloaded from Files at 
 



52 Transportation Research Circular E-C195: Traffic and Transportation Simulation 
 
 

• http://groups.yahoo.com/neo/groups/TEXAS_Model_Documentation1: 
– 00000000_READ_ME.TXT, 
– 00000001_TEXAS_Model_Development_History.txt, 
– 19730126_TexITE.zip 19730500_Rioux_thesis.zip, z01, and z02, 
– 19740500_Fett_thesis.zip19770000_TRB_TRR_644.zip, 
– 19771200_CTR_Research_Report_184-1.zip, z01, z02, z03, z04, and z05, 
– 19771200_CTR_Research_Report_184-2.zip, z01, z02, z03, z04, z05, z06, and z07,  
– 19770700_CTR_Research_Report_184-3.zip and z01; 

• http://groups.yahoo.com/neo/groups/TEXAS_Model_Documentation2: 
– 19771200_Rioux_dissertation.zip, z01, z02, z03, z04, z05, z06, z07, z08, z09, and z10, 
–  19780700_CTR_Research_Report_184-4F.zip, 
– 19801100_Torres_Evaluation_of_TEXAS_Model.zip, 
– 19830800_CTR_Research_Report_250-1.zip, z01, z02, z03, z04, z05, z06, and z07; 

• http://groups.yahoo.com/neo/groups/TEXAS_Model_Documentation3:  
– 19851100_CTR_Research_Report_361-1F.zip and z01, 
– 19890100_CTR_Research_Report_443-1F.zip, z01, z02, z03, and z04, 
– 19910800_CTR_TEXAS_Model_Version_3_0_Documentation.zip, z01, z02, and 

z03, 
– 19930100_CTR_Research_Report_1258-1F.pdf , 
– 19931100_CTR_TEXAS_Model_Version_3_20_Documentation.zip, z01, and z02 , 
– 20040824_RiouxEngineering_DTRS57-04-C-10007_report.pdf , 
– 20050800_CTR_DTFH61-03-C-00138.pdf, 
– 20080731_RiouxEngineering_DTRT57-06-C-10016_report.pdf, 
– 20100110 TRB Intersection Conflict Checking and Avoidance.pdf (not accepted), 
– 20120122 TRB Simulating Crashes and Creating SSAM Files.pdf, 
– 20120122 TRB Simulating Crashes and Creating SSAM Files.ppt, 
– Evolution_of_Animation_of_the_TEXAS_Model.ppt, 
– TEXAS_Model_for_Intersection_Traffic.ppt, 
– TEXAS_Model_for_Intersection_Traffic_Section_508.ppt, and 
– TEXAS_Model_Online_Documentation.htm. 
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n this paper I give my personal view on the development of VISSIM, which is probably the 
most widely used commercial traffic simulation tool in practice and in academia (counting the 

number of TRB papers using VISSIM). I joined the simulation group headed by Rainer 
Wiedemann at Karlsruhe University in 1985 as a student assistant and have taken part in 
VISSIM’s development in several roles from this point on, including leading the VISSIM 
development at PTV for about 10 years and now heading the same institute at the university 
where the whole thing started. But the success of VISSIM definitely was a team effort, and there 
were at least two other key players involved: Martin Fellendorf, now a professor at the 
University of Graz, who had the idea of making VISSIM a commercial product and driving its 
international presence, and Lukas Kautzsch, who was never interested in getting academically 
visible, but contributed most significantly to both the software and the modeling side. I am 
writing this paper because I am probably the person who was involved over the longest timespan.  

This report will end in 2009, not because VISSIM’s development would come to an end 
here, but because on one hand I wanted to keep a 5-year distance to the current product in order 
to avoid the impression of marketing and on the other hand because I left the VISSIM 
development team in 2010 to go back to the university institute from which VISSIM originated. 
 
 
ACADEMIC ROOTS 
 
In Germany, traffic microsimulation started when Rainer Wiedemann, an associate professor at 
the Institute for Transport Studies at the University of Karlsruhe (lead by Wilhelm Leutzbach), 
wrote a thesis about “The Simulation of Traffic Flow” in 1974 (1) (Figure 1). The thesis was in 
German and never really published in English in its full version. He introduced the psycho-
physical car-following model later known as “Wiedemann 74” and implemented it in Algol on 
the university’s mainframe computer, at this time still using punched Hollerith cards. The idea of 
the action point model was not originally by Wiedemann, he took it from earlier work of 
Todosiev et al. (2), but his contribution was making it an operative research tool by 
implementing it on a computer. He called the software “INTAC” (for “interaction” of vehicles) 
and simply numbered the model versions over the years. INTAC described car following on a 
single lane. 

After this start, a series of PhD dissertations extended the model, e.g., Udo Sparmann 
developed a first lane changing model for German freeways (3) and Ulrich Brannolte developed 
a model for rural roads (4). But the big step towards VISSIM came in 1983 with the PhD thesis 
of Hans Hubschneider (5) (Figure 2). He implemented the existing models and some new models 
for signal control and public transport in SIMULA-67, a very early object-oriented programming 
language, and designed a simulation tool that allowed the user to compose an arbitrary network 
from predefined building blocks without the need of programming. Instead, there was a network 
description language introduced, already similar to the VISSIM’s network file description text 
file (up to VISSIM 5.40, now it is XML). He called the software tool MISSION, an acronym for  

I 
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FIGURE 1  Flowchart sketch by Rainer Wiedemann, an early implementation from 1972 
and the dv-dx-diagram from Wiedemann’s original work, 1974. 

 
 

 

FIGURE 2  Hans Hubschneider’s PhD thesis from 1983 showing  
the concept of road network building blocks. 
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Mikroskopische Simulation von Individualverkehr und Oeffentlichem Nahverkehr (microscopic 
simulation of urban private and public transportation). 

The availability of MISSION triggered a series of research projects for the Karlsruhe 
Institute, each contributing to the further development of software and behavior models. 
Computers made improvements as well, and the time of the PC had come. So it was a natural 
move for MISSION to migrate from the mainframe to a PC. Since the programming language 
Simula had disappeared (actually being too far ahead of time), the first PC implementation was 
done in Modula-2, a programming language designed as the successor of Pascal, but actually did 
not make it in the end. Our first PC implementation in 1988 was able to simulate about 50 
vehicles in real time with simulation time steps of one second on a PC running an 80286 
processor. 

In those early days the focus of model development was on the operative-driving level, 
i.e., car following and lane changing. Getting real data was much more effort at that time than 
today, having no video cameras, no radar sensors in the vehicles, etc. Wiedemann’s calibration 
was mainly done using measurements from loop detectors on the Autobahn A5 close to 
Karlsruhe, where the institute had a series of pretty close double loops for traffic flow research 
purposes. But since simulation originated from traffic flow theory, model development already 
included the idea of calibration and validation. Sometimes, model extension was done pretty 
straight forward and a bit naïve; when we needed a four-lane freeway simulation for a project but 
had only a model for three lanes, we just mechanically extended the software to four lanes, 
hoping the lane changing rules would hold. A research project to actually validating the four-lane 
model was done not before several years later.  

Another source of input to simulation development came with the raise of traffic 
telematics. We took part in the PROMETHEUS and DRIVE research programs of the European 
Union (1987–1995) and used microsimulation to evaluate future intelligent transportation 
systems (ITS) like ACC or even convoy driving. The modeling task at that time was mainly 
implementing the ITS functionality into the simulation, and calibration and validation were a bit 
lost. The typical results of our simulations were some clouds of speed–flow points moving up or 
down due to the impact of the ITS system (something that has not much changed in the last 20 
years). 
 
GETTING COMMERCIAL 

 
With a PC implementation of traffic flow simulation available, one could think about 
applications outside the university. Vehicle actuated signal control became popular at the same 
time, and Martin Fellendorf could interest Siemens in simulation as a new tool to support traffic 
engineers designing the signal logic. With this potential customer in mind, PTV took over 
MISSION as a basis for a commercial product in 1990. (PTV had been founded some years 
before by the same Hans Hubschneider who developed MISSION in his PhD thesis.) The first 
thing we did then was re-implement the models in C to build a stronger software platform. That 
was the moment when MISSION became VISSIM. 

On the model side, the focus was now inner-urban traffic around a single intersection 
with vehicle actuated signals. Saturation flow became the most important calibration value, and 
we tweaked the cars acceleration behavior (to unrealistic high accelerations) to compensate for 
the too-long reaction times due to the large simulation time step of one second. Another 
necessary step was a multianticipative car-following model, first for only two vehicles ahead, 
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later for a user defined number of leading vehicles. The behavior logic was to compute the 
reaction to all leading vehicles independently and then realize the minimum acceleration from all 
these interactions.  

To make simulation a tool for a signal control engineer, we had to add two new features 
on the software side: a graphical network editor and a description language for signal control 
logic. At PTV we worked a lot with students at that time, and so these features like many others 
were developed by computer science students as part of their master theses. In 1992, we had a 
graphical user interface under MS-DOS, but soon moved to the Windows platform and finally 
released the official VISSIM 1.0 in 1993, although VISSIM was commercially available since 
1991 already (Figure 3). From 1994 on, VISSIM was included in Siemens’ software suite for 
traffic engineers under the name SIMULA. 

The following years until 1997 were mainly focused on more functionality for signal 
control engineers. With VAP (“Vehicle Actuated Programming”) we introduced a signal control 
logic programming language, something like BASIC with signal specific commands. In this 
context, we made a design decision not to integrate signal control in VISSIM directly but to 
provide an interface to external (software-in-the-loop) signal control. Even our own control 
language VAP is implemented as separate software and interfaced to VISSIM. We never worked 
towards a standard with this interface, but since VISSIM was pretty much alone in the market at 
that time, many signal control vendors simply adopted the interface to be able to test their control 
logic with VISSIM. 

The focus at that time was still on simulating a single intersection, but VISSIM never had 
a technical restriction concerning the network size; actually it does not even have the notion of 
an intersection since everything is modeled as a network of links and connectors. The simulated 
networks started to grow slowly, and even if it was only to model the surrounding intersections 
of the one for which the signal control was designed. The vehicles in VISSIM got their directions 
where to drive from what we called turning decisions, i.e., a point in the network where cars get 
a direction randomly assigned with defined probabilities. That is no longer sufficient, when it 
matters if the right-turning vehicles at one intersection will be the left turners at the next. So in 
1995 VISSIM introduced the concept of routes as series of links in the network that vehicles 
want to follow. One challenge was to provide a comfortable user interface for the definition of 
routes, and another was to model the mandatory lane changes necessary to follow the route. This 

 
 

   

FIGURE 3  Screenshot of MS-DOS version of VISSIM 1992 and an early  
Windows version, 1995. 
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was the point where the first elements of tactical driving were introduced, an area of continued 
research and improvement till today. 

Another requirement induced by actuated signal control was the modeling of transit. In 
Germany signal control was very often traffic actuated because of transit priority, so the 
simulation had to include transit vehicles like busses and trams. Therefore VISSIM pretty early 
included functionality to define transit lines with line routes, stops and timetables. 
 
 
THE “ADVANCE” PROJECT 
 
The next major step for VISSIM was triggered by a new lead customer: Volkswagen. Pollutant 
emissions had become a major concern, and Volkswagen needed a tool to study vehicle 
emissions in an urban area. In 1997, they approached PTV, and together we designed an 
ambitious project that we called the “ADVANCE” project. Volkswagen already had a model to 
compute vehicle emissions from the current speed and load of an engine, and this model was to 
be integrated in VISSIM. On the technical side this meant that VISSIM had to handle a lot of 
new vehicle characteristics, and on the user side user-defined vehicle fleets and vehicle type 
specific evaluations were necessary. Therefore we introduced user defined vehicle types and the 
concept of vehicle classes as sets of vehicle types. The challenge on the modeling side was that 
emission computation needed much more precise accelerations than we had with VISSIM’s 1-s 
time–step. The solution was that we made the time–step user defined, aiming at a resolution of  
.1 s for a good reproduction of accelerations. Changing the time step might sound like a minor 
problem, but this one second was often implicitly hardcoded in places in VISSIM so that to 
identify and change all these places meant going through every part of the software. 

The model of emission production in the engine and of the reduction of emissions in the 
catalytic converter needed as an input the temperatures of engine and converter. The temperature 
depends on how long the vehicle was running and how much power the engine has produced so 
far. Even worse, it a car parks for a while, the temperature drops again. Therefore it was not 
enough to simulate some links in the road network, but the simulation of the whole trips of the 
vehicles over a day was necessary. What we wanted to reach in the ADVANCE project was the 
simulation of 1 day of traffic for the whole city of Braunschweig, a medium-sized city in 
Germany near Volkswagen’s headquarters with about 250,000 inhabitants.  

To generate the travel demand, we used an existing macroscopic transport demand model 
and disaggregated the demand down to individual trips based on activity chains. The result was 
microscopic trip chains for 1 day with a temporal resolution of 1 s and a spatial resolution of 75 
travel analysis zones. Of course, the routes for all these trips could not be modeled manually, so 
this was the point when we needed a route-choice model in VISSIM. In a 2-day workshop 
together with some Volkswagen researchers we developed a route-choice model based on 
iterated simulations. Drivers would experience travel times and decide in the next iteration for a 
route based on these travel times. What we actually did was to reinvent the concept of dynamic 
assignment, because at that time none of us were aware of the existing theory or the DTA 
projects in the United States. A year later in 2000, I attended the MIT summer school and finally 
learned about all the already-existing concepts.  

So the ADVANCE project motivated several substantial developments in VISSIM, and 
we were lucky that we had a lead customer who not only supported the development financially 
but also allowed us to provide the new functionality within the standard VISSIM product to other 
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customers. We wrote a TRB paper about the project (6), but unfortunately we did not follow the 
path of an integrated microscopic demand generation and flow simulation, a topic that has been 
intensively studied in past years.  
 
 
GOING INTERNATIONAL 

 
In the middle of the 1990s we had a stable product for traffic engineers and a good presence in 
the German market, especially through the connection to Siemens. It was time to go to other 
markets. Compared to the market for travel demand modeling software, the simulation market 
was already at that time rather international, i.e., the relevant commercial products did not reflect 
a specific national planning philosophy as this was the case with travel-demand models. Besides 
language support for the user interface and the manual, it looked easy to go to the U.S. market. 
For the U.S. market we found a partner in Innovative Transportation Concepts, a small 
consulting company founded by Thomas Bauer from Germany and Jim Dale from Texas. 
Beginning in 1995, they used VISSIM in their projects and acted as resellers for VISSIM. For us 
developers in Germany, their input on local requirements was essential for really adapting 
VISSIM to the U.S. market. For example, they provided the first NEMA signal controller for 
VISSIM. 

Freeway traffic on German Autobahn is different than on U.S. freeways and probably 
most freeway driving behavior in the world. For U.S. freeways, we modified the lane selection 
and lane change behavior and calibrated VISSIM using some freeway measurement data. We 
published a short TRB paper about this calibration (7), which did not make it into the TRR 
journal, but is still the most cited VISSIM paper so far with 140 citations in Google Scholar. The 
reason is probably not that the paper contains valuable information but that it was used as a kind 
of standard reference for VISSIM in the absence of a more original VISSIM description. [Today 
most authors use the VISSIM chapter in Jaume Barcelo’s book on traffic flow simulation (8) as a 
reference.] 

To be more flexible when calibrating freeway traffic, we added a slightly different 
version of Wiedemann’s car-following model and made more of its parameters available in the 
user interface. The new Wiedemann model was the result of some private research Rainer 
Wiedemann did after his retirement. Compared to the original Wiedemann-74 (W-74) model the 
model we called Wiedemann-99 (W-99) added less stochastic noise and was simpler, e.g., the 
action threshold for a driver changing from free driving to approaching was now defined by a 
fixed time-to-collision, whereas before it had used a root function of the speed difference. One 
problem of Wiedemann-99 was that there has never been a publication about it; instead we got 
the information from Rainer Wiedemann in the form of some printed pages of basic 
programming code. So one of the often-asked questions in the hotline from academic users was 
if we can provide a reference for W-99, and we could not. The other problem was that users were 
not sure which of the two models to choose. For some years there was a recommendation around 
to use W-74 for urban traffic and W-99 for freeways, but actually it is difficult to justify that by 
the model itself. 

Another important market for traffic simulation was the U.K. market. The United 
Kingdom had a strong tradition in using models in transportation planning and was relatively 
open to the use of traffic flow simulation as well. In 2000, we released VISSIM 3.0, a version 
that finally brought many small improvements for the normal users after some years with a 
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strong focus on the ADVANCE project and dynamic assignment. And it was the first VISSIM 
with the ability to model left-handed driving. Since VISSIM’s network model consisted of links 
and connectors and was agnostic to “intersections” or “road” concepts, left-handed traffic 
required very little modifications. The most effort actually was caused by the adaptation of the 
user interface. The breakthrough in the U.K. market finally was that Transport for London 
established VISSIM as their standard modeling tool for road traffic control. 

The next step in internationalization with a strong impact on model development was 
bringing VISSIM to Asia, especially to India. Whereas traffic in western countries is organized 
in lanes, or at least can be modeled that way, the heterogeneous traffic on Indian streets is 
definitely not lane based. To model capacities on such roads, the software must be able to 
represent the mix of very different two-, three-, and four-wheelers, and to allow a continuous 
lateral movement within the road or lanes. VISSIM so far had a lane-based architecture, i.e., the 
road network was represented by links with a defined number of lanes, and the behavior model 
included a lane-changing model that discretely decided on which lane a driver wanted to drive. 
There was no lateral position on the lane and no model to control it. But in 2001, long before we 
had the first user in India, we took part in a research project about capacities of biking lanes for 
the German Highway Capacity Manual. Within this project we had developed the prototype of a 
continuous lateral movement to model the driving behavior of bikes. This included the extension 
of the network architecture so that we could position vehicles anywhere laterally on lanes and a 
model to determine this lateral position. Our simple idea was that the driver wants to keep a 
speed-dependent lateral safety distance and chooses the lateral position with the highest time-to-
collision in driving direction. For Indian traffic, we reactivated this model in 2006 and added 
some tactical aspects like lateral sorting upstream of intersections. With the help of local 
academic and commercial partners we calibrated this model so that VISSIM could be used for 
capacity analysis under heterogeneous traffic conditions. An overview of this work is given by 
Vortisch and Gopalakrishnan (9), in a paper for an Indian conference. 
 
 
PEDESTRIANS 

 
The last major development effort that I want to report in this paper was the inclusion of a 
realistic pedestrian behavior model in VISSIM. Pedestrians were available in very early versions 
of VISSIM because they were needed to, e.g., reduce the capacity of turning traffic at 
intersections. These early pedestrians have been nothing else than strangely shaped small 
vehicles with a very simple “driving” behavior. They could not be used for studies of pedestrian 
movement or pedestrian capacity analysis. 

Around 2005 pedestrian simulation became a topic of interest in the world of road traffic 
flow simulation. So far, pedestrian simulation was mainly used in specialized tools for planning 
of train stations, for evacuation planning or for animation in movies, but not in combination with 
car traffic. But suddenly three of the commercial simulation tools talked about integrating 
pedestrian and vehicular traffic. We analyzed the available models and soon started to talk to 
Dirk Helbing, a professor at ETH Zurich, who had invented the so called social-force-model for 
pedestrian movement (10). We agreed to build a little prototype in which his pedestrian model 
was connected to VISSIM using an interface for external movement models, to be able to show 
something at the next VISSIM user meeting. On our side this meant another extension of the 
network model, because pedestrians move on areas, not links. In 2006 we were able to show the 
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first Helbing pedestrians in VISSIM. Around that time we could hire Tobias Kretz, who had just 
finished his PhD on pedestrian simulation and was well connected in the pedestrian modeling 
community.  

It took another 2 years of development before we finally released pedestrian simulation 
as a module in VISSIM 5.10 in 2008. Much of the time was spent on the user interface for 
pedestrian areas, obstacles, stairs, etc., and for pedestrian specific evaluations. Many aspects of 
pedestrian modeling were similar to what we had for vehicles, e.g., definition of routes, but they 
were still different enough to require separate treatment. On the modeling side, the interaction of 
vehicles and pedestrians and the connection of transit vehicles and pedestrians as their 
passengers were the main areas of work. At the end the pedestrian part in VISSIM had grown 
pretty large, and there was a potential market in the pedestrian-only simulation, so that PTV 
marketing decided in 2011 to have a pedestrian-only version of VISSIM under the separate 
product name VISWALK. 
 
 
CONCLUSION 
 
In retrospect, the success of VISSIM was supported in different phases of its lifetime by different 
opportunities. As most commercial simulation tools VISSIM had academic roots, so that PTV 
had a good basis to build on. But the crucial step is to have someone like Martin Fellendorf at the 
right point in time with the idea to make a commercial product from this academic research tool. 
In the first years as a product, VISSIM’s development was guided by strong lead users with their 
own visions what they want to achieve with simulation. Later, when the user base had grown 
larger, the role of product management became more important to balance the uncountable 
requests for feature improvements from the existing users and the exploitation of new application 
fields for new users. And in the time I surveyed, a close connection to the research community 
was helpful, both by keeping VISSIM visible in the academic world and by listening to 
upcoming new ideas. 
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his text gives a short account on DLR’s open source microsimulation tool SUMO. It does so 
mostly by reporting some of the applications cases that had been performed with the help of 

SUMO. These application cases show that SUMO is a very versatile, timely, and mature research 
tool which nevertheless is continuously developed further. 
 
 
A SHORT ACCOUNT OF SUMO 
 
Arguably the first microsimulation model that made it into a journal article was the one 
introduced by Reuschel in 1950 (1). Ever since, a continuous string of new microscopic traffic 
flow models has been invented (2–4). Today, still new models are invented or older ones are 
improved, and there seems to be no end in sight to this process. Also, since the late of the 1980s, 
first implementations of such models into microsimulation packages have been reported. The 
first tools have mainly being used to help with the design and optimization of traffic signals at 
intersections, but today even large scale simulations are to be performed by such tools. Of 
course, when going truly large scale, simplification of the underlying dynamics is needed, which 
is often done with so-called queueing models. An example of this is the MATSim project (5).  

The implementation of the microscopic traffic simulation SUMO (6, 7) started in 2001 as 
a cooperation project between the DLR and the Centre for Parallel Computing at the University 
of Cologne. SUMO was from the beginning designed as an open-source project. The major 
reason for supplying an open-source tool was the observation that many similar applications 
were built as an intermediate tool needed to evaluate a developed traffic management application 
or a model of traffic. After closing such a project, the used traffic simulation was usually 
abandoned. Having a common test bed makes the implementation of an owned evaluation system 
unnecessary, saving time and allowing concentration on the application, not on the evaluation 
system. Additionally, it was assumed that the usage of a common test bed increases the 
comparability of different traffic management applications. Since 2002, SUMO has been used 
within many of the projects the German Aerospace Centre participated in. The authors admit that 
in addition that a lot has been learned about traffic and traffic flow by writing and testing the 
software. 

The initial purpose of the simulation was to deliver travel times of a synthetic population 
of the city of Cologne. The major requirement was therefore to simulate large urban areas as fast 
as possible. Although SUMO has been used for other purposes, the requirement for a fast 
simulation of large networks had a strong influence on the design of the simulation suite; a more-

T 
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detailed explanation is given in section 3.3. The available hardware was heterogeneous, 
including desktop computers running the MSWindows operating system, as well as Linux and 
even Solaris systems. This dictated a strong focus on portability. Now, the SUMO can be run 
under all major operating systems, including the named ones and additionally MacOS. 

Originally, just one microscopic traffic flow was built into SUMO that was the model of 
Krauß (8). This model bears a strong similarity with the Gipps model (9), however, it has been 
radically designed for simplicity. Meanwhile, SUMO hosts a small number of well-known traffic 
simulation models, like the Intelligent Driver Model (IDM), the Wiedemann model, one of 
Kerner’s three phase models, and a few lesser-known experimental models. 

But making software available as open source matters only if there are groups interested 
in such software. Meanwhile, SUMO is routinely being used in a considerable number of internal 
projects as well as by a worldwide community. In Krajzewicz (10), the evaluation of 362 papers 
that cite or at least mention SUMO is given. It shows that the number of such publications 
increases, almost continuously, as visualized in Figure 1. From this analysis, it is known that the 
majority of the research with SUMO is done within “sole projects”, such as masters’ theses. But 
on the other hand, long-term single users are known as well as organizations, mainly universities, 
which start to use SUMO for teaching purposes. 
 
 
SOFTWARE DESIGN AND MODEL DEVELOPMENT 
 
Models like the Gipps and IDM are constructed as car-following models. To make them useable 
for the simulation of traffic flow in a realistic environment (urban or motorway), they need to be 
extended by more complex tasks. In the following sections the intersection and the lane changing 
model, respectively, will be discussed. Together with car following, these three form the heart of 
the microscopic simulation.  

However, this is not all. To run a microscopic simulation, not only the behavior of all 
traffic participants must be defined, the participants and their environment must be defined as 
well. In other words, the simulation road network including traffic lights, the traffic demand and 
also the fleet composition must be declared. Modeling the scenario is a task left to the end user 
 
 

 
FIGURE 1  The development of the publications that cite SUMO,  

classified by the role of SUMO within the research. 
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and it is by no means trivial. To aid and empower the user, SUMO is designed as a suite of 
applications to support these preparatory tasks. An overview over these supporting applications 
is given in section 2.3. 

Finally, there are a number of simulation tasks which require dynamic control of a 
running simulation. In section 2.4, the TraCI API of SUMO is described which allows client 
programs written in different programming languages to control a running SUMO simulation. 
Usage examples for this type of control are given in section 3.3. 
 
Intersection Model 
 
The behavior of vehicles when approaching and crossing an intersection is of immense 
importance when simulating traffic microscopically in urban environments. Here, vehicles need 
to avoid collision with any vehicle that crosses their path. This requires dealing with a number of 
different schemes for intersection control that are found in reality such as priority intersections, 
right-before-left rules, and traffic lights. In contrast to car-following models where the ego 
vehicle typically has no influence on the behavior of its leader vehicle, a vehicle passing an 
intersection can assume that its presence on the intersection will cause oncoming vehicles to 
adapt their behavior. For this reason, the intersection model in SUMO is considerably more 
complex than any of the car-following models. The complexity of intersection models in 
generally is also the reason why this part of the simulation architecture cannot be as easily 
exchanged as the car-following model. 

During the evolution of SUMO the model has experienced a growing increase in 
complexity. In the beginning, the model only answered the question whether a vehicle should 
pass an intersection and this vehicle would then instantly continue driving on the other side of 
the intersection, seemingly “jumping” across. In later stages of the model, the driving dynamics 
on the junction were also modeled. This prompted considerations such as the stopping position 
of left-turning vehicles within the intersection while waiting for a gap in oncoming traffic. 
Another aspect where the complexity of the model has grown is the acceptance of safe-time gaps 
when crossing an intersection without having the priority. In older versions of the model, 
vehicles would not enter an intersection if it meant that other vehicles had to adapt their speed at 
all. In the current versions, a concept of impatience is implemented where vehicles may enter the 
junction even if it means that vehicles with priority have to slow down a bit. 

For the future evolution of the intersection model it would be desirable to increase the 
modularity to allow research on alternative models. This might be achievable by dividing the 
intersection model into smaller parts with well-defined interfaces. 
 
Lane-Changing Model 
 
Another core component of the vehicle dynamics is the lane-changing behavior. This is needed 
to simulate behavior on multilane roads which occur frequently in urban environments and on 
motorways. Vehicles change their lane for multiple reasons including mandatory as well as 
optional maneuvers. The lane-changing model in SUMO currently recognizes four reasons for 
lane changing: 
 

• Strategic (another lane must be used to continue the current route); 
• Cooperative (the vehicle would like to clear the lane for another vehicle); 
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• Speed gain (the vehicle speed up its travel by changing to a faster lane); and 
• Keep right (the vehicle should keep the left lanes clear for faster vehicles). 

 
The lane-changing model not only governs the “motivation” for changing lanes, it is also 

responsible for adapting vehicle speeds to allow lane-changing maneuvers to take place. This is 
of immense importance in dense traffic flow because the vehicles need to maintain safe distances 
to all vehicles on the target lane to avoid collisions later on. Achieving safe distances often 
require speed changes by the ego vehicle as well as by vehicles on the target lane. Among the 
questions that typically need to be answered by the lane-change model is whether a blocking 
vehicle on the target lane should be overtaken or whether it is better to slow down and take this 
vehicle as the leader. 

Due to the different motivations for lane-changing and the large number of traffic 
situations that must be dealt with (in regard to urgency of lane changing and occupancy of the 
target lane) the lane-changing model in SUMO is arguably even more complex than the 
intersection model. Nevertheless, the model is already compartmentalized from the rest of the 
simulation and different lane-changing models can be selected. The enormous impact of the lane-
changing model on simulation behavior could be seen recently when a new model was 
implemented in SUMO. Motorway scenarios that experienced strong congestion using the older 
model exhibited freely-flowing traffic when run again with the new model. One important aspect 
that was changed was the way how vehicles ensure the success of strategic lane changes and the 
avoidance of deadlocks when two vehicles need to change in opposite directions and thus block 
each other. An example of this situation to be avoided can be seen in Figure 2. 

For the future it is planned to increase the configurability of the implemented lane-
changing models by exposing more calibration variables to the end user.  
 
Applications for Scenario Modeling 
 
One of the first major applications was the simulation of large cities, mainly the city of Cologne for 
supplying travel times to a demand model based on a synthetic population model that was 
developed in parallel. Quite early, the need to extend available road network representations by 
simulation-specific information, such as proper right-of-way representations, simulation-specific 
representations of traffic lights, etc., became obvious. As this information was not given within the 
 
 

 
FIGURE 2  Deadlock on a motorway. Two vehicles need to change in opposite  

directions and block each other’s path. In reality, drivers may even  
change their route to avoid blocking the motorway. 
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available digital road networks, heuristics for computing them had to be implemented. This 
computation has to be performed only once for every “imported” road network and as it may 
take some minutes for large road networks, it was decided to embed it into a dedicated 
application, not directly into the simulation. 

Similar constraints and assumptions about simulation usage apply for the computation of 
vehicle routes. In most cases, the simulation is used to evaluate some kind of a system that 
changes the behavior of traffic by changing infrastructure elements, such as traffic lights or by 
changing the behavior of vehicles. The simulation is used to compare the performance of traffic 
with such a change against the initial (original) behavior. Usually, the same demand is used to 
simulate both variants. For larger scenarios, the demand is usually imported from O-D matrices 
and a traffic assignment is performed. This is usually very time-consuming, since it requires 
running the same simulation (with a changed set of routes) over and over again until equilibrium 
is reached. Therefore, the computation of routes is not performed within the simulation either, 
but by an additional application. This application is responsible for computing routes using travel 
times obtained from the traffic simulation. 

Summarizing, to run a SUMO simulation the user must prepare at least a simulation 
network file and a demand definition file in a specific XML format. SUMO’s approach is to 
support this work by providing additional tools with a certain purpose. Overall, the suite supplies 
the following applications: 

 
• NETCONVERT: Imports digital road networks in commonly used formats such as 

OpenStreetMap, VISUM, Vissim, Shapefile, OpenDrive and many more. Information missing in 
the source networks such as traffic light plans and lane-to-lane connectivity are supplemented 
heuristically. Road networks can be modified in various ways (i.e., by removing edges, adding 
more traffic lights). 

• OD2TRIPS: Disaggregates O-D matrices into individual vehicles departing at 
specific points in time.  

• DUAROUTER: Computes fastest paths based on given travel times and implements 
route choice models for route alternatives. When iterating simulation and routing this can be 
used to compute the Dynamic User Assignment. 

• DFROUTER: Computes routes matching given detector flow measurements. 
• JTRROUTER: Computes routes matching given junction turn ratios. 
• TOOLS: More than 40 additional applications to process simulation output, prepare 

input files, compare networks, etc. 
 

The tools allow using a large variety of available data to set up simulation scenarios. 
Nonetheless, we observe that some user needs are not covered properly, yet. This mainly 
concerns the generation of a demand for a given area. For instance, when using the 
JTRROUTER on large areas where only turning ratios at intersections are given, then the routes 
generated have unrealistic loops. The DFROUTER can only be applied on highway networks, 
and the O-D matrices that are usually used by DUAROUTER are not always available. Two 
attempts are followed to close the gap, supporting complete simulation scenarios and the 
implementation of further tools that estimate a demand for a given area. 
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TraCI 
 
In many use cases for microscopic traffic simulation, the behavior of the simulation must be 
adjusted dynamically while the simulation is running. A typical example is the simulation of 
applications based on vehicular communication (V2X). These V2X applications as well as the 
communication are not part of SUMO but are controlled and provided by external programs. 
However, they use information from the simulation such as the proximity of vehicles and they 
influence the simulation dynamically, i.e., by altering vehicle speeds or routes. The same holds 
true for the development of new traffic control algorithms in general, like ramp metering, traffic 
signal controls algorithms, or freeway applications.  

To allow for these use cases, SUMO provides the TrafficControlInterface (TraCI) which 
allows client programs to retrieve information and to influence the simulation over a network 
socket. To use this functionality, libraries are provided in various programming languages which 
can be used to write control programs for the simulation. Among the currently supported 
languages are python, C++, and Java. Exemplary functions from the python library are 

 
• traci.vehicle.getSpeed(vehID) and 
• traci.vehicle.setRoute(vehID, edgeList) 

 
The socket interface is well documented and the Java libraries are maintained outside the 

DLR. Likewise, Matlab libraries for TraCI are currently being developed outside the DLR and 
expected to be included in the next release of SUMO. 
 
 
SELECTED SUMO CASE STUDIES 
 
This section will describe more detailed some of the case studies that have been done with 
SUMO. Some of the scenarios can be found on SUMO’s homepage (7). 
 
Comparison of Intersection Control Algorithms 
 
In Oertel and Wagner (11), a case study can be found that demonstrates how such a comparison 
works. There, a new traffic control algorithm named delay-based control was tested against an 
idealized fixed-time control and against a standard traffic-actuated control that worked with loop 
detectors. Albeit the intersection used was a highly abstracted (but fairly generic) one with four 
arms and two phases, the simulation tested a whole range of demands (in fact all possible ones). 
This is done as follows. From the range of demands (e.g. 100, 200,…, 1,000 vehicles per hour) 
pick a pair (ݍଵ,  ଶ) and compute for this pair the optimum fixed cycle parameters, i.e. the cycleݍ
length and the green times. Run a simulation with this set-up which works as the base scenario, 
and then run two additional simulations with the same demand, but with a different control 
strategy. Now, the three simulations can be compared with each other, leading to a fair 
comparison. Note, that the delay-based control runs with input via vehicle-to-infrastructure 
communication, so there is a dependency on the equipment rate as well, which can measured via 
simulation. A typical result is shown in Figure 3. 
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FIGURE 3  Average delay times of the fixed-time control (red), the  
traffic-actuated control (green), and the delay-based control (grey) as  

function of ratio of equipped vehicles and traffic flow. 
 
 

Recently in Erdmann (12), this approach has been extended by using a combination of 
GLOSA (green light optimal speed advisory) and a dynamic programming approach to create an 
intersection control strategy that minimize energy consumption at a single intersection.  
 
Emission Modeling 
 
The computations of vehicular emissions and of fuel consumption were first targeted in 2008, in 
the scope of the iTETRIS project, cofunded by the European Commission (13). The task was to 
extend SUMO by according models to determine whether the developed V2X applications 
besides improving traffic flow also reduce the environmental impact of traffic. The resulting 
model should have computed the pollutants CO, CO2, NOx, HC, and PMx as well as fuel 
consumption. Additionally, a noise model had been implemented that will not be discussed here. 
Please note, that SUMO hosts emission models only. No attempt has been made to work on the 
effect of such emissions, i.e., to have an immission model.  

The model should have worked on a “microscopic scale” for different reasons. The first 
is SUMO’s microscopic nature, aggregating the simulation state into a kind of macroscopic 
states as required by inventory models would add an unnecessary error. The second is grounded 
in the major scope of most investigations, namely vehicular communications. As usually only a 
fraction of the vehicles is assumed to be equipped with such a technology, the emission model 
should allow to investigate the emissions of both equipped and unequipped vehicles, and to 
compare them against each other. But this is only possible, if each vehicle can be accessed 
individually. The third reason is the granularity of the effects of the investigated applications. 
Some of them affect the acceleration behavior of single vehicles rather than changing the 
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macroscopic state of traffic. The accelerations are but one of the major factors influencing the 
amount of emitted pollutants. As a result, a model was assumed to be needed that takes into 
account the acceleration behavior of vehicles. 

After evaluating 15 emission models, the decision to use the inventory model HBEFA (at 
that time available in version 2.1) as the input for an own model was taken (14). HBEFA is a 
macroscopic inventory model and covers a large part of nowadays’ vehicle fleet (for European 
countries such as Germany or Austria). HBEFA does not include information about the influence 
of a vehicle’s acceleration on emissions. This was substituted by using the influence of the road 
slope on emissions that is given in HBEFA. To integrate the HBEFA into SUMO, the tables have 
been fitted with a function e(v,a) = c0 + b1va + c1v + c2v2 + c3v3. During a simulation run, SUMO 
inserts in any time-step the current speed and acceleration into this expression to compute the 
amount of emissions produced. To ease the set-up of scenarios by avoiding the need to explicitly 
give the distribution of vehicle emission classes on vehicles, the obtained coefficient sets (for 93 
vehicle classes) were classified using a clustering algorithm. Finally, three different classification 
schemes for heavy duty vehicles and two for light vehicles were chosen. Incrementing the 
number of clusters does not significantly increase the quality of the fit as could be measured by, 
e.g., the residual sum of squares.  

The implementation of the emission model allowed benchmarking the emission behavior 
of the applications developed in iTETRIS. In addition, some research has been performed that 
used the ability to compute emissions. The first of those to name is “emission-based routing”. 
Results are reported where a traffic assignment used the amount of emitted pollutants instead of 
the travel time for the road network’s edge weights. Further tests of similar kind but have shown 
unstable behavior of such an emission-based assignment processed. Digging deeper, it turned out 
that such an assignment lacks a unique user equilibrium solution. This is due to the effect that the 
energy consumption of vehicles has a minimum at speeds around 60 km/h. It can be shown, that 
this carries over to a link performance function whose cost function (energy) is dependent on 
demand, but now with a nonmonotonous link performance function; for small and large 
demands, the energy consumption is big, while it is minimal in between. This may be an 
explanation of the observed instabilities.  

European laws force real-world traffic management to cope with vehicular emissions by 
enforcing thresholds for pollutant concentrations (EC-Directive 2001/81/EC). Some cities 
instantiate certain traffic management actions that aim at reducing the amount of emitted 
pollutants.  

Now, given a certain city, what could be the best traffic management action to be 
instantiated? The combination of a microscopic emission model and a fast traffic simulation 
allows answering such questions, including the change in traffic participants’ behavior due to 
changed travel times or restricted areas. In Vergés (15), three emission reduction actions have 
been investigated: a speed reduction to 30km/h in living areas, a permissive environment zone, 
and a restrictive environment zone. This research was the first one that used the emission model 
PHEMlight which allows distinguishing EURO-Norms. 

Emission modeling in SUMO is itself not yet finished. Within the COLOMBO project, 
the emission model PHEMlight was implemented and embedded into SUMO. It uses data 
obtained by resampling the emissions computed by PHEM (16), an instantaneous emissions 
model that is used for the development of HBEFA as well as of COPERT, an inventory 
emissions model. The inclusion of this second model was done by extending the available 
emission classes by the ones PHEMlight includes and deciding which model to use internally, 
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depending on the emission class of the vehicle to compute emissions for. Within the project 
AMITRAN, also cofunded by the European Commission, SUMO is extended by a third emission 
model, derived from HBEFA v3.1. It uses new methods for fitting the used function to data and 
new vehicle classification schemes. In SUMO’s vehicular emissions modeling capabilities, the 
influences of the load of a vehicle on its emissions as well as cold-start emissions are not yet 
regarded. 

After having gained some initial insights into the work with emission models, we would 
like to state that neither the complexity of modeling emissions nor their implementation in 
software are the crucial points of such investigations. Rather than that the interpretation of such 
fine-grained results for which proper presentation or aggregation has to be found as well as a 
wise set up of scenarios cause the major problems. Additionally, when looking at acceleration-
dependent emission behavior, the correct acceleration behavior of the used car-following model 
gets into focus.  
 
Vehicular Communication 
 
Figure 4 taken from Krajzewicz (10) shows the development of the topics SUMO was used for, 
over years. There is a clear dominance of research on V2X (vehicular communication or vehicle-
to-vehicle and vehicle-to-infrastructure communication). V2X is a technology; vehicles equipped 
with a communication device send information about their state, including their position, speed, 
acceleration, etc. Other equipped vehicles as well as equipped roadside units (RSUs) can receive 
this information and trigger certain actions, starting with a warning if the vehicle in front 
performs a hard brake.  

Within the development of SUMO, a first communication model was directly embedded 
into the simulation in 2008. But the usage of SUMO for V2X-research is not mainly driven by 
DLR. In 2007, other groups have used SUMO to obtain “traces”—vehicle trajectories containing 
position and sometimes speed updates for each equipped vehicle that could be used as input to 
communication simulators. The usage of SUMO within the MOVE framework was probably the 
first step in making SUMO interesting for research on V2X. In 2008, the Technical University of 
Lübeck extended SUMO by a socket-based interface that allows to obtain values from SUMO 

 
 

FIGURE 4  The distribution of research topics along publication  
years (multiple assignments possible). 
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and to control the behavior of simulation structures, such as vehicles or traffic lights (17). This 
extension allows interacting online with ns-2, a communication simulation. This extension was 
the first step towards opening SUMO for being usable in combination with a large number of 
other communication simulators and middleware solutions used for this purpose. In Joerer, 
Sommer, and Dressler (18), it was showed that SUMO is getting to be the most popular traffic 
simulation used for evaluating vehicular communications. 

The work performed using SUMO ranges from very low-level evaluation of the behavior 
of the communication channel up to large-scale evaluations of the performance of a given 
application (mainly navigation) in citywide scenarios. The model implemented in 2008 was 
removed from SUMO meanwhile, to concentrate on the task of simulating traffic. In the 
following, a brief description of three of the investigated applications is given. 

 
Bus Lane Management 
 
The increasing mobility is a major challenge for large cities. Therefore, public transport is often 
prioritized by traffic managers. Likewise, the city of Bologna has lanes which are restricted to be 
used by public transport only. Furthermore, the city of Bologna has small, narrow streets which are 
frequently used at a normal week day. But there are also big events like football matches when the 
traffic infrastructure is confronted with a huge additional traffic demand. The idea of the 
application investigated in the iTETRIS project was to open the lanes restricted to buses and allow 
private cars to use these lanes in case of an additional traffic demand. A detailed description of the 
application can be found in Bieker and Krajzewicz (19). The simulation scenario is showed in 
Figure 5. 

For implementing this application two steps were necessary: 
 

1. Determining an unusually high traffic demand. RSUs have been placed at major 
intersections in the simulation scenario. The RSUs are collecting the cooperative awareness 
methods (CAMs) sent by all equipped vehicles in communication range.  

2. Open bus lanes for private cars. If the average speed of the collected CAMs falls 
under a specific threshold an additional traffic demand was assumed. Therefore, the RSUs send 
messages to all equipped vehicles which inform the car that the bus lanes are open to private 
 
 

 
(a) 

 
(b) 

FIGURE 5  Simulation scenario city of Bologna:  
(a) chosen area in Bologna and (b) SUMO road network. 
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cars, too. The vehicles which receive this message are calculating the best route according to the 
new traffic situation.  
 

Using speed as an indicator for recognizing an increasing traffic demand is rather 
uncommon, but in the evaluation of the simulation scenario it produced usable results. Especially 
for small equipment rates it was possible to indicate additional traffic demand using this 
measure. Note, however, that speed is just a proxy for the demand, so scenarios are imaginable 
where this proxy can be misled. To avoid this, further research with other measures and 
simulation scenarios is needed. 

The simulation results of the application can be seen in Figure 6. The application could 
not prove it benefits for all equipment rates. For small penetration rates up to approximately 25% 
all vehicle classes benefit from the application. But with higher equipment rates too many 
vehicle are rerouted. Consequently, the rerouted vehicles decelerate the buses on the bus lanes 
and the vehicles are blocked by the buses and are forced to halt at every bus stop because no 
overtaking maneuver is possible in the traffic network. 
 
Green Light Optimal Speed Advisory 
 
One of the first V2X applications which are planned to be implemented in real life is the GLOSA 
application. The aim of GLOSA is to improve the traffic efficiency and traffic safety at a 
controlled intersection. The driver of a car equipped with GLOSA will be informed about the 
recommended optimal speed to pass the next traffic light at a green light phase. The focus of the 
GLOSA evaluation was to predict real-world test for the EU cofounded project DRIVE C2X.  

For the GLOSA application a simulation of the city of Helmond was set up. The traffic 
lights within the scenario send the information about their program and timing to the equipped 
vehicles in communication range. The distance to the next traffic light is calculated using an 
internal map when a message is received by the vehicles. Using the calculated distance an advice 
for the speed needed to reach the traffic light in time can be given by a human–machine interface 

 
 

 

FIGURE 6  Average travel time changes per vehicle class over equipment rates. 



Evolution of SUMO’s Simulation Model 75 
 
 

 

display in the vehicle. In real life the driver has the choice to follow or ignore this advice. But in 
the simulation scenario the driver will always adapt her speed according to the recommendation. 
When the traffic light is red the driver is advised to drive slower than the speed limit (but never 
slower than 20 km/h) which led the driver pass the intersection after the traffic light turns green. 

As a result, the GLOSA application can help vehicles to get through the traffic network 
without stopping at traffic lights. It turns out that the communication range is crucial for the 
success of the application. The driver is sometimes not able to adapt the speed early enough with 
a communication range of 300 m while the driver can pass the simulation without halt when a 
communication range of 1,000 m is applied (Figure 7).  
 
Automatic Driving 
 
One of the greatest benefits of dealing with traffic simulations is the possibility to implement 
traffic management strategies and new modes of traffic at an extremely low cost compared to a 
real-world implementation. This makes it possible to evaluate things like personal rapid transit 
(an automated taxi cab that may operate on a dedicated infrastructure) for small scenarios like a 
parking lot or to go for large-scale evaluation of advanced cruise control systems and beyond. 

SUMO was used on both scales to evaluate the effect of traffic automation in the context 
of EU project CityMobil. While the large-scale evaluation involved mainly an adaption of 
vehicle parameters such as the aspired time gap to values which can be expected for automated 
vehicles, the PRT scenario did a fine-grained control of every vehicle in the simulation and will 
be explained in further detailed in this section. 
 
Agent-Controlled Parking Lot 
 
A centralized yet flexible approach to the management of automated systems is to employ agent-
based technologies where every stakeholder is represented by a (software) agent giving bids and 
orders for the services. The network layout for this system was inspired by the Rome 

 
 

 
(a) 

 
(b) 

FIGURE 7  Trajectories of 90 simulated equipped vehicles with different departing times 
and with a communication range of (a) 300 m and (b) 1,000 m. 



76 Transportation Research Circular E-C195: Traffic and Transportation Simulation 
 
 

demonstrator of the CityMobil project which included a shuttle service from a central parking lot 
to the new Rome fairground. 

The setup consisted of 160 parking spaces organized in eight (double) rows each served by 
a single bus stop (Figure 8). People had to walk from the parking space of their vehicle to the bus 
stop where they are picked up and travel to the main entrance. Streets and footpaths as well as the 
CyberCar (a small automatically driven vehicle that can carry up to 10 passengers) lanes are 
modeled without intersecting each other. The bus stops were served by a fleet of eight CyberCars. 

The scenario involves a central control agency which assigns to every incoming vehicle a 
free parking space and directs the passengers to the nearest CyberCar stop. There the passengers 
request a ride to their destination (usually the main entrance of the fair) and the CyberCars serve 
the request in an optimized fashion minimizing the waiting times of the passengers. Not all of these 
control strategies needed to be implemented into the SUMO core but could be separated in to 
scripts which communicated over the TraCI interface with the main simulation. Using this 
approach one could perfectly separate the car following logic from the central management which 
is possible for automated cars only. The results showed a significant reduction in waiting time 
compared to a traditional bus scenario involving fewer but larger buses (Figure 9). 
 
 

 
FIGURE 8  Network layout of the parking lot in Rome and its visualization in SUMO. 

 
 

 

FIGURE 9  Waiting time depending on frequency of vehicle arrival. 
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VABENE 
 
The traffic situation has a major impact on the success of rescue measures during a major 
incident. The authorities need to get to the relevant places in a short period of time and have to 
find their places such that they do not hinder the transport of material or injured persons. 
Furthermore, many people on site may try to leave the place by means of individual transport. 
This situation calls for a tool which enables the authorities to have an overview of the current 
traffic situation as well as a prognosis how the traffic situation may evolve. The EmerT web 
portal provides such a system, backed by SUMO which was enhanced by a mesoscopic 
simulation model to give fast results even for large number of scenarios in big conurbations. 
These developments are part of the bigger project VABENE which deals with traffic 
management during big events and in catastrophes. 
 
The Model 
 
For the type of scenarios within VABENE, the SUMO’s default microsimulation model is too 
slow. The crisis scenarios need the computation of the traffic forecasts for the next 30 min to be 
completed in about 5 min. This led to the implementation of a different model, a so called 
mesoscopic queuing model by Eissfeldt (20). In contrast to the microscopic model where each 
vehicle has an individual position and speed the vehicles queue up in edge segments of about 100 
m length and change between the queues. When changing to the next segment, it must be sure 
that there is space for the changing vehicle; in addition, the headway between subsequent 
vehicles leaving a segment depends on the traffic state of the current and the downstream 
segment. The basic model which gives good results for motorways was enhanced to reflect the 
special properties of city traffic. The resulting model is still about 10 to 20 times faster than the 
microscopic one with small deviations in the measured speeds to the microscopic model. 

As already shown by Eissfeldt (20), the model reflects basic traffic properties such as 
back propagation of jams and the flow density relationship in the fundamental diagram. To 
model city traffic the following features were added: 

 
• Lane queuing (to resolve blockings of cars with different destinations in front of 

junctions); 
• Overtaking (to model different vehicle types without losing too much capacity); and 
• Junction control (especially for traffic light systems). 

 
Multiscenario Simulation 
 
The output of the model is fed into a web-based decision support system named EmerT (Figure 10)
that displays not only the simulation results but also induction loop data, floating car data, 
and images from aerial photography. All of these data sources are used to drive, to calibrate, and 
to validate the simulation scenario so that the traffic situation and its prediction are reflected 
accurately. 

The simulation is already useful in itself by predicting traffic on roads not covered by real 
data and the evolvement of the situation. But the major application is the support of reaction 
forces during the event or to train them before. Using the EmerT portal the users will have the  
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FIGURE 10  Presentation of enhanced map data in the EmerT portal. 

 
 
possibility to study the potential traffic effects of different management measures (for instance 
road blockings) and adapt their strategies accordingly. They can also study in advance the 
weaknesses of the road network and identify critical roads in the case of emergencies at certain 
risky locations. 

The simulation supports those endeavors by providing realistic traffic scenarios which 
give immediate feedback on the effectiveness of measurements. Unlike static analysis also 
spillback effects of jams and dynamic effects of traffic lights can be considered when optimizing 
scenarios. 
 
The A92 Scenario: Lane Changing  
 
The investigations described in the following were set up to measure the quality of SUMO’s lane 
changing model. To evaluate this, the freeway A92 had been set up. The basic reason for using 
this piece of freeway was an unprecedented coverage by loop detectors and another project that 
has already sampled the infrastructure data (especially the network) and put it into SUMO’s 
format. It consists of nearly 20 km freeway which connects Munich with its airport.  

There are four on-ramps (green), four off-ramps (red), and a division at the airport where 
two lanes lead to the airport (240/33 and 240/34) and the two left lanes lead further northeast 
(Figure 11). The inductive loop detectors placed in this area measure traffic flow (separately for 
trucks or buses and passenger cars) and average speeds in 5 min intervals. Based on past 
projects, a large stock of data was available.  

To use the detection values as input to the simulation, another tool from the SUMO suite 
is needed. The DFRouter uses those detector flow data as input and outputs the vehicles together 
with their routes. The resulting routes are put into the simulation which should lead to an exact 
fit between reality and simulation at the on-ramps. However, the off-ramps do not necessarily fit  
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FIGURE 11  Freeway A92 (Munich, Germany) with loop detectors. 
 
 
well, since there is a good chance, that a vehicle misses its off-ramp. Therefore, the results in 
Table 1 are not completely trivial.  

However, when looking more detailed, new and different discrepancies show up. 
Especially the lane distribution is not reproduced correctly at some of the loop detectors, but not 
at all of them. In Figure 12, the results at detector 170 are shown, which is located closely behind 
(approximately 3 km) the entry point of the study area: almost 5,000 vehicles per day do not use 
the correct lane. That could still indicate a problem with the lane selection.  

But in fact there also exist detectors like detector 210 and 240 (located in the middle of 
the study area) in which the lane selection fits with a very small deviation (Figure 13). 
 
 

TABLE 1  Difference Between Simulated and Measured Data;  
The Largest Error Is 4.4%, While the Smallest One Is 0.2% 

 Exit #175/65 Exit #240 Exit #280/65 Exit #310/65 Exit #430 
Data 3718 27707 4103 6106 20632 
Simulation 3556 28698 4112 6158 20616 

 
 

 

FIGURE 12  Comparison between simulation and reality of the lane flows at detector 170.  
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FIGURE 13  Comparison of the lane flows at detectors 210 (left) and 240 (right). 
 
 

As could be imagined, the mismatch with the counts at detector 170 also comes with a 
mismatch in the speeds. In Figure 14 a comparison between the measured and the simulated 
speeds, for the right, middle, and left lane (from left to right) are shown. The bars represent the 
measured values and the blue line shows the simulated values. 

Unfortunately the speeds are not that precise, there are large differences between detector 
and simulation values on the slow lane. On the faster lanes the speed fits better. In addition, there 
is a different problem. Reality has just one short jam in the morning peak, but in the simulation 
there is an additional jam in the afternoon, while reality shows just the beginning of such a jam. 
Repeating the simulation a couple of times with a different random number seed shows that the 
pattern to be seen in the simulation is robust, so there is definitely a difference between 
simulation and reality which will hopefully made smaller by a subsequent calibration of the 
parameters of SUMO.  

These preliminary results are encouraging but far from being satisfactorily. At least, we 
have most of the basics correct and can now work out the details. Especially the lane-changing 
part, but also such problems like the correct speed and vehicle distribution. However, there are 
still lot things to do, like a distribution of the errors, and a detailed analysis of the lane 
distribution. 
 
 

 

FIGURE 14  Speed at detector 170 as function of time of the day for the three lanes. 
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FUTURE PROSPECTS OF MICROSIMULATION 
 
Despite the dramatic progress that has been made during the past 20 years or so, there are still a 
couple of dark corners left to be filled. This relates to microsimulation models in general, but 
also to the modeling and to the engineering in software tools like SUMO. 
 
How Can We Be Sure that We Have Implemented the Correct Model? 
 
Look at such complicated models as the ones of Wiedemann, Kerner, or the MITSIMLab model, 
which contain more than 10 parameters and an array of equations to advance the simulation by one 
time-step. The Wiedemann and one of Kerner’s model had been implemented in SUMO. However, 
there is a big question here, and we use it to advocate a new culture: how can we ever be sure, that 
the code in SUMO implements the correct model? The answer is obvious: we do not.  

Therefore, we think it might be a really good idea that the creator of a new traffic flow 
model should make all efforts to share his or her code with the rest of the scientific world. In this 
case, anybody who would like to use this model simply uses this source code; this reduces at 
least one possible error when trying to reproduce the results of other groups, which is at the heart 
of the scientific endeavor.  
 
When Do We Actually Need Microsimulation? 
 
In general, this question is difficult to answer, and the answer is prone to rapid development. 
Instead of a general answer, just a nice example will be studied here which sheds some light on 
this question. 

When it comes to the planning of a traffic light, most traffic engineers look into the HCM 
or the closely related national guidelines (HBS and RiLSA in Germany). There, a few formulas 
based on the work of Webster will be used, that tell the engineer the correct cycle time and the 
corresponding splits for such an intersection. Especially the HCM approach is designed to handle 
additionally periods of oversaturation, which has been done by an extension of Webster’s 
original work to handle nonequilibrium conditions; Webster’s approach is essentially an 
equilibrium approach. Both Webster’s approach and HCM’s approach are based on queueing 
theory, however to arrive at the simple equation, e.g., for the optimal cycle time, a long and 
involved line of reasoning has to be followed, which involves more or less justifiable 
approximations. Note, that even the idea to describe an intersection by queueing theory is already 
an approximation, since traffic is definitely a spatio–temporal process.  

Be that as it is. To simulate such an intersection as a queueing process is ridiculously 
simple. For one leg of the intersection, the core is just a seven line simulation program: 
 
for (t=0.0; t<=tMax; t += deltaT) { 
 if rand() < q(t)*deltaT and n<nMax then n = n + 1 
 if mod(t,c)<=g and t>=tLast + tau and n>0 then { 
 n = n - 1;  
 tLast = t; 
 } 
} 

 
Here, rand() is the call to a random number generator, n counts the number of vehicles 

currently in the leg, and q(t) is the demand function. In addition, the variable tau is just the 
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inverse of the saturation flow ݏ, and deltaT is the time-step size of this simulation. From a 
simulation of this simple source (of course with a lot of additional lines setting variables and 
collecting results) a very complete set of statistics can be drawn. It yields not only the delay 
itself, but in addition it also produces the whole delay distribution ݌(݀). The availability of this 
distribution has an important meaning for questions related to quality and reliability of the 
intersection at hand, and it is already beyond the capabilities of handbook methods. Of course, 
for this to happen require that the simulation is to be run multiple times to correctly arrive at 
averaged quantities and at the distributions. 

It can even be run with hand-tailored (or data-driven) oversaturation periods (by 
specifying the demand function q(t) accordingly), and it needs just three parameter s, g, c of 
which at least two of them are well-known (g, c) and the other one can be measured more or less 
easily. Obviously, even the handbook formulas in the HCM look more complicated than this, and 
it becomes even more dramatic for the equations that describe the time-dependent queueing 
approach.  

In our view, this is a beautiful example (Figure 15). A simulation of a 5-h peak period 
with such a simple program needs a few seconds for 1,000 repetitions, it runs at least a factor of 
100 or even 1,000 faster than any full-fledged microsimulation tool, and one gets a wealth of 
data out of it. Of course, it is possible to alter the function q(t) into a function that models a 
traffic light upstream. In this manner, coordination can be properly accounted for. Also, simple 
traffic-actuated signal controls can also modeled by this approach, and the same hold true for the 
platoon dispersion.  

As told already, this queueing approach is itself an approximation, therefore it might be 
better to switch either to a simplified microscopic approach like cellular-automata or use directly 
a serious micro-simulation tool. Which, however, needs more simulation time to arrive at good 
 
 

 

FIGURE 15  Simulation of a 6-h period with a sinusoidal demand function where peak 
demand exceeds capacity with the queueing model described above. Plotted are the median 
of the delay as function of time (red curve) and, as red area, the 25% and 75% quantiles of 

the delay distribution. 
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answers, and it is very likely that the 1,000 repetitions have to be reduced to 50 or so to arrive at 
bearable simulation times.  

We pretty much think that such tools will be the future. Handbooks like the HCM will be 
superseded by such tools or even directly by the microsimulation tools.  
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SOME COMMON MISCONCEPTIONS ABOUT  
UNCERTAINTY IN TRAFFIC SIMULATION 
 
A rapidly expanding range of traffic and transportation applications call for accurate dynamic 
modelling of traffic flow due to their potential impact on community and environmental decision 
making. The complexity of these applications dictates that detailed traffic simulation models are 
increasingly being used for such purposes. 

These models, having either stochastic inputs or stochastic model components, yield 
stochastic outputs, which is relevant and a required feature being reality inherently uncertain. In 
order to consider a model valid, therefore, the analyst has to verify that the uncertainty in the 
model outputs be close enough to the uncertainty in the real world. Though apparently obvious, 
the requirement has nontrivial implications as it calls for a structured process of the 
‘management of the modelling uncertainty’, intended as the identification, quantification and 
reduction of the model uncertainty (De Rocquigny et al. 2008). When applying mathematical 
models in support of policy decision making, this process can be considered as a step of a 
broader practice also referred as “sensitivity auditing”: “a practice of organised scepticism 
toward the inference provided by mathematical models” (Saltelli et al. 2013). Among these 
techniques are those commonly known as uncertainty and sensitivity analysis. 

It is claimed here that a shift towards the adoption of advanced techniques for the 
management of the modeling uncertainty in traffic simulation is highly necessary. The 
clarification of some common misconceptions—hindering a correct framing of the problem and a 
proper utilization of traffic simulation tools—is preliminary to the comprehension and the 
adoption of any such technique: 

 
1. In the traffic microsimulation practice, stochasticity, i.e., uncertainty of model outputs 

is often considered only as an accident of the modelling process, and a source of indeterminacy 
when analyzing simulation results. This stems from the (correct) consideration that being the 
model output stochastic, analyzing results of one single simulation is neither meaningful nor 
informative. To address this issue, performing more runs of the same model (replications) and 
taking the average of their outputs is usually recommended. This practice, however, is 
conceptually wrong for at least two reasons: 

a. In order to be valid, a stochastic model has to reproduce the variability of the real 
system outputs. In traffic microsimulation practice, instead, only supply characteristics, 
like vehicle parameters, and event instants, such as vehicle entrance, are randomly 
sampled when performing replications of a traffic scenario. On the contrary, the input 
demand is left constant across replications. This has no equivalence in the reality, where 
concurrent variability of both demand and supply occurs (see variability from day to 
day). Therefore, results from multiple replications that do not account also for the 



Some Thoughts on Future Directions for Managing Uncertainty in Stochastic Traffic Models 85 
 
 

 

variability of demand, cannot be compared to real traffic data. In other words, a design of 
the experiments that excludes demand variability cannot be used to infer on the system 
behavior and to validate the model itself. For this reason, the current practice of 
comparing with real traffic data from one day only, the average results from multiple 
replications of a model fed with constant demand profiles, has no meaning indeed. 

b. Outputs of a stochastic model can be properly analyzed only in terms of 
probability or frequency measures, for instance, through the cumulative distribution 
functions or the percentiles of their outputs (such as flow counts, queue lengths or travel 
times). Relying only on output averages means discarding the most of the information 
provided by a stochastic model and desisting from a proper model validation. When 
comparing alternative scenarios, it means adopting a nonrobust measure. 
2. In the traffic simulation field, advanced methods for model output sensitivity analysis 

are vastly unknown (in the cross-disciplinary community of modelers, the term “sensitivity 
analysis” refers to the set of methodologies and statistical techniques that aim to “…study of how 
the uncertainty in the output of a mathematical model or a system (numerical or otherwise) can 
be apportioned to different sources of uncertainty in its inputs” (Saltelli et al., 2002). In the 
practice, sensitivity analyses of traffic simulation models are usually performed adopting 
simplistic experimental designs that is just varying one input or parameter at a time while 
keeping the others fixed at their nominal or default values. Such design is also referred as “one-
factor-at-a-time” (OAT). Unfortunately, it is demonstrated to provide biased results in presence 
of non-linear models and uncertain inputs, for two reasons (Saltelli and Annoni, 2010): 

a. It is a local method as it explores only few points in the neighborhood of the 
chosen values (e.g., default values). If inputs (parametric or nonparametric) are uncertain 
and the model is nonlinear, the behavior at a point of the input space cannot be simply 
extrapolated elsewhere and, therefore, the analysis results at that point can be deceiving. 
For instance, the impact of a parameter on the outputs can be substantially different when 
running the model with the other parameters at values different from the default ones; 

b. Varying one input (or parameter) at a time does not allow the inputs interaction 
effect to be taken into account. However, it happens that the interaction effects of an 
input with the others transcend its standalone effect that is an input affects the outputs 
mainly when it is varied simultaneously with the others. Moreover, results of the 
experiments are not generally analyzed with appropriate statistical techniques. 
Eventually, OAT experimental designs are run with the only aim of investigating the 
influence of inputs or parameters on the outputs, while different settings for sensitivity 
analyses are established and recognized as extremely beneficial for the modeling practice 
(Saltelli et al., 2008). 
3. In the traffic simulation field, the term “sensitivity analysis” is sometime misused. In 

many traffic microsimulation guidelines, for instance, it is applied instead of “uncertainty 
analysis” (or “uncertainty quantification”). Quoting the Traffic Analysis Toolbox Vol. III 
(FHWA, 2004): “…A sensitivity analysis is a targeted assessment of the reliability of the 
microsimulation results, given the uncertainty in the input or assumptions. The analyst identifies 
certain input or assumptions about which there is some uncertainty and varies them to see what 
their impact might be on the microsimulation results.” It is clear that this definition refers to the 
quantification of the uncertainty in model predictions and not, properly, to a sensitivity analysis 
that, instead, aims at apportioning such uncertainty to the different inputs. 
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Other times, stability analysis of the objective function in parameter estimation problems 
or, reliability analysis of traffic assignment solutions have been also referred as sensitivity 
analyses. 
 
 
WHY TO MANAGE UNCERTAINTY: AN EPISTEMOLOGICAL PERSPECTIVE 
 
A vast debate has been arising in the last decades about the change of the role of science in 
society. Many scientists pointed at the emergence of an issue of legitimacy of science when its 
production has policy as an interlocutor instead of academia. “…When models are used for 
policy analysis, one must acknowledge that today’s role of scientists in society is not that of 
revealing truth, but rather of providing evidence, be it ‘‘crisp’’ or circumstantial, based on 
incomplete knowledge, sometimes in the form of probability, before and within systems of 
conflicting stakes and beliefs” (Funtowicz and Ravetz, 1992). 

In such a context, mathematical models have been necessarily objects of severe critiques. 
Among the arguments against models, for instance, the apparent paradox known as 
“indeterminacy” or “equifinality” has been advocated (Young et al., 1996; Beven and Freer, 
2001). The paradox refers to the condition of existence of many different models for the same 
system, often returning similar results though based on distinct assumptions. That is the typical 
situation in traffic simulation, whereas many alternative model formulations coexist and compete 
in the ability to capture traffic phenomena. Other scientists pointed at the impossibility of models 
to be validated or verified, but only confirmed or corroborated by the noncontradiction between 
observation and prediction (Konikov and Bredehoeft’s, 1992, and Oreskes et al., 1994). 

Increasing complexity and tendency of law-driven modes to be over-parameterized have 
been often suggested among the causes for model unreliability, as brilliantly explained by the 
words of Hornberger and Spear (1981): “…most simulation models will be complex, with many 
parameters, state-variables and nonlinear relations. Under the best circumstances, such models 
have many degrees of freedom and, with judicious fiddling, can be made to produce virtually any 
desired behaviour, often with both plausible structure and parameter values.”  

These considerations pose serious questions on the reliability and efficacy of simulation 
studies on the one hand and on the transparency of decision making processes where models are 
used in support, on the other hand. Such problems became dramatically apparent (outside the 
field of transport), with a series of sensational mistakes supported by erroneous modeling 
practices. The most famous being the arguments neglecting the existence of the climate change 
at the end of the last century, or the failure of financial models in predicting the economic crunch 
started in 2008 (Stiglitz, 2011). 

Focusing on the sources of uncertainty at the basis of model unreliability, recently, 
researchers from many disciplines have started to give increasing importance to the model inputs 
(parametric and nonparametric). It has become clear in many modeling fields, indeed, that the 
correct characterization of the uncertainty in inputs and outputs bear the same importance for the 
result accuracy than other sources of error like the modelling assumptions or the mathematical 
structure and properties. For instance, the statement “Precision of outputs goes up as accuracy of 
inputs goes down” (Stirling, 2000) refers to the misleading practice of obtaining precise (but 
biased) outputs by arbitrarily restricting the input space, and describes one of the possible effects 
of a bad characterization of the uncertainty in the inputs. The intuitive and well-known GIGO 
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principle in computer science, namely “Garbage-In-Garbage-Out”, is another way of referring to 
this problem. 

In traffic simulation, in particular, the characterization of the input uncertainty has been 
limited to the parametric inputs while the main non-parametric input, i.e., the demand, is usually 
considered as deterministic. 

Further, in stochastic (microscopic) models the estimation of parameters’ probability 
density functions is rarely carried out (Ahmed, 1999). More frequently, constant parameter 
values are estimated, in analogy to deterministic (macroscopic) models, as if the driver 
population was homogeneous.  

In the traffic microsimulation practice, even the calibration of homogeneous model 
parameters is not yet customary (Brackstone et al., 2012). A reason is that many theoretical 
issues are still open: a clear understanding of the relationship between calibration against 
aggregate and disaggregate data is missing as well as a clear definition of appropriate settings for 
calibration (i.e., fitness measures, algorithms) and suitable traffic data. Issues like the impact on 
microsimulation results of parameter heterogeneity or of adopting different probability density 
functions have not been really investigated. Similarly, overfitting and transferability of 
parameters are rather unexplored issues. 

Computational issue is another major impediment. In traffic microsimulation software, 
for instance, the big number of parameters (often in the order of hundreds) and the high cost of a 
single run (often near to the real time) make automated calibration difficult in many real-world 
applications. 
 
Future Directions 
 
Recently, those issues fostered a growing amount of research in the field of the management of 
modelling uncertainty in traffic simulation. A notable example is the European Cooperation in 
Science and Technology (COST) Action MULTITUDE (MULTITUDE Project, 2013). Within 
this project an effort has been made, in particular, to introduce a framework for the management 
of modeling uncertainties (established in other disciplines) in the traffic simulation field (see 
Figure 1). In this framework, the traditional step of calibration (i.e., the Step B in Figure 1) is 
only a moment of a wider process aimed at corroborating and validating models.  

Uncertainty quantification and sensitivity analysis, in particular, are the other main 
phases of the process. 

The former (Step C), aims at quantifying the uncertainty in the outputs given the 
uncertainty in parametric and non-parametric inputs. In fact, as mentioned before, a proper 
validation of a stochastic model requires comparing simulated and real output distributions 
(pdfs). A model can be considered valid only when the pdf of the output of interest, e.g., the pdf 
of the average travel time on a certain corridor, can be considered statistically the same as the pdf 
resulting from the day to day observations (it is worth stressing here that, for the scope of the 
analysis, simulated output pdfs can be obtained by Monte Carlo simulations whereas real output 
pdfs require costly repetitive observations of the system). 

A proper characterization of the input uncertainty, i.e., a calibration phase (Step B) has to 
be accomplished preliminarily in order to obtain statistically equivalent simulated and real output 
pdfs.  

Unfortunately, it is infrequent that a model turns out to be valid after this first round i.e. 
after Steps B and C, a model refinement being needed often. The likelihood of success of this 
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FIGURE 1  Generic framework for the management of uncertainty 
(Source: Punzo et al., 2014A) 

 
 
refinement dramatically increases if it is informed with a feedback from the modelling process. 
Such feedback is commonly referred as sensitivity analysis (Step D). Sensitivity analysis in fact 
allows quantifying how much every input contributes to the output uncertainty. This result is 
useful for many purposes, such as to refocus the analysis on some specific inputs, e.g., by 
devoting more efforts for the estimation of a particular input or for collecting specific data, or 
might be useful for identifying uninfluential parameters that do not need to be calibrated (see 
Punzo et al., 2014B) (the questions that can be answered by a sensitivity analysis and the 
corresponding ‘analysis settings’ are several; see Saltelli et al., 2008, for an introduction). 

The framework just introduced (the reader can refer to Punzo et al., 2014a, for a more 
detailed introduction in the context of traffic simulation) is also useful to envisage and outline 
some possible future developments in the management of uncertainty in stochastic traffic 
models. First, as the whole process involves constructing an input–output relationship that is 
generally achieved by Monte Carlo simulations, a first requirement will be that traffic simulation 
software be provided with the capability of making custom design of experiments and running 
multiple simulations accordingly. This is necessary to spread these techniques in the simulation 
practice. 

Research in the application and development of sensitivity analysis techniques to traffic 
simulation is called to address several issues. 

The first concerns the computational cost. If a sampling approach as the one depicted in 
Figure 1 is applied, the computing cost becomes a problem when (a) a single model run takes 
appreciable time and (b) the uncertain inputs to sample are numerous; in fact the number of 
simulations necessary to cover the multidimensional input space grows exponentially with the 
number of inputs. The problem can be generally approached either relying on simplified 
sensitivity analysis techniques such as ‘screening methods’, requiring a lower number of 
simulations (see Ge and Menendez, 2013, for an efficient design method applied to traffic 
simulation software) or using emulators (meta-models) to run a high number of simulations (see 
Ciuffo et al., 2013, for an application of Kriging meta-model for sensitivity analysis of traffic 
simulation software). In the latter case, the analyst exploits the much faster emulator to construct 
the input-output relationship that makes the application of more advanced and demanding 
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sensitivity analysis techniques feasible, such as the “variance-based methods”. The choice of 
which approach to follow might depend on the specific context or model: in the first approach, 
inaccuracy arises from the use of simplified sensitivity analysis techniques, though applied to full 
model runs. While in the second one, inaccuracy stems from the use of a simplified model whose 
fidelity, in its turn, depends on the number of full model runs made to build it. In the future, 
mixed approaches will also worth to be investigated (Ge et al. 2014). 

Another major issue in sensitivity analysis is the correlation of inputs, as most techniques 
assume inputs independence. When inputs are strongly correlated, as often in traffic simulation, 
analysis results can be biased (Kucherenko et al. 2012) so that basic research is needed on this.  

Concerning the input modelling phase that is the input estimation, or parameters’ 
calibration, many challenging issues wait to be tackled. As mentioned, the characterization of 
day to day variability in the input demand is crucial to enable a proper validation of stochastic 
models. The impact of parameters’ heterogeneity and of their correlation structure on the results 
of a traffic simulation is another challenging topic, as well as, the study of automated methods to 
estimate model parameters pdfs. The investigation of the relationship and the reciprocal meaning 
of calibration against disaggregate and aggregate data will be propaedeutic to develop effective 
calibration methodologies. Eventually, the collection of trajectories in a whole time–space 
domain, as in the NGSIM project, will be crucial to foster all the previous studies. New model 
validation techniques focusing on the probabilistic measures of simulated and real outputs are 
also required to finalize the process of uncertainty management in stochastic traffic modeling. 

The studies herein envisaged would greatly benefit from close collaboration and cross-
fertilization with other disciplines where these techniques are more established. The peculiar 
importance of uncertainty in traffic, its substantial implications on the modelling process, as well 
as, the complexity of the phenomenon to be modelled will need substantial efforts in order to 
produce advancements. The next challenge in researching traffic flow theory will be therefore to 
move from the mere analysis of models’ mathematical properties to the study of characteristic 
and properties of complex traffic simulation environments. This might be envisaged as a new 
branch of research for which the name of “traffic flow simulation theory” seems appropriate. 
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eal-world data are the essential elements in the validation and calibration of microscopic 
traffic simulation models. Availability, accuracy and relevance of real-world data can 

seriously affect the reliability of the models’ predictions. Traditional sources of traffic data are 
either limited to a limited number of typical conditions or may not be reliable enough. With the 
advent of new technologies, information is on the fingertips of users by means of smartphones, 
GPS-equipped devices, and radio frequency identification (RFID) readers. The rapid rise in 
information technology has also resulted in innovative ways to obtain space- and time-sensitive 
information in real time. This, in turn, has led to massive amount of passively collected location 
and event data for various time periods, also called “Big Data.” With the availability of Big Data 
there is an opportunity to validate and calibrate traffic simulation models in a way that has never 
been possible in the past. In this paper, we examine the current practice of calibration of traffic 
simulation models with an emphasis on data needs. We also describe the various sources of Big 
Data that might be available to the traffic simulation community now being collected through in-
vehicle and infrastructure-based technologies. Various real-world case studies are presented to 
illustrate the importance and future of Big Data in the calibration of traffic simulation models. 
Future applications of Big Data are also discussed in detail. 
 
 
INTRODUCTION 
 
With increased access to computing power, simulation tools have become popular resources for 
modeling and analysis of various transportation systems. In highway transportation, micro 
simulation tools such as CORSIM (1), PARAMICS (2–5), VISSIM (6), AIMSUN (7) among 
others, allow traffic engineers and planners assess the performance of existing roadway systems 
in a detailed manner by constructing a model of the existing facilities, such as toll plazas, 
signalized and unsignalized intersections and traffic circles, as well as to predict the effects of 
potential operational or infrastructure changes. The value of these tools, however, lies in their 
ability to stochastically simulate drivers’ behavior, such as lane changing, car following, gap 
acceptance, and route choice. The functions or rules that govern drivers’ decisions in simulation 
software tools need to be fine-tuned to reproduce field conditions. Despite the advances in 
computing power and the ability of available simulation tools to represent complex driver 
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behavior, simulation modeling and analysis is still a long and painstaking procedure, requiring 
extensive field data for validation–calibration. 

Model verification, calibration, and validation are important steps in the development of a 
valid simulation model, and crucial for ensuring reliable information gathered from these 
models. 

Model verification means building the model correctly. This stage deals with accurately 
transforming the model concept from a simulation flowchart into a model specification using a 
computer program (8). Model calibration is the process to obtain a desired confidence level 
where the model and its results are reasonable for the objective it was developed for. The 
validation process ascertains that the output data obtained from the simulation model driven by 
the input data are close to the real system output data. When comparing the system and model 
output data, if there are substantial differences in the comparison, some correction factors are 
added in the input data. Then the model and system output data are compared again. This 
iterative procedure of input modification to meet the target output measures is called 
“calibration.” In this study, for the sake of brevity, we use “calibration” as a generic term to 
describe the validation and calibration process. 

It is evident that the real-world data are the key elements in microscopic traffic 
simulation model development and calibration. Availability, accuracy, and relevance of real 
world data can seriously affect the reliability of the models’ predictions. If the model is 
calibrated and validated well for current conditions, the predictions may be accurate in the 
shorter time frame. However, in the longer term, the potential changes in traffic control and 
management and infrastructural properties could lead to significantly different driver behavior 
or other time-variant features of the transportation system. It is therefore important to reflect 
these possible changes in the model parameters based on the time frame of the model that is 
being developed. Clearly, this is when continuous and large amounts of data beyond data 
traditionally collected by traffic modelers will be needed. 

With the advent of new technologies, information is on the fingertips of users by means 
of smartphones, GPS-equipped devices, etc. For example, the rapid increase in GPS-enabled 
mobile device adoption such as smartphones in the last few years provides the opportunity of 
geotracking using the location information of mobile device users (9). In city traffic, tens of 
thousands of smartphone users, traffic sensors, traffic cameras, GPS, and computers in cars 
generate very large data sets of travel time, speed, and location information. 

These technologies not only provide valuable real-time operational information, but also 
generate large quantities of data that can be used off-line. These data, aptly termed as Big Data, 
does not require much effort in extraction, and are available in close to real time. It is well 
recognized that the resulting massive amount of traffic-related data will make important 
contributions to the operations and planning of transportation systems (10). The potential use of 
Big Data are countless: with the help of Big Data procedures, researchers and practitioners can 
make better transportation decisions such as optimizing operations, developing rational 
infrastructure plans, and examining the distribution and patterns of large public events. 

Since Big Data are available in much greater spatial and temporal spread and available 
without a considerable time lag mainly due to post processing needs, they can be used to 
calibrate and validate traffic simulation models for a variety of conditions. Thus, the turnover 
time for providing accurate prediction scenarios that go beyond a typical hour or day scenario 
will become much smaller. Thus, the objectives of this paper are twofold: 
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1. Examine current practice of calibrating simulation models and challenges with an 
emphasis on data requirements, and 

2. Provide a thorough examination and demonstration of potential sources of Big Data 
that can be used for calibration and validation of simulation models. 
 

The next section reviews the existing literature in traffic simulation calibration. The 
third section provides information on data needs for calibration. The fourth section looks at 
some drawbacks of existing methods. Fifth section illustrates the role of Big Data followed by 
few case studies of Big Data in the sixth section. The final section provides the outlook for 
future of Big Data vis-à-vis traffic simulation calibration. 
 
 
LITERATURE REVIEW 
 
There are myriad of studies that deal with calibration of traffic simulation models (1–7, 11–18). 
Due to space constraint, we show a sample of them in Table 1. 

Table 1 also shows the data used in these studies for the calibrating process. It can be 
seen that in most studies data used for calibration is limited to a.m. and p.m. peak periods no 
more than a few days. Thus, the data captures only a few specific conditions, or is a dilute 
sample of different conditions. Hence, it is expected that the model predictions will only be 
accurate for those specific conditions. 

The effect of data and parameter uncertainty in traffic simulation models has received 
considerable attention recently (17, 18). Studies from other fields indicate that bias and variance 
in simulation output results are due to the bias and variance in the input models used, after 
simulation error is eliminated; the input models consist of simulation model inputs and 
parameters (19, 20). 

Hence, it is important to consider a larger set of data with greater details in order to 
obtain accurate input and parameter distributions for simulation of traffic with stochastic 
variations. 
 
 
DATA NEEDS FOR CALIBRATION 
 
Typically, modeling traffic flow requires three types of data: model inputs, model parameters, 
and observed outputs. Model inputs involve the demand data for which the traffic simulation is 
performed. Model parameters involve different types of parameters used in the traffic 
simulation depending on the level of complexity in modeling. The output data observed in the 
real world is required to compare model outputs and evaluate the accuracy of the models. 

The model inputs include the number and types of vehicles or agents for which the 
simulation modeling is being performed. These include the following: 

 
1. Driver data. This type of data includes the characteristics of agents being modeled. 

Aggregate data such as drivers’ age group, trip purpose, aggressiveness, awareness, familiarity 
with the modeling area, etc., can be used to categorize drivers into different classes. 

2. Vehicle data. For vehicular simulation, the composition of vehicle population is an 
important input that influences the outputs of traffic simulation model. This includes the 
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TABLE 1  Summary of Literature on Calibration of Traffic Simulation Models 
 
 

Authors 

Complexity; 
Simulation  

Tool 

Type of 
Roadway 
Section 

 
Performance 

Outputs 

 
Data Used  

in Calibration 
Ma and Abdulhai 
(2) 

Micro;  
PARAMICS 

Urban Traffic counts Detector data for 1 h during a.m. 
peak 

Kim and Rilett (1) CORSIM, 
TRANSIMS 

Freeway Volume Data 5 loop detector stations for 
13.9-mi section of freeway for 1 
h during a.m., p.m., and off peak

Hourdakis et al. (7) Micro;  
AIMSUN 

Freeway Volume 5-min data from 21 detector 
stations for a 12-mi freeway 
section during p.m. peak for 3 
days 

Jha et al. (11) Micro;  
MITSIMLab 

Urban 
Network 

Travel time Detector data for 15 days for 
a.m. and p.m. peaks on a large 
urban network 

Toledo et al. (12) Micro;  
MITSIMLab 

Freeway, 
arterial 

Speed, density Data from 68 detector stations  
on 3 freeways for 5 weekdays 

Qin and 
Mahmassani (13) 

Macro; 
DYNASMART-X 

Freeway 
Network 

Speed Data from 7 detector stations  
on 3 freeways during a.m. peak 
for 5 weekdays 

Balakrishna et al. 
(14) 

Micro;  
MITSIMLab 

Freeway, 
Parkway 

Traffic counts 15-min data from 33 detector 
stations 

Zhang et al. (3) Micro;  
PARAMICS 

Urban 
Freeway 
network 

Flow, 
occupancy 

5-min detector count during p.m. 
peak for 7 days 

Li et al. (15) Macro Freeway Flow Loop detector data 

Lee and Ozbay (4) Micro;  
PARAMICS 

Freeway Speed, counts 5-min detector count during a.m. 
peak for 16 days 

Sumalee et al. (16) Macro Freeway Flow Loop detector data for 7 h on 3 
days in 2 years 

Yang and Ozbay (5) Micro;  
PARAMICS 

Freeway traffic conflict, 
lane change, 
volume and 
speed

NGSIM trajectory data for  
US-101 for 15 min 

Henclewood et al. 
(17) 

Micro Freeway Travel time 
distribution 

NGSIM trajectory data for 
Peachtree Street in Atlanta, 
Georgia, for 30 min 

Punzo et al. (18) Micro Freeway Speed NGSIM trajectory data for I-180
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proportion of cars, trucks of different types, buses, taxis, and possibly the age of vehicles types. 
3. Demand data. The above two types of data help define the classes for various agents 

modeled. Demand data includes the total number of agents in each class. 
4. Pedestrian and bicycle data. In case the simulation involves nonmotorized transport 

as well, then the above types of data (agent type and demand) are required as inputs for 
modeling. 
 

The number and types of parameters depend on the level of modeling detail intended by 
the modeler. Based on the level of detail, the models can be classified as, macroscopic, 
mesoscopic and microscopic simulation models. The complexity and time consumed to execute 
the models increase in the same order, namely, macroscopic, mesoscopic and microscopic 
simulation models. While microscopic simulation models provide an ideal platform for detailed 
modeling, the number of parameters involved in the modeling and thus the effort in calibration 
is greater. Parametric data span a wide variety of items: 
 

1. Link parameters. These involve link-level parameters such as number of lanes, 
capacity, free-flow speed, jam density, speed limit, and link’s visibility characteristics (sign 
posting distance, ramp awareness, etc.) depending of the modeling resolution chosen. 

2. Path parameters. The path parameters include aspects influencing the route choice of 
users such as toll, if any, along each path, travel time on possible alternative paths, etc. This 
manifests in the modeling process as proportion of users using different links at intersections, 
ramps, etc. 

3. Network infrastructure parameters. Signal timings (variable adaptive timings, if 
any), at intersection and ramps are also another important parametric data that drives the traffic 
simulation model. Additionally other infrastructure data such as variable sign messages, work 
zones, etc. also influence the driver behavior in the simulation model. 

4. Weather. Weather affects the performance of roadways and is important in modeling 
the traffic. Rain, snow, fog, etc. affect the pavement condition and visibility which in turn affect 
the link capacity, free-flow speed, etc. 

5. Driver-level data. This is a very important parametric data for traffic simulation, 
especially so for microscopic simulation. Gap acceptance is a crucial parameter in simulation of 
merges (at traffic circles, ramps, lane drops, and turning at intersections) and lane changing on 
freeways. Similarly, lane selection is also an important factor in determining the model 
accuracy of specific geometric features such as toll plazas and intersections. In order to obtain 
gap acceptance and lane selection data, extensive video data of the modeling area is necessary.  

6. Activity–behavioral data. An important input and parameter in, especially, in 
simulation of long-term aspects is the activity data. Activity data encompasses a wide range of 
user behavior to changes to link characteristics such as changes in toll, capacity or number of 
lanes (due to weather, maintenance or incidents), speed limit, other time-dependent restrictions 
(truck restrictions, high occupancy vehicle lanes). Activity data can be used as input data if it 
results in changes to demand and/or vehicle composition. It can also be used as different 
parameter set to model changes in capacity, free-flow speed, or other link-level parameters. 
 

Output data is essential in evaluating the accuracy of simulation models. The outputs 
that are measured in real world and can be used to validate the traffic simulation models 
include:  
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1. Flows and speeds. Flows and speeds observed at various locations of the modeled 
area are some of the most commonly used and widely available data for model validation. 

2. Queue data. Queues and lane usage at various facilities such as, toll plazas, traffic 
signals, and circles can be used to determine the performance of the simulation model in 
congested conditions. 

3. Trajectory data. Trajectories of vehicles are an important output of microscopic 
traffic simulation models and an important input to calibrating car-following, gap acceptance, 
and lane chance models. 

4. Accident data. The frequency and location of crashes are very important data for 
evaluation of the accuracy of simulation model’s predictive capacity of traffic safety. Many 
surrogate safety measures can be used in the prediction of traffic safety which is compared to 
the observed safety data of crash frequency and locations. 

5. Emission data. Measurements of air pollution due to vehicular traffic are important 
output of traffic simulation model. The quantity is various pollutants considered in the model 
can be measured in the modeling area and used to evaluate the accuracy of the prediction of 
pollutant quantities. However, measuring the air pollutant levels in real world is far from a 
trivial task. The measurement can be cumbersome and estimates are dependent on many other 
factors unrelated to traffic, such as air temperature, humidity, wind speed, etc. 
 
 
DRAWBACKS OF EXISTING SIMULATION CALIBRATION METHODOLOGIES 
 
In general, simulation models are mathematical models in which output is derived from a 
particular model given the input. The input consists of two main groups of data: physical data 
(e.g., volume counts, capacity, and physical features of roadway sections) and calibration 
parameters (i.e., adjustable components of driver behavior). Thus, a simulation system (Ss) can 
be described generally as (21) 
 
Ss : f (Is , Cs ) → (simulation model) → Osim | Is , Cs + ε : Oobs (1) 
 
where 
 
f (Is , Cs ) =  functional specification of the internal models in a simulation system; 

Is = physical input data observed in the field (O-D demand, geometric design, 
operational rules, etc.); 

Cs  =  set of calibration parameters for a simulation system (user- and traffic-related 
parameters); 

Osim  = simulation output data given the input data and calibrations; 
ε = acceptable margin of error between simulation output and observed field data; and 

Oobs  = observed field data. 
 

The process of calibration entails adjusting the calibration parameters (Cs) so that the 
error between the output from simulation and field conditions is minimized, 
 
minU [Oobs , Osim (Is , Cs )] (2) 
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where 
 
Oobs, Osim  =  observed and simulated outputs at location I; 

CS  =  parameter set for time period t and iteration k; and 
U  =  error functions for outputs. 

 
From the previous subsection it is evident that many sources of data, as model inputs, 

calibration parameters and observed outputs, are required in traffic simulation modeling and 
calibration. FHWA’s Traffic Analysis Toolbox recommends that if  

 

GEH < 4 ( GEH = ඨ1ܶ	∑ ൫ܱ݅,݉݅ݏ	ݏܾ݋ܱ–,݅൯2ܶ݅=112ܶ	∑ ൫ܱ+݅,݉݅ݏ	ݏܾ݋ܱ,݅൯݅=1    )  

 
for link volumes for 85% of the links and average travel times are within 15% of observed 
values, then it is considered as a satisfactorily calibrated model (22). In order to achieve this 
level of calibration for various conditions (peak, off-peak, weekends, normal and inclement 
weather, under accident, and other events), detailed level of data is required. 

As illustrated in Table 1, most of the studies in traffic simulation used limited amount of 
data focusing on a small set of conditions and/or time periods. As depicted in Figure 1, using 
only smaller samples of data will not accurately capture variation in traffic data (Additionally, 
the sources of field data in most of these studies, except (4–5, 18), have been traditional sources 
such as loop detectors or manually-acquired data from captured videos which can be 
cumbersome and not always accurate enough). Evidently, using these models for conditions 
other than the ones for which calibration data was available for would not yield accurate results. 
The following subsection briefly investigates this issue related to the lack of comprehensive 
data for calibration. 
 
 

 

FIGURE 1  Illustration of various traffic conditions for which  
data is required for calibration (adapted from 23). 
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Distribution of Traffic Data and Its Impact on Calibration: Existence of a “Typical” Day 
 
Most of the past traffic calibration is based on the assumption of a typical weekday or weekend day 
at best (1, 2, 7, 12–14). Analysis of demand data distribution can provide a useful insight into 
whether representative days do exist in traffic. For this purpose 15-min demand data extracted 
from E-ZPass data from the New Jersey Turnpike (NJTPK) for a year is analyzed as an example. 
Depending on how close or distant the demand values for each 15-min time interval are to each 
other, attempt is made to classify the demand data for each time period into clusters. Each cluster 
represents a group of demands that are similar to each other and can be represented by the centroid 
of the cluster. The basic hypothesis is that the greater the number of clusters, the lower is the 
likelihood of existence of a “typical” day. 

There are 28 interchanges on NJTPK spread over different spacing. Considering the 
roadway between each interchange as a link, there are 65 links in northbound and southbound 
directions on the NJTPK system. For the purpose of clustering demand, the 15-min demand data 
between September 2011 and August 2012 for 5 a.m. to 9 p.m. is analyzed. 

For clustering time series data, some of the common algorithms used are K-means clustering, 
hierarchical clustering and fuzzy c-means clustering (24). For the electronic toll collection data, we 
use K-means clustering. In order to determine the optimum number of demand clusters, silhouette 
statistics are generated for each of the links. Silhouette statistics show how dissimilar a particular 
demand value is from its demand cluster centroid. The results show varying number of clusters for 
various links in the NJTPK system. Table 2 shows the number of links for the optimum number of 
clusters. Also a sample of distribution of demands and their corresponding clustered demands of four 
different links are shown in Figure 2. It can be seen that there are links for which the demand falls 
into multiple clusters. Twenty-four links have demand falling into two optimal clusters, 32 links have 
three clusters, and so on. More than 63% of the link demands have three or more clusters. Among 
these clusters there are different weekend or weekday demand distributions. This means that 
considering a single distribution of demand for a weekday or weekend is not sufficient to accurately 
calibrate a simulation model that can be used throughout the year. 

In order to show the representativeness of the clusters, we show the frequency of 
observations versus their cluster number. Figure 3 depicts the likelihood of an observation (i.e., the 
demand on a link for a day in the whole year) to fall into a particular cluster. It shows that 35% of 
observations fall into clusters one or two and 20% of demands fall into four other clusters. 
Although 35% of observations do fall into one or two clusters, the distribution of the observations 
within the cluster is fairly large, as can be seen from the spread of observed demands around the 
clustered demand in Figure 2. 
 
 

TABLE 2  Distribution of Number of Links on  
NJTPK and Optimum Number of Clusters 

Optimum Number of Clusters Number of Links 
2 24 
3 32 
4 7 
5 1 
6 1 
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FIGURE 2  Illustrations of clustered demand for four different links on NJTPK. 
 
 

 

FIGURE 3  Frequency of number of observations for all links in each cluster 
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This analysis illustrates that the existence of a typical day in traffic demand is not always 
likely. Hence, to obtain accurate predictions from a traffic simulation model, it is important to 
consider not only the demand from various clusters, but also the variation of demand within each 
cluster. The above discussion is based on the distribution and spread of traffic demand. However, 
the actual traffic flows along the section of interest would also vary based on many conditions 
such as, incidents, work zones, driver–vehicular variability, and other unobserved phenomena. 
With the availability of event data, an additional part of the variability in flow can also be 
captured. 
 
 
ROLE OF BIG DATA FOR TRAFFIC CALIBRATION 
 
Based on the discussions above, making accurate predictions using traffic simulation models 
requires calibration data from many sources and in great detail. This data need can be effectively 
addressed by the advent of new technologies such as GPS, cellular phones, RFIDs, etc. The 
ubiquity of these technologies ensures that data of great detail and variety are available. These 
devices can provide location data at less than a second frequency over the whole vehicular 
network. 

RFID tag readers provide detailed demand and vehicle data at locations such as toll 
plazas. Additionally they provide flow and speed data along the roadways with RFID readers. 
Data from GPS devices and cellphones can also provide speed data along almost all roadways. 
Aside from demand, speed and flow data, Big Data can also include event data. Various 
applications on smartphone devices allow users to report events such as accidents, work zones, 
etc. Also, anonymized tracking and analysis of these devices over a longer duration of time also 
provides data about drivers’ departure time choice and other behavioral data. 

Thus Big Data has the potential to provide vast amounts of demand, vehicle, speed, 
flow, event, and behavioral data. All this data are obtainable with very low human intervention. 
As an illustration, suppose that there is a need for collecting flow and demand data for 
calibration. Without the availability of Big Data, the analysts and modeler must collect data 
from field at the study section. This may be available through loop detector data on some 
sections such as freeways. However, reliability of such inductive loops may not be satisfactory. 
For example, the data from loop detectors in the California DOT system that are not missing 
and statistically reliable vary between 25% to 78% (25) Without loop detector data, modelers 
can capture video data from the field or obtain the manual counts. Then these counts have to be 
used to predict demands using estimation algorithms. All this requires much greater effort and 
time, and the resulting sample size is still limited. 

Big Data provides an excellent opportunity to improve traffic simulation modeling and 
prediction. Due to the ease of collection, Big Data is available fairly quickly after the period of 
interest. This helps in obtaining data even for conditions that may change driver behavior such as 
changes in control at intersections, lane configuration at toll plazas, toll rates, etc. Thus Big Data 
could even help in modeling traffic for various conditions. 

FHWA recommends areas where analysts can focus their attention to avoid creating 
models that produce inaccurate results, such as, not adjusting default values, spending more time 
on calibration, and problems within the model in terms of network geometry and data collection 
(26). Big data ties in well with all these recommendations and can additionally save time and 
money per unit of data collected. 
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Description of New Data Sources for Calibration 
 
In this section we describe various sources of Big Data available. 
 
ETC Data 
 
The electronic toll collection (ETC) data is collected for all tollways in the United States and in 
New Jersey for New Jersey Turnpike, Garden State Parkway (GSP), and Atlantic City 
Expressway. Taking toll facilities in New Jersey as an example, its NJTPK is spread over 150 mi 
with 28 interchanges and 366 toll lanes. GSP is about 170 mi long with 50 toll plazas and 236 toll 
lanes. Each freeway carries up to 400,000 vehicles per day (27). The ETC data is collected at toll 
plazas on these freeways (27). The ETC dataset consists of the individual vehicle-by-vehicle entry 
and exit time data. It also consists of the information regarding the lane through which each 
vehicle was processed (both E-ZPass and cash users), vehicle types, number of axles, etc. Similar 
ETC facilities are operated in many parts of the country, for example, many states along the east 
coast of United States are using the E-ZPass system; Florida has the SunPass system on its 
tollways; and Illinois has the I-PASS system on tollways. 
 
Traffic Data Providers 
 
There are several traffic data providers such as INRIX, NavTeq, TomTom, etc. INRIX monitors 
traffic flows across more than 260,000 mi of U.S. and Canadian highways, provides real-time 
traffic information for 32 countries across North America and Europe as well as information that 
comes from 800,000 vehicles equipped with GPS devices (28). In addition, INRIX receives 
information from road sensors located in about 9,000 mi of highways. It is the only crowdsourced 
traffic network and it receives the information from commercial fleets: taxi cabs, delivery vans 
and long-haul trucks, and mobile devices. INRIX also reports incidents and unique local variables 
(29). INRIX offers developers real-time traffic and routing information using API access. Kim et 
al. (30) evaluated the accuracy of travel times based on Bluetooth sensors, electronic toll tag 
readers, and INRIX data. They compared the travel times with the ground truth data and worked 
on the study segment of I-287 in New Jersey. They concluded that the speeds of probe vehicles 
are closer to the estimated speed using Bluetooth sensors than the INRIX data. In addition, INRIX 
data showed some latency issues. 
 
GPS Data from Large Vehicle Fleets 
 
There are several large vehicle fleets with individual vehicles instrumented with GPS that 
transmits location data regularly to a central database. Such fleets include taxis (31–34) and trucks 
(35) which generate such location data. For example, the position data collected from GPS 
devices attached to taxis are also a great source of Big Data. Among several North American 
cities where this type of taxi data is collected, Taxi–GPS data provided by New York City Taxi 
and Limousine Commission consists of more than 40 million records per year integrated to a 
single database. A trip is defined as the time period between customers hire a taxi cab and get off 
the taxi cab, therefore empty trips are not included in the dataset. Data is recorded per trip, 
including fields such as trip start–end times, trip duration, location of O-D, and trip fare. Routing 
information is not available since location recording is not performed in a continuous manner. 
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The data includes GPS recordings from more than 13,000 taxis covering all time periods and 
almost all regions in New York City. According to the calibrated New York Best Practice 
(NYBPM) travel demand model, taxi traffic accounts for 11.9% of total traffic flow in Manhattan 
(36). Several studies in the literature agree on penetration rate ranging from 1% to 5% of total 
traffic can be adequate for representing overall network traffic conditions (31–34). Privacy issues 
are important challenges to scaling of GPS data-based traffic monitoring. Daus provides a good 
summary of legal background and unsolved problems regarding the privacy issues for collecting 
taxi-GPS data. A recent study by Xie et al. (36) have already illustrated that the similar taxi–GPS 
data can provide rich information to calibrate traffic safety model. The taxis as probe vehicles can 
cover more areas, even those without traffic surveillance units. Therefore, they can provide more 
data sources (i.e., routing and travel time) for both analytical traffic models as well as simulation 
models. 
 
Cellular Network Data 
 
Cellular telephone networks have the potential to provide near real-time information about 
human mobility on a large scale and at a low cost. Since people usually carry their cell phones 
with them, the location of a phone is a good proxy for the location of its owner. Thus cell-phone 
signals can provide useful traffic and travel demand data. Data points are only generated when a 
call received or dialed, SMS is received or sent and when the user connects to the cellular 
internet network, thus obviating the need for active user input for data collection. Usually the 
cell phone data cannot be directly obtained from the carriers. Users have to purchase or contract 
with the other companies such as AirSage, ComScore, Inc., and SAP AG that take mobile-user 
data from carriers. A number of field studies already examined the feasibility of using the cell 
phone data for the traffic analysis (Table 3). 

Despite their large scale, cell phone data still have a number of issues that should be 
carefully addressed when used for calibrating simulation models. The primary issues include 
data coverage, sample bias, data availability and resolution, data suppression, and geographic 
level of detail. Especially, due to the lack of various demographic characteristics required for 
travel demand models, the cell phone data may not be useful per se. Extensive amount of 
survey data used in calibrating the travel demand models of regional planning models (47) are 
required to obtain the correct order of magnitude of O-D travel demand matrices. Thus, instead 
of independently used, the cellphone data can be used in conjunction with baseline data using 
travel demand surveys and fine tuning using the travel demand data. 
 
Crowdsourcing Data (Virtual Sensors) 
 
Travel times can be collected using crowdsourcing data from online services that provide real-
time or historical traffic data. API services that are available for developers offer collecting, 
storing and processing large volumes of network-level data. The web mapping APIs deliver 
several HTTP web services such as static map, directions, distance matrix, elevation, geocoding, 
and places. While web mapping applications provide very efficient methods to visualize large 
amounts of datasets, real time traffic data are also available to users. Responses from the 
mapping services are usually delivered in XML or JSON formats which can be easily processed 
in almost any computer language. Services such as Google Maps, Bing Maps, and MapQuest 
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TABLE 3  Summary of Studies on Cellular Phone Data Collection 
Study Scale Target Data Validation Indicators Results
Caceres et al. 
(38) 

Corridor 
(simulation); 
24-h 
period 

O-D matrices Loop 
detectors 

Relative 
error of 
vehicle 
counts 

Estimation 
errors tend to 
decrease as 
observation 
intervals 
increase 

Calabrese et 
al. (39) 

Urban, 
suburban, 
extra urban 
area; 200 
measurement 
points 

Position; 
Travel time 

GPS data Position: 
50th, 67th, 
95th 
percentile 
error; 
travel time: 
mean absolute 
percentage 
errors (MAPE) 

Average error 
in meter: 159 
(urban), 295 
(suburban), 
and 1,457 
(extra urban); 
MAPE: 
10.08% ~ 
17.66% 

Calabrese et 
al. (40) 

8 counties 
(5.5 million 
people); 
25% of 
available 
users 

O-D matrices Tract–tract 
worker flows 
dataset from 
the Census 
Transportation 
Planning 
Package 

R2 for the 
linter 
regression 

Estimated  
O-D matrices 
resemble O-D 
matrices 
generated 
from gravity 
model 

Frias-Martinez 
et al. (41) 

City of 
Madrid and 48 
municipalities 
(6.5 million 
people and 
8,000 km2); 
2-month data 
(3.5 million 
unique phones 
and 300 
million 
interactions) 

Commuting 
O-D matrix 

Commuting 
matrices from 
National 
Statistical 
Institutes 
(NSI) 

Correlation 
between 
matrices 

Good 
correlation; 
not 
completely 
comparable 
with NSI 
matrices; 
the generated 
matrices 
contemplates 
more 
situations 

Zhang (42) A county in 
Wisconsin; 
Small part of 
Shanghai 

Mode shares; 
Static- and 
dynamic O-D 
matrices 

Local trip 
survey results; 
Traffic 
counts from 
loop detector/ 
simulation 

Root mean 
square error 
(RMSE); 
RMSE 
normalized 
(RMSN) 
volume; 
MAPE; 
R2 for the linter 
regression 

Feasible 
method for  
O-D 
estimation; 
largely 
capture 
mode share 
patterns 

continued on next page 
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TABLE 3 (continued)  Summary of Studies on Cellular Phone Data Collection 
Study Scale Target Data Validation Indicators Results
Yoo et al. (43) 6,398 taxi 

trips in 
Cheongju; 
3 weeks 

O-D estimation GPS-based 
taxi O-D 

Scatter 
diagram, 
correlation 
coefficient; 
MAPE; 
RMSE 

Scatter 
diagram shows 
high positive 
correlation 
between 
observed O-D 
and estimated 
O-D; 
Relatively 
low value 
of MAPE 

Bekhor et al. 
(44) 

16 weeks; 
an average 
sample of 
10,200 phone 
numbers/week; 
79 million 
positions 

Long-distance 
trips O-D 
matrix 
estimation 
(trips longer 
than 2.5 km) 

National 
household 
travel survey 
(NTHS, 10-
year old) 

Direct 
comparison 

Trip rates 
and length 
is higher 
than the 
NTHS 
data; 
cellular phone 
data produce 
more trips 
than the 
NTHS survey 

Gonzalez et al. 
(45); Yang et 
al. (46) 

100,000 
phone users; 
6 months 

Travel 
behavior; trip 
distribution 

Surveys Direct 
comparison 



 
 
have very comprehensive real-time traffic coverage around the world. Recently Morgul et al. 
(48) give a comprehensive review and present a virtual sensor methodology based on BingMaps 
API and MapQuest Map API traffic data. Table 4 is the summary of selected web- based 
services with the data characteristics that are promising for transportation research. In Morgul et 
al. (48), data quality is tested by comparing the travel time estimations from virtual sensors with 
physical loop detector and electronic tag reader data for different sections of NJTPK. The 
results of these statistical comparisons show high correlations between physical sensor and 
virtual sensor data. With the advances in data collection technologies, more and more data have 
been generated every day and the future of web-based virtual sensor concept is encouraging 
since it offers low-cost and high-quality data for research and deployment purposes. The virtual 
sensor methodology can be an attractive approach to transportation agencies as an alternative 
low-cost traffic surveillance method. 
 
 



 
 
 

 

TABLE 4  Summary of Selected Web-Based Services That Offer Traffic Information for Developers (48) 
  

API 
Geocoding 

Service 
Transit 

Integration 
Live Traffic 
Information 

 
Directions 

Distance 
Matrix 

Map Data 
Providers 

Offered 
Services 

Mobile App 

Nokia Maps 
(49) 

JavaScript, 
REST,  
Mobil 
HTML5 

2,500 daily 
limit (base 
plan)/10,000 
daily limit 

Yes Yes 2,500 daily 
limit (base 
plan)/10,000 
daily limit 
(core plan) 

2,500 daily 
limit (base 
plan)/10,000 
daily limit 
(core plan) 

Navteq Positioning, 
routing, 
traffic 

Yes 

Bing Maps 
(50) 

AJAX.WPF, 
WP, 
Android, 
iOs, 
Silverlight, 
REST, 
SOAP, Win 
8 (.NET, JS) 

Yes Yes Yes Yes Yes Navteq, 
Intermap, 
Pictometry, 
International, 
NASA 

Geocode, 
imagery, 
route, search, 
common 
classes, and 
enumerations 

Yes 

Google Maps 
(51) 

Javascript, 
iOS SDK  

Request per 
day 2,500 
(free 
license)/ 
100,000 
business) 

Yes Yes Request per 
day 2,500 
(free 
license)/ 
100,000 
business) 

100 elements 
per query 
(free 
license)/635 
elements per 
query 
(business 
license) 

MAPIT, 
TeleAtlas, 
DigitalGlobe 

Direction, 
distance, 
matrix, 
elevation, 
geocoding, 
max. zoom 
imagery, 
street view 

Yes 

MapQuest 
(52) 

Javascript, 
AS3/Flex, 
SDK, iOS 

No present 
limit (open 
data)/5,000 
cals/day 
(licensed 
data) 

Yes Yes (only for 
licensed 
data) 

No present 
limit (open 
data)/5,000 
calls/day 
(licensed 
data) 

No present 
limit (open 
data)/5,000 
route 
pairs/day 

Navteq, 
Open Street 
Map user 
contributions 

Directions, 
geocoding, 
search, route 
matrix, 
traffic 

Yes 

NextBus 
(53) 

Yes No Yes No No No Cubic 
Transportatio
n Systems, 
Inc. 

Real-time 
passenger 
information 

Yes 

TomTom 
(54) 

Yes Yes No Yes Yes No TomTom 
International 
BV, Whereis 

Maps, 
routing, 
geocoding, 
traffic 

Yes 
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Event Data 
 
Several agencies collect event data related to all the accidents, incidents, and crashes as well as 
other road related events. For example, Transportation Operating Coordinating Committee 
(TRANSCOM), an agency that coordinates the activities of all of the transportation agencies in 
the New York–New Jersey region, collects volume, speed, and travel time data through 
electronic readers, known as TRANSMIT data (55). TRANSCOM also provides data specific to 
specific events in the transportation network. Events such as, major constructions activity, 
major accidents, hurricanes, sporting events, conventions, etc., may cause disruptions in the 
transportation network. Having such data available provides the ability to calibrate the 
simulation models accurately for these special events as well. The event data can be generated 
from an XML feed from the TRANSCOM database. Around 5,000 event records are obtained 
on an average in a month. 
 
 
CASE STUDIES 
 
We have shown that existence of typical days in traffic data is very unlikely. Hence, for 
calibration of traffic simulation models on a larger scale and in a comprehensive fashion requires 
richer variety and larger quantity of data. As mentioned in the previous section, Big Data provides 
the data required for this purpose. The three inputs required in traffic simulation models: model 
input, calibration parameters and observed output, can be obtained by using various Big Data 
sources. ETC transaction data can be used to generate accurate demand and vehicle type estimates 
for model input. Observed outputs such as speed and travel time can be obtained from numerous 
sources such as INRIX, GPS tracks and data from cellular phones and Bluetooth devices. Travel 
time can be obtained from cellular phone, Bluetooth devices and crowdsourced data. For 
calibrating models for specific incidents, event-specific data such as speed and congestion 
information during accidents, inclement weather, etc. can be generated from TRANSCOM 
databases. For calibrating model specific parameters and algorithms, fine grained data such as 
trajectory data is required. Currently, such data are available by conventional databases, such as 
Next Generation Simulation (NGSIM) (56) or MULTITUDE (57). 

The following sections illustrate the use of Big Data in various case studies conducted 
by the authors of this paper. 
 
Newark Bay–Hudson County Extension PARAMICS Simulation Model 
 
This study was conducted to estimate the regional traffic impacts of a proposed one-lane closure 
along a very critical area of the Northern New Jersey highway network, and within one-mile of 
the Holland Tunnel (58). A number of sources, of both traditional data and Big Data, were used 
for the purposes of constructing and calibrating the simulation model. The Big Data sources in 
this study were ETC data, INRIX data and TRANSCOM event data. Model inputs related to 
infrastructure were collected using the satellite imagery of the study area and site visits. 

NJTPK ETC dataset, an important Big Data source, was used to generate traffic demand 
for the simulation model. This provided detailed hourly volume data for the entire NJTPK 
system, and most importantly the entries at Interchange 14C on the Newark Bay–Hudson 
County Extension (NB-HCE). Manually acquired volume counts, turning movements, 
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automatic turn reader data, estimated hourly turn counts, volume counts from web traffic viewer 
tools of New Jersey DOT and New York State DOT and optimized traffic signals timings are 
used to construct and calibrate downtown Jersey City network. Where detailed volume data 
were not available, output from the regional travel demand model North Jersey Regional 
Transportation Model–Enhanced (NJRTM-E) was used. 

TRANSCOM provided data for three critical holiday weekends in 2010: Memorial Day, 
Independence Day, and Labor Day, primarily to determine the change in traffic levels during 
holidays. Additionally, traffic conditions during major incidents are also provided by 
TRANSCOM. The event data were generated from an XML feed and saved as Excel files. 
Around 5,000 event records were obtained on average in a month. 

Speed data collected by INRIX’s New Jersey network were used to calibrate the link 
speed outputs from the simulation model. INRIX’s data include 2,786 links, covering most 
major highways and arterial roadways for 2010 with over 300 million total data points. Figure 4 
shows the speed profile on I-78 West NB-HCE within the project limits for a given weekday. It 
indicates that the slowest period is in the p.m. peak, from 5:30 to 6:30 pm. 

This study illustrates the synergistic use of traditional data sources and Big Data in 
constructing a large scale calibrated traffic simulation model. All of the above data were used to 
calibrate the simulation model shown in Figure 5. The final O-D demand matrix was composed 
of 82 zones. Twenty-eight of these zones are the NJTPK interchanges, six zones are located in 
the Manhattan side, and the rest of the zones are located in Jersey City. 

 

 
 

 

FIGURE 4  NB-HCE westbound average weekday speeds from INRIX data (58). 
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FIGURE 5  Complete simulation network (58). 
 
 

The results showed that simulated volume counts are within 10% of observed volume at 
these critical locations during the afternoon peak hour. The overall error is 6.2%, 1.2%, and  
–4.9% for I-78 westbound, Route 139 westbound, and Route 495 westbound, respectively. 
Simulated link speeds are within one standard deviation of average observed speeds extracted 
from the INRIX database in almost all locations. 
 
Calibration of Models with Specific Features 
 
Calibration of traffic simulation models with specific control features such as roundabouts, toll 
plazas is more involved than that of freeway sections. In addition to considering variability of 
basic traffic flow parameters, there is a need to consider the effect of special geometric 
characteristics of the individual components of the modeled network such as merge locations on 
freeways and traffic circles, lane configurations for toll plazas, etc. Moreover, user behavior in 
relation to these specific geometric characteristics need to be captured by calibrating model 
parameters such as, mean reaction time, mean headway, route choice parameters, 
aggressiveness and familiarity of drivers with the system, etc. 

The calibration microscopic simulation models of freeways involves calibrating 
parameters for car following such as mean reaction time and target headway, parameters for 
lane change and gap acceptance and even parameters for route choice. However, microscopic 
simulation models involving specialized modeling of geometric features also involve many 
parameters. 
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Calibration of Toll Plazas 
 
For the purpose of calibrating traffic simulation models of toll plazas, Big Data, in particular, 
ETC data for generating demand distributions was very useful for this study. For example, 
Ozbay et al. (59) modeled and calibrated a microscopic simulation model of NJTPK, including 
its 28 toll plazas. The modeling process involved customization of driver behavior at the toll 
plazas based on entry and exit ramps. Along with the global mean reaction time and headway 
the other parameters used in the calibration process were link-level reaction time and headway 
at the toll plazas. The authors used peak and peak shoulder ETC data during a.m. and p.m. 
periods in 2003 involving around 100,000 vehicle transactions per hour, to calibrate the model. 

Mudigonda et al. (60) developed a generic approach for modeling toll plazas and 
calibrated the models for different toll plazas. Their methodology entails modeling the drivers’ 
lane choice decision process using a linear utility model. The utility model is expressed as a 
function of the entry ramp of the driver, the queue at each toll booth of the toll plaza and the 
exit ramp that the driver intends to take after exiting the toll plaza. The authors evaluated the 
algorithm for three different types of toll plazas, namely, one with two entry and exit ramps, 
two entry and one exit ramp, and one entry and one exit (barrier) toll plaza. In addition to the 
demand data, the probabilities of choosing specific lanes given the entry and exit of the vehicles 
are also generated using ETC data involving 3,500 vehicle transactions per hour for each of the 
three toll plazas. The authors implemented the model in PARAMICS and compared the lane 
usage at the toll plazas (60). The ETC data from a.m. peak period from October 2007 and May 
2008 was used to estimate the utility model parameters and simulation model calibration. 

Ozbay et al. (61) modeled the driver behavior at the toll plazas on the New Jersey 
Turnpike using a discrete choice model. They use approach ramp, exit ramp and queue lengths 
at the toll booths as the model parameters. The authors implemented the model in PARAMICS. 
The ETC data from a.m. peak period May 2008 (3,500 vehicle transactions per hour) and video 
recording from July 2006 were used to estimate the discrete-choice model parameters and 
simulation model calibration. 
 
Freeway Merge Section 
 
A proposed freeway merge with a three-lane inner roadway merging with a three-lane outer 
roadway, on NJTPK south of interchange 8A was evaluated for operational and safety 
performance for current and future conditions (62). In this study as well, the source of Big Data 
is ETC data using which demand distributions were generated from 38,000 vehicle transactions 
per hour for four Fridays in September 2006. Two geometric designs were compared, first, a 
3,600-ft straight taper in which one lane drop would transition immediately into the next lane 
drop; and second, a more gradual broken back merge that would incorporate a 1,500-ft tangent 
section between each lane drop. The microscopic simulation model was simulated in 
PARAMICS. The demands representing the average Fridays in September 2006 were generated 
from ETC data and used in the calibration of the model. In addition to demand data, extensive 
accident data is used to evaluate the safety using surrogate safety measures (5). 
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Analysis of Off-Hour Deliveries of Commercial Trucks Using Macroscopic Traffic Models 
 
Quantification of the economic effects of an off-hour deliveries (OHD) program to roadway 
users requires a detailed analysis of the benefits from potential reductions in travel time and 
other externalities. In order to assess the impacts of the shifts associated with the OHD 
scenarios, two different methodologies were used. The first method uses a comprehensive 
macroscopic travel demand model (65), which is developed for the TransCAD software tool, 
New York Best Practice Model (NYBPM) (36). The second method uses New York City taxi–
GPS data to observe the travel time differences by time-of-day. In this second method, actual 
trips that are associated with daytime deliveries are determined and taxi–GPS data is used to 
estimate the travel time benefits for the case when same trip takes place in off hours. 
 
Calibration of a Travel Demand Model Using Big Data 
 
NYBPM covers almost all major transportation facilities within the Lower New York–Western 
Connecticut–Northern New Jersey region. It uses a typical four-step transportation modeling 
procedure with multiclass assignment for the assessment of the changes in truck travel patterns 
(66). The following sources of Big Data were identified for validating and calibrating the output 
of NYBPM: 
 

• New York City bridge and tunnel counts (from New York City DOT), Metropolitan 
Transportation Authority, and Port Authority of New York and New Jersey. The New York 
City DOT’s Bridge and Tunnel Volume datasets (New York City DOT, 2007) are most useful 
since the focus area is Manhattan. Since Manhattan is an island, counts are available at all entry 
points. However, the collected data does not perfectly hold suit for comparison to NYBPM 
output; several agencies own and operate the crossings into Manhattan and collect and provide 
data differently. Additionally, some links could not be used for calibration since data was not 
collected, especially during overnight hours. In all such cases of discrepancies, appropriate 
simplifications were made. 

• New York and New Jersey State DOT weigh-in-motion (WIM)–volume data. WIM 
stations are located on highways throughout the region, where class-wise volume data is 
collected by time of day. Aggregation and filtration of this data enables the researchers to 
determine the average and aggregate volume for a given link by vehicle class. Then the counted 
volume on that link can be compared to the assignment output of NYBPM for the same or 
similar link on the highway network. The collected data was aggregated and postprocessed to 
obtain average link volumes for the links in network, for all the hours of the day. 

• New Jersey Turnpike truck ETC volumes at all interchanges. Using the ETC data 
from NJTA, vehicular flows can be estimated for every link of the system, and separated by 
class. This data is available for all hours of the day, thus it can aggregated and directly 
compared to the output of NYBPM. 
 
Benefit Assessment of an OHD Program using Large Taxi-GPS Data 
 
Taxi–GPS data is used as a way of measuring the benefits from an OHD program. Realistic 
travel time estimation for urban commercial vehicle movements is challenging due to limited 
observed data (i.e., trip tables), large number of O-D pairs, and high variability of travel times 
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due to congestion. Moreover, most traditional data collection methods can only provide 
information in an aggregated form, which is not sufficient for micro-level analysis. On the other 
hand, the usage of GPS data for traffic monitoring and planning has been continuously growing 
with significant technological advances in the past two decades. Therefore a practical integrated 
methodology is developed for using a robust source of taxi–GPS data for commercial vehicle 
travel time prediction (67). Statistical methods are used to validate the methodology and the 
estimations for OHD travel time savings are presented. Figure 6 shows estimated travel time 
savings for all O-D pairs where customers are located. Travel times are obtained by taking the 
median of taxi–GPS travel time data distribution, red stem bars show the daytime travel times 
and blue solid bars are the differences observed when the same trip is done at night period. A 
negative value in the solid bar means that night period travel times are shorter than daytime 
travel times. It is seen that significant improvements can be obtained in daytime to night shifts 
from all daytime periods and the maximum travel time savings can be up to 5 min per trip in 
median travel times. 
 
Surrogate Safety Assessment Using a Simulation Model Calibrated with Trajectory Data 
 
Most calibration studies only focus on one objective, for instance, minimization of the 
difference between simulated speed and observed speed. However, the calibration of simulation 
model can hardly be a single-objective process. This is because that minimization of one 
objective may be associated with other simulated measurements far from truth. In other words, 
the trade-off among different objectives (i.e., operation versus safety) should be balanced while 
calibrating the simulation models. When more objectives are considered, more input data are 
necessary to support the calibration of each objective. For example, instead of only using speed 
measurements from loop detectors to calibration the simulated speed distribution, a large-scale 
high resolution trajectory data are needed for calibrating the traffic safety indicators while also 
considering the speed distribution. 

Using the NGSIM data as a precursor to the anticipated large-scale trajectory data, Yang 
and Ozbay (5) have conducted a case study to demonstrate the needs of balancing both 
operational and safety objectives in calibrating simulation model as well as the use of detailed  
 
 

 

FIGURE 6  Travel time differences by OHD shifts using taxi–GPS data. 

Midday to Night 
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vehicle trajectory data. Other than the three operational objectives (traffic flow, speed, and lane 
change), the safety objective function defined by comparing the surrogate safety measure with the 
field observations was also used. The surrogate safety measure was defined as the conflict 
probability to identify the potential risk of traffic conflict (68). To make the study more practical, 
these objective functions were aggregated using a multicriteria optimization approach as shown in 
Equation 3. The simultaneous perturbation stochastic approximation algorithm was then used to 
calibrate the parameters of microscopic simulation model. 
 
Min z(θ ) = ω1z1 (θ ) + ω2 z2 (θ ) + … + ωm zm (θ )  (3) 
 
where 
 

ωi = is a user defined nonnegative scalar weight of the ith performance criterion z (θ ). z(θ ) 
becomes the aggregated objective function. Θ is the possible domain of parameters to be 
calibrated. 

The study examined the results of calibrating the simulation parameter set either by 
minimizing a single objective function or the multicriteria objective function z(θ ). The 
calibrated results imply that minimization of safety performance function cannot guarantee the 
minimization of the operational performance functions, and vice versa. However, by taking into 
account all objective function, the calibrated simulation model provides a better balance among 
different objective functions. 
 
 
CONCLUSIONS 
 
In this study, various data requirements for calibrating traffic simulation models are illustrated. 
It is argued that the practice of using field data from a short time frame or a typical day, is not 
useful in providing predictions in a wider variety of conditions. Using real-world data, it was 
shown that the existence of a typical day in traffic data is not evident. We illustrate the need for 
field data in greater detail and from a greater time span to be able to accurately calibrate traffic 
simulation models. 

The availability of new technologies provides endless possibilities of large datasets, 
also called Big Data. We illustrate various kinds of data that can be obtained from various Big 
Data sources Table 5 shows a summary of various Big Data sources, their applicability and the 
size of data used in studies. It can be seen from the data samples used in various studies that the 
size of these data is much larger when compared to conventional data sources used in traffic 
simulation modeling and calibration. Typically, speed data from inductive loop detectors 
involve about 300 to 1,000 records per day, whereas the speed data from GPS data involves 
hundreds of thousands of records. We provide case studies of simulation model calibration 
using sources of Big Data such as, INRIX, ETC transaction data, New York City taxi–GPS 
data, cellular phone data, and crowdsourced data. 
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TABLE 5  Summary of Applications of Big Data in Traffic Modeling and Calibration 
Big Data Source Application Size of Data
ETC Data Travel demand (55, 59, 

60–63); Travel time (59, 
62) 

200,000 vehicle transactions (55); 150,000 
vehicle transactions (59); 3,500 vehicle 
transactions (60, 61); 38,000 vehicle 
transactions (62, 63) 

GPS data (INRIX) Speed (55) 300 million data points (55) 

GPS taxi data Speed (31-36, 65); 80 million taxi trips (65); 200 million trips (32)

Cellular phone Travel demand (38, 39, 41–
46); travel time (40); speed 
(70); V/C (70) 

1.6 million people (40); 300 million call 
records (41); 6,398 taxi trips (43); 78 
million GPS points (44); 100,000 phone 
users (45, 46) 

Bluetooth 
device 
detection 

Speed (69); travel time (76); 
travel demand (71) 

300,000 devices (71); 2,000 detections (69); 
3,000 detections (76) 

TRANSCOM Event-specific data (55) 5,000 events per month 

Crowdsourced data Travel time (48, 73, 74) 88,000 data points/week (48) 

Transit transactions Travel demand (75) 57 million transactions (75) 

 
 
Future of Big Data in Traffic Simulation Calibration 
 
As mentioned earlier, there are three types of data required in calibration, model input data, data 
for calibrating parameters, and observed output data. Accurate model input data of travel demand 
and vehicle type can be obtained from Big Data sources such as ETC transactions and cellular 
phone data as well as traditional O-D surveys conducted for regional planning models. On the 
other hand, data such as INRIX, taxi–GPS data, TomTom, and Garmin GPS data provide 
representative data for speeds and travel times—extensive observed output data. These data sets 
can be integrated to provide accurate model inputs as well as observed outputs for the traffic 
simulation models. In addition, detailed event data such as TRANSCOM data (55) provides 
geographic and time information about specific events and weather conditions. This information 
can be integrated with the speed, travel time and demand information to provide a wider and 
improved representation of various conditions for which the traffic simulation model are to be 
calibrated. 

Fusion of data from loop detectors and probe vehicles has been previously performed 
previously using techniques such as, variations of Kalman filter (69), evidence theory (76), 
neural networks (77), etc. Large amount of data emerging from multiple and such varied 
emerging sources can also potentially be combined into a data fusion framework using various 
artificial intelligence and data mining methods. 

With Big Data becoming available in greater frequency, it is possible to calibrate traffic 
simulation models in real-time. The online data at each time interval t provides demand, vehicle 
type data (ISt) as well as observed flows, speeds and travel times (OObst). As shown in Figure 7, 
calibration process can be performed in real-time, and parameters can be estimated for each time 
interval by minimizing the error with the simulated output (OSimst). 
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FIGURE 7  A feedback based methodology for online calibration using Big Data. 
 
 

The technological advances are not just limited to devices such as smartphones. Motor 
vehicles are increasingly being instrumented with various sensors that not only allow detection 
of other vehicles but also mutual information sharing. These connected vehicles are also a great 
source of Big Data. One of the commonly used sensors to communication between vehicles is 
directed short-range communications (DSRC). The SAE J2735 Standard (76) defines different 
types of messages that can be generated using DSRC. These include basic safety messaging 
(BSM) and probe data messaging among many others. These messages transmit data such as 
vehicle position, speed, and acceleration data every 0.1 to 1 s. Data acquired at a frequency of  
1 s are very useful in estimating observed data such as speeds and travel time. Availability of 
such data is very helpful in calibrating traffic simulation models of larger networks. 

The calibration of traffic simulation models assumes that the in-built driver behavior 
algorithms such as car following, gap acceptance, lane changing, etc., are mathematically 
accurate enough. However, the existing and new driver behavior algorithms also need to be 
tested and eventually calibrated. The process requires position, speed, and acceleration data at a 
higher resolution. Traditionally such a data set is acquired by tracking vehicles from high-
resolution videos of vehicular movements. Consistent with these recent developments, detailed 
vehicle trajectory data collection initiatives such as NGSIM (56) and MULTITUDE (57) were 
undertaken at few locations. NGSIM program developed detailed vehicle trajectory datasets 
collected on freeways and arterials for 1,600-ft sections at a 0.1-s time increments and the 
detailed lane positions and locations relative to other vehicles. MULTITUDE (Methods and 
tools for supporting the Use caLibration and validaTIon of Traffic simUlation moDEl) program 
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conducted by European COST initiative collected trajectory data at different sites at every 0.1 
to 0.06 s on European highways and arterial networks. These trajectory data have been used to 
calibrate–validate a number of simulation models for different research topics, for example, car 
following models (79, 80), lane change models (81), safety analysis (5, 68, 82), traffic flow 
characteristics (6), energy and emission (83), etc. 

Manual or semi-automated extraction of this kind of detailed trajectory data from video 
recordings is cumbersome and produces data for only a few numbers of vehicles and only for 
specific conditions. However, data transmitted using some of the connected vehicle applications 
have a good potential for being a viable and much efficient alternative to collecting trajectory 
data from video data. BSM (76), which disseminates vehicles’ position, speed, and acceleration 
data every 0.1 s, offers great potential for the future of Big Data. For instance, Ford Motor 
Company installed over 74 sensors in cars including sonar, cameras, radar, accelerometers, 
temperature sensors, and rain sensors. As a result, its Energi line of plug-in hybrid cars 
generates over 25 gigabytes of data every hour. The cars in its testing facility even generate up 
to 250 gigabytes of data per hour from smart cameras and sensors (84). In fact there have been 
an increasing number of studies towards the understanding of the impacts of massive amounts 
of data that will become available as a result of more vehicles becoming connected (85–88). 
Clearly the extensive amount of data from these vehicles can be invaluable for the calibration of 
traffic simulation models not only on a one-time basis, but on a continuous basis because data 
will be acquired continuously. Additionally, advances in computer vision technologies can be 
used with conventional traffic video data and potentially generate massive trajectories for 
supporting the multicriteria calibration of simulation models. 

Another emerging trend with the booming of smart devices with location-sensitive 
components is the development of many geosocial networks such as Waze, FourSquare, 
Facebook Places, and Google Latitude. These geosocial networks collect user locations and 
provide users with crowdsourced location-based services such as traffic condition (39, 45, 46, 
70), accident information, travel suggestion (75), etc. The available real-time crowdsourced 
traffic information provide opportunities to calibrate our simulation models so that the models 
can be more sensitive to infrequent but high-impact scenarios such as accidents and incidents. 

A culmination of the above two trends, connected vehicles and geosocial networks has 
been several software applications both in vehicles and on the drivers’ smartphones connected 
to vehicles. The tremendous amount of data generated by the in-vehicle and crowd-sourced 
sensors provide great scope for real-time software applications to exploit. Furthermore, car 
manufacturers have started open-source platforms for developing applications using speed, 
mileage, and data that is time and location sensitive. Ford and GM started to open the data 
provided by their cars to application developers (89). Similarly, Google in partnership with 
Audi, GM, Honda, and Hyundai started the Open Automotive Alliance (90). Ford’s OpenXC 
open-source platform initiative provides application developers with data on acceleration pedal 
force, steering wheel position, etc. (91). A correlation of such extensive data over various 
dimensions time, space, and events is useful in providing information regarding behavioral data 
of drivers’ under different time and weather conditions. Such data helps in improving the 
accuracy of not only the operational modeling of traffic simulation models but also safety 
modeling. Thus these data would go a long way to further the paradigm of traffic simulation 
model calibration. 

Looking into the future, the role of Big Data can be summarized by the following quote 
(92): 
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…Big Data collected from car sensors (with proper privacy protections) will enable us to 
know more about the world we travel through, it could help city and transportation 
planners design next generation systems able to move more people with greater 
efficiency and personal mobility. 

 
 
AUTHORS' NOTE 
 
The contents of this paper reflect views of the authors who are responsible for the facts and 
accuracy of the data presented. The contents of the paper do not necessarily reflect the official 
views or policies of the agencies. 
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he main measure of the safe performance of a traffic system is the severity of a crash. Recent 
developments in computer, data collection, and communication technology have had 

considerable impact on our ability to replicate driver behavior and understand the processes 
involved in a crash. This paper looks at the use of computer models to simulate and assess the 
factors influencing crashes in existing and future traffic systems. It focuses on stochastic 
numerical models of traffic behavior and how reliable these are in estimating the conflict–crash 
process on the traffic network. It has been shown that these models have potential in measuring 
the level of conflict on parts of the network and the measures of conflict correlated well with 
crash statistics. By using surrogate safety measures these models focus on the measures of speed 
and location in the conflict and do not include other factors contributing to the crash. Further, the 
models assume the driver has full information on which to make a decision during the conflict 
process. Interest in the prediction of crashes and crash severity is growing and new models are 
focusing on the continuum of general traffic conditions, conflict, severe conflict, crash, and 
severe crashes.  
 
 
INTRODUCTION 
 
Traffic simulation models utilize stochastic sampling of the distributions of driver behavior to 
replicate the interactions between vehicles in a traffic stream to determine the consequences of 
their actions. Road safety simulation models expand these models to incorporate behavioral 
constructs which enable measures of the safety performance of the road system to be evaluated. 
Road safety simulation models are a useful tool in contributing to the overall evaluation of road 
systems performance. In this paper, the application of the microsimulation modeling approaches 
to studying the safety of components of the traffic system is reviewed and potential advances in 
the development of these models discussed. In the next section the paper traces the development 
of thought in modeling driver behavior and safety using computer simulation. It looks at the 
structure, theoretical base, and output measures of performance of simple and complex road 
safety simulation models. In the section Looking Forward, the paper looks at recent 
developments in the modeling of crashes.  
 
 
LOOKING BACK: MODELS OF CONFLICT 
 
Traffic microsimulation models attempt to mimic the process of vehicle movement in a traffic 
stream by replicating driver and vehicle behavior. Many of these traffic models implicitly use 

T 
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“safe” measures of behavior rather than actual behavior (Bonsall et al., 2005). They also assume 
drivers have full information in order to perform car-following, lane-changing and gap-
acceptance maneuvers. In many crash situations this is not the case since drivers may not be 
aware of other objects location and movement. In order to measure the safety of traffic systems, 
using road safety simulation models, it is necessary to incorporate realistic behavior to capture 
the variability in road user performance in real-world conditions. Unlike traffic simulation 
models, road safety simulation models focus on particular interactions (e.g., intersection 
conflicts, rear end conflicts, and run-off-road situations) between vehicles and other objects and 
model the process associated with the conflict or crash. This may be because, unlike other events 
in the traffic stream, crashes are exceptional in that they are the outcome of a process. This 
section of the paper will review road safety simulation models, the measures used to assess 
safety, the types of conflict situation that have been investigated, and the level of behavioral 
detail in the model in order to get an indication of where they can contribute to the development 
of our understanding of crash situations.  

Formalization of the traffic conflict concept was initially proposed by Perkins and Harris 
(1968) as an alternative to crash data. The objective was to define incidences which occur 
frequently and are clearly observed and related to crashes. The early road safety simulation 
models grew out of the conflict analysis literature (Perkins and Harris, 1968; Amundson and 
Hyden, 1977). Initially the conflict models looked at the relationship between conflicts and 
traffic flow at intersections (Cooper and Ferguson, 1976; Darzentas et al., 1980, McDowell et al., 
1983; Yue and Young, 1993). These models allocated headways, desired speeds, acceleration 
characteristics, and vehicle size on entry of the system to the drivers and vehicles. Vehicles are 
generated at the boundaries of key points in the study area and then are progressively moved 
through the transport network. In terms of the roads system, the position when the vehicle enters 
is determined by the spacing or headway between these vehicles. Various headway distributions 
are provided in simulation models. Cowan (1975) introduces the main distributions used in most 
existing simulations and relates them to a data set collected in New South Wales, Australia 
(Figure 1). These distributions move from a random representation of vehicles, through displaced 
exponential distributions to mixed spacing and bunching models. The random distribution relates 
to the Poisson process and a negative exponential representation of headways. This approach 
enabled small headways and crashes to be present at a point of entry into the system. However, 
this distribution was not seen to fit data on single-lane traffic flow very well. Multiple-lane 
traffic could be represented by this distribution but there is no conflict across lanes without lane 
changing. A common distribution used to replicate entry into a traffic system is the shifted 
negative exponential distribution of headways (Sayed et al., 1994; Cowan, 1975). This 
distribution assumes that there will be no headways less than a certain value, often 1.5 s. Clearly 
no crashes can occur with such a distribution.  

The third distribution introduced by Cowan (1975) comprised bunches of vehicles and 
gaps between these bunches. The bunch size could by a geometric distribution and the headway 
distribution is used to determine the headway between the last vehicle in a bunch and the first 
vehicle in the following bunch. Again no crashes are present. Generally one of the second two 
representations of headways is used in most traffic simulation models. These distributions do not 
provide zero headway and hence cannot predict crashes at the entry to the study area. Attempts 
to develop crashes using headway distributions are unlikely to be realistic. They may be a 
realistic representation of the probability of getting a crash at a particular point in the network  
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FIGURE 1  Headway distribution data (Cowan, 1975). 

 
 
but crashes do not occur at a point rather they occur over a length of road. Further, to the 
headway distribution, the conflict models also had relatively simplistic measure of driver 
behavior. They focused on the kinematics of the situation and simulated vehicle behavior, with a 
speed and initial spacing randomly sampled from specific speed and spacing profiles through 
intersections at constant velocity and counted the number of times the vehicles conflicted. The 
models (Cooper and Ferguson, 1976; Darzentas et al., 1980, McDowell et al., 1983) were rarely 
fully calibrated and validated since the technology for collecting data was not that advanced and 
the labor involved in extracting conflict information is considerable. The models did however 
provide useful insights into the level of conflict at intersections and indicated there was potential 
for traffic simulation to be used to replicate traffic conflicts. These early developments of road 
safety simulation models set the scene for future activity in this area. 

The initial development of conflict simulation models showed there was potential for 
models to provide measures of the level of conflict in a traffic system. Safety is often measured 
by the number of crashes. Hauer (1982) hypothesized the relationship between crashes and 
conflicts as 
 
Expected number of crashes (λ) = [number of conflicts (c)] * [crash-to-conflict ratio (π)]. 
 

A fundamental step forward in the development of road safety simulation models was the 
determination of a measure of performance (or safety) to be used. The desire to quantify the 
kinematics of a conflict in road safety simulation models lead researcher’s to introduce measures 
of the “risk of collision” of the conflict. These measures (FHWA, 2003) became known as 
Surrogate Safety Measures. Comprehensive lists of measures used to quantify Surrogate Safety 
Measures over the last 40 years have been provided by FHWA (2003), Tarko et al. (2009), 
Pirdavani et al. (2010), and Wu and Jovanis (2012). Many of these measures have not been used 
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in models, because of the structure of the model or difficulties in measuring them in existing 
models. An early and commonly used measure of conflict used in road safety simulation models 
was Time-to-Collision (TTC) (Sayed et al., 1994; Archer and Young, 2010a; Astarita et al. 2012; 
Laurenshyn et al. 2010; Van der Horst, 1991). TTC is generally defines as “the time to collide if 
two vehicles continue at their present speed and along the same path” (Hayward, 1972). Another 
commonly used Surrogate Safety Measure, which can be more easily incorporated into models, 
is the Post Encroachment Time. “It represents the difference in time between the passage of the 
‘offending’ and ‘conflicting’ road users over a common area of potential conflict” (Pirdavani et 
al., 2010).  

Incorporating the severity of conflicts was an important development and has been 
achieved using Hyden’s (1987) definition regarding the Required Braking Rate for each conflict 
or Deceleration Rate to Avoid a Crash (Cunto and Saccommanto, 2008; Archer and Young, 
2010b; Astarita et al., 2012). It is required “the braking rate to be applied for a vehicle attempting 
to avoid the crash with other vehicles.” Required braking rate can be measured within the road 
safety simulation model and offers a clear view of the severity of the conflict. The in-vehicle or 
naturalistic data set (Dingus et al., 2005) is moving Surrogate Safety Measures to another level by 
utilising a more quantifiably rigorous concept to define crashes and near crashes. A near crash 
being: “Any circumstance that requires a rapid, evasive manoeuvre by the particular the participant 
vehicle, or any other vehicle, pedestrian, cyclist, or animal, to avoid a crash. A rapid, evasive 
manoeuvre is defined as steering, braking, accelerating, or any combination of control inputs that 
approaches the limits of the vehicle’s capability” (Guo et al., 2010). Surrogate safety measures 
have been used in many studies to estimate the level of safety in a particular traffic situation. The 
Surrogate Safety Measures are often built on the outputs of existing traffic simulation models like 
VISSIM (2007), AIMSUM (2007), and PARAMICS (2002). They generally assume that the driver 
has full knowledge of the conflict situation and can act appropriately and generally focus on the 
kinematics of the conflict, speed and location, in determining the cause of the conflict. The driver 
and vehicle factors influencing the crash may be broader than just the kinematics and the driver 
may not have full information. The appropriateness and adaptation of these models, to replicate 
severe conflict and crash situations, will be discussed latter. 

The next aspect of road safety simulation models to be considered here is their underlying 
theory. It will focus on particular conflict situations: crossing conflicts at unsignalized 
intersection; stop–go decisions at signalized intersection; rear end; and lane-changing conflicts; 
since this is where the crash process takes place. It will also highlight the behavioral 
developments in the models which assist in providing more realistic measures of safety 
performance.  

Initial applications, of road safety simulation models, focused on crossing conflicts at un-
signalized intersections (Sayed et al., 1994; Archer and Young, 2010a). Both Sayed et al. (1994) 
and Archer and Young (2010a) recognized the need to develop gap acceptance representations 
more in line with risk taking behavior to estimate the number and severity of conflicts. Sayed et 
al. (1994) utilized different gap acceptance behavior for different driver groups. The use of a 
binomial logistics function (see Figure 2) by Archer and Young (2010a) to model gap acceptance 
was a significant step forward since it enabled drivers to accept gaps which were clearly unsafe.  

Another group of road safety simulation models have focused on rear-end accidents at the 
approach to signalized intersections, since they are a major source of accidents at signalized 
intersections. Cunto and Saccomanno (2008) developed a microsimulation model, for the study 
and safety evaluation of rear-end crashes at signalized intersection. Cunto and Saccomanno 
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(2008) used VISSIM as the base traffic model. This model is built around a car-following model 
created by Wiedemann (1974). It is based on different thresholds, which form different regimes 
for looking at driver behavior (see Figure 3). The regimes are free driving, closing in, following, 
and emergency regime. The behavior of the driver and the magnitude of the vehicle’s 
acceleration or deceleration are modeled within each regime. The use of these thresholds 
precludes certain situations from taking place one of these is a crash. 

 
 

 

FIGURE 2  Probability functions for the acceptance of time-gaps in different yielding 
situations and time periods (Archer and Young, 2010a). 

 
 

 

FIGURE 3  Different thresholds and regimes in the Wiedemann car-following model 
(1974). [Note: AX = the desired distance between stationary vehicles; ABX = desired 

minimum following distance at low speed differences; SDX = maximum following distance 
which varies between 1.5 and 2.5 times the minimum following distance; SDV = This 

threshold defines the points where driver notices that he/she approaches a slower driver 
(approaching point); CLDV = this threshold describes decreasing speed difference at short 

decreasing distances; OPDV = this threshold describes the points where the driver 
perceives travelling at a lower speed than the leader.] 
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Like VISSIM (Wiedemann and Reiter, 1992), PARAMICS (Fritzsche, 1994) utilized a 
risky distance variable where the distance headway is too close for comfort which also precludes 
crashes. The parameters in Cunto and Saccomanno’s (2008) model were estimated from the 
NGSIM database. They were: desired speed (mean and standard deviation), desired deceleration, 
observed vehicle ahead, standing distance (for stopped vehicles), legal headway time, following 
variation, threshold for entering “following,” speed dependency for oscillation, minimum 
distance to lead vehicle, factor applied to original safety distance, and maximum deceleration. 
Importantly, the “driver states” defined by six human thresholds, in Wiedemann’s (1974) car-
following model were replicated. Clearly the use of a minimum threshold precludes very close 
headways and crashes unless the thresholds are probabilistic. The incorporation of an error 
function into calculating safety distance could take the form: 

 
ViRandBXBXAXABX multiadd *))(*( ++=  

 
where 
 

ABX = desired minimum following distance; 
AX = desired distance for standing vehicles; 

BXadd = the additive part of the desired safety distance; 
BXmulti = the multiplicative part of the desired safety distance, 

Rand(i) = a random value from a normal distribution (mean 0.5, standard deviation 0.15); 
and 

V  = the square root of speed. 
 

The interaction between drivers and traffic signal information is another focus of road 
safety simulation models. Young and Archer (2009) investigated and incident reduction function 
at signalized vehicle actuated intersections. The interaction between driver decisions, the 
dilemma zone and consequent red light running for light vehicles was explored. Archer and 
Young (2009, 2010b) investigate the stop/go decision at signalized intersection to look at red 
light running by utilizing a logistic curve to emulate red light stop–go decisions.  

Modeling the conflict between vehicles moving along road links represents different 
behavior and crash situations. Several driver behavior car-following models have been developed 
in this area. Mehmood et al. (2001) utilizes system dynamics to model two-vehicle rear-end 
crashes where both vehicles are traveling in one lane. The potential for a crash is a probabilistic 
function of the current vehicle separation (not headway) time distance, the minimum required 
stopping site distance, the current speed of the vehicle and the required safe speed. Astarita et al. 
(2012) developed a model called TRITONE using car-following procedures based on Gipps 
(1981) studies.  

The Gipps (1981) car-following model, which is also used in AIMSUM, will be briefly 
discussed here to highlight potential areas for adapting the model to safety investigation. Gipps 
(1981) developed a model based on collision avoidance comprising the two following constraints 
for the follower’s velocity: (a) the speed of vehicle n should not exceed from its desired speed 
and its free acceleration should first increase with speed as engine torque increases and then 
decrease to zero as the vehicle approaches the desired speed; and (b) the following driver must 
be sure his/her vehicle will stop safely if the proceeding vehicle brakes suddenly. Previous 
models of this type did not contain of any margin for error. He introduced a further safety margin 
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by proposing that the driver makes allowance for a possible additional delay before reacting to 
vehicle ahead. The result of these two considerations is the model:  

ݐ)௡ݒ  + ܶ) = ݉݅݊ ൝ (ݐ)௡ݒ + 2.5ܽ௡ܶ(1 − (ݐ)௡ݒ ௡ܸ)(0.025 + (ݐ)௡ݒ ௡ܸ)⁄ ଵ ଶൗ⁄ 	ܾ௡ܶ + ൛ܾ௡ଶܶଶ − ܾ௡(2൫ݔ௡ିଵ(ݐ) − ௡ିଵݏ − ൯(ݐ)௡ݔ − ܶ(ݐ)௡ݒ − ௡ିଵଶݒ (ݐ) ܾ^)⁄ ൟଵ ଶൗ  

 
where 
 

an  = the maximum acceleration which the driver of vehicle n wishes to undertake; 
bn  = the most sever braking that the driver of vehicle n wishes to undertake (bn ˂ 0); 

sn – 1  = the effective size of vehicle n – 1; that is the physical length plus a margin into which 
the following vehicle is not willing to intrude, even when at rest; 

Vn  = the desired speed or the speed at which the driver of vehicle n wishes to travel; 
xn(t)  = the location of the front of vehicle n at time t; 
vn(t)  = the speed of vehicle n at time t; 
b^  = the estimation of bn – 1 employed by the driver of vehicle n; and 
T = drivers’ reaction time. 

 
The first term is related to the first constraint and the second term expresses the later one. 

The safe driving distance approach is utilized in Gipps (1981) model. The safe driving approach 
does not allow very small headway and hence crashes. However, the introduction of an error 
function in the acceleration term could enable the replication of errors in perception of drivers, 
which could lead to crashes.  

To broaden the application of road safety simulation models to general vehicle safety on 
links, it is necessary to include lane-changing as well as car-following models. Dedes et al. 
(2011) developed a model which combined a traffic simulation model (VISSIM) and a vehicle 
dynamics simulator (CARSIM) and places this within a Satellite Systems (GNSS) and Inertia 
Navigation Units (INU) simulator which provides an integrated design framework for 
investigating the impacts of existing GNSS–INU. The VISSIM model adopts an approach 
similar to Wiedmann’s car-following model (Wiedmann, 1974) to lane changing. Some new 
thresholds and areas were defined to represent human perception of distances and speed 
differences in lane changing decisions. These are shown in Figure 4.  

Four types of lane changing to faster lanes and two types of lane changing to slower lanes 
were defined by applying the following parameters. The parameters considered for changing to a 
faster lane are 

 
1. Distance of reaction;  
2. Headway of reaction;  
3. Rear-to-front headway between the subject vehicle and its lead vehicle in the faster 

lane;  
4. Front-to-front headway between the subject vehicle and its lag vehicle in the faster 

lane; and  
5. Rear-to-front headway between the lag and lead vehicles in the faster lane.  
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FIGURE 4  Thresholds and distances defining actual and potential  
influence areas in Willmann lane changing model (Wiedmann and Reiter, 1992). 

 
 
The parameters considered for changing to slower lane are 
 
1. Distance of reaction;  
2. Headway of reaction;  
3. Rear-to-front headway between the lag and lead vehicles of the subject vehicle in the 

slower lane; and  
4. Front-to-front headway between the subject vehicle and its follower in current lane 

(in seconds).  
 
For both types:  
 
1. Length of lane changing manoeuvre (in meters); and  
2. Duration of lane changing manoeuvre (in seconds). 

 
According to the above parameters four types of lane changing to faster lane and two 

types of lane changing to slower lane were defined. The four types of lane changes to faster lanes 
are  

 
1. FREE lane changes. The subject vehicle is only influenced by its leader in the current 

lane. The lead and lag vehicles in the faster lane do not influence the maneuver. 
2. LEAD lane changes. The lead vehicle in the faster lane is closer to the subject vehicle 

than the subject vehicle’s leader in the current lane and the lag vehicle in the faster lane is not 
influenced. 

3. LAG lane changes. The lag vehicle in the faster lane is influenced by the maneuver 
and the subject vehicle’s leader in the actual lane is closer than the lead vehicle in faster lane: 
and  

4. GAP lane changes. The lag vehicle in the faster lane is influenced by the maneuver 
and the lead vehicle in the faster lane influences the subject vehicle.  

 
The two types of lane changes to slower lane are  
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1. FREE lane changes. The maneuver is not influenced by the follower in the current 
lane and  

2. ACCEL lane changes. The following vehicle in the current lane influences the subject 
vehicle. Although it is also possible to put an error function in this model, no adaptations of the 
minimum distance estimate of drivers has been explored to look at the potential of crashes. This 
is most likely because of the lack of data on such situations. There is however a need to 
understand this maneuvers impact on crash potential. 
 

The second stage in Dedes et al. (2011) model was the incorporation of the CarSim 
model. CarSim is a commercial software package that predicts the performance of vehicles in 
response to driver controls (steering, throttle, brakes, clutch, and shifting) in a given environment 
(road geometry, coefficients of friction, wind). The model was aimed at exploring the adequacy 
on in-vehicle navigation and crash-avoidance systems.  

Most road safety simulation models focus on particular crash types at particular parts of 
the traffic system. Combining intersection and link road safety simulation models into network 
models requires simplification of the representation of the crash. Dijkstra et al. (2010) focuses of 
intersections to develop a link between TTC conflicts and crashes. Dijkstra et al. (2010) uses the 
PARAMICS model as a basis for studying the level of safety in a traffic network in Noordwijk, 
Netherlands. They aimed to provide information to users on both the safest and quickest route 
through the network. The introduction of an error function to replicate crash situations was not 
undertaken in this study. 

In summary, road safety simulation models utilizing Surrogate Safety Measures are well 
developed and able to be applied in practice. This is the state of the art in the application of road 
safety simulation models. These models for simulating safety have made considerable 
developments of the past decade. Simulation models have moved from simple models of conflict 
to complex representations of vehicle conflict situations. The underlying theory of the model has 
also developed.  

The models are still in an early stage of development. Some aspects worthy of further 
research are reviewed below. The first question to be asked of these models is: is there a 
relationship between Surrogate Safety Measures and crashes? Many studies (Archer and Young, 
2010a; Cunto and Saccomanno, 2008; Dijkstra et al. 2010) point to there being such a 
relationship. Several researchers (Guo et al., 2010; Wu and Jovanis, 2012) have explored the 
relationship between Surrogate Safety Measures and crashes using a naturalistic data base. The 
models need to look at driver behavior during a conflict in more detail. Such questions like, are 
there any other driver and vehicle characteristics, than the kinematics related to speed and 
position, which contribute to the conflict–crash situation and severity?  

Most of the models discussed above use the commercially available traffic simulation 
packages (AIMSUM, 2007; VISSIM, 2007; PARAMICS, 2002). These models have well 
developed gap acceptance and light vehicle car-following models (Gipps, 1981; Wiedemann, 
1974; Fritzsche, 1994) and lane-changing algorithms. Generally these algorithms (Brackstone 
and McDonald, 1999; Panwai and Dia, 2005) revolve around safe driving characteristics and the 
drivers having full information. For instance, car following in AIMSUM (Gipps, 1981) revolves 
around safe driving distance; in VISSIM (Wiedemann, 1974) a minimum threshold on the 
spacing between vehicles is used; and PARAMICS (Fritzsche, 1994) utilized a risky distance 
threshold where the distance headway is too close for comfort. Clearly the general acceptance of 
these models and their application to general traffic flow situations provides evidence of their 
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validity. However, when attempting to measure safety, these assumptions may require 
refinement. The models are limited in their consideration of accident situations, if they do not 
include risk taking behavior and lack of information. Driver and vehicle characteristics are also 
related to the kinematics of the crash and do not explore the full range of characteristics 
describing these components.  

Most models look at vehicle to vehicle crashes, no consideration of other crashes (e.g., 
multiple vehicles, vehicle fixed object, vehicle–pedestrian) appear to be present. Further, studies 
of accidents involving pedestrians, bicycles, and public transport are rare. 
 
 
LOOKING FORWARD: MODELING CRASHES 
 
The previous sections have focused on road safety simulation models, conflict analysis, and 
Surrogate Safety Measures. They have demonstrated the usefulness of the combination of these 
approaches in providing measures of the safety of elements of the transport system. However, the 
main concern of safety analysis is the crash, and more specifically, the severe crash or fatality. 
This section overviews initial attempts to incorporate crash measures into simulation models. 

A commonly used simulation approach to the modeling of vehicle crashes focuses on the 
vehicle and the driver. These models tend to focus on the interaction between vehicles or 
vehicles and roadside objects, and do not consider general traffic conditions or driver behavior. 
They describe the vehicle-to-vehicle (or object) interaction in detail. Jacques et al. (2003) 
describes three groups of models that have been used to investigate crash situations. They are the 
Gross Motion Simulators, Human Vehicle Environment Software, and Finite Element Programs. 
Gross Motion Simulators (rigid body dynamic models) replicate the bodies (vehicle, person, 
objects) involved in the crash situation by using a set of rigid bodies connected by various types 
of joints. These models are used to examine the dynamics of the people in the vehicle. The 
Mathematical Dynamic Model is a commonly used model of this type. Energy-based programs 
replicate the interaction between vehicles and objects estimating the energy involved in the 
interaction. Human, Vehicle, Environment software are energy-based programs which can 
simulate the crash situation in details and estimate the trajectory of each vehicle after the crash in 
order that the severity of the crash can be measured (Jacques et al., 2003; Engineering Dynamics 
Corporation, 2006). Finite Element Programs (LS-DYNA, PAM-CRASH, Radioss, and MSC-
Dytran) have been used to replicate the objects involved in a crash in great detail. Each body is 
replicated by a complex mesh of triangles. The extension of these models to take into account 
traffic conditions has not been attempted due to the considerable data requirements and the 
complexity of the general traffic conditions. 

Most of the road safety simulation models discussed in the Looking Back section use 
existing simulation packages to model safe behavior. Several researchers (Bonsall et al., 2005; 
Xin et al., 2008) suggest that existing simulation models are developed to preclude collisions and 
are not an accurate representation of the safety environment. Xin et al. (2008) set out to develop 
a car-following model that includes a less-than-perfect driver. They develop a realistic 
perception response mechanism based on visual perception studies. Driver inattention is 
replicated by a driver-specific variable termed a scanning interval. Xin et al. (2008) considers the 
distance headways (and hence time headway) between leading and subject vehicle as that 
distance between the retina of the driver and the rear of the leading vehicle.  
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Clearly the development of a road safety simulation model which relates to crashes must 
pull together a number of events. By exploring the continuum between the initial conditions 
leading to the event [P(u)], the evasive or avoidance actions [P(x|u)], and the crash-related 
outcomes [P(y|x,u)]. Davis et al. (2011) generated the conditional probability relationship:  
 
P(y,x,u) = P(y|x,u).P(x|u).P(u) 
 

Tarko (2012) extends Davis et al.’s (2011) approach by addressing the question of a 
continuum of traffic events and expanding the mainstream statistical models of collision 
frequency and the conditional probability of injury. Tarko extends the direct relationship 
between the crash and factors affecting it to a continuum of four steps moving from (a) traffic 
factors, (b) through conflict, (c) collision to (d) injury outcome. He relates this to Heinrich’s 
triangle (Heinrich, 1959) and the consequent road safety literature (Hauer, 1997; Svensson and 
Hyden, 2006; Dingus et al., 2005) which hypothesizes that safety event can be grouped in 
increasing severity and decreasing frequency. The important link connecting risky behavior and 
the crash (Step 3) is quantified using the Generalise Parato distribution to link the other models.  

A further attempt to develop the crash continuum described by Tarko (2012) was 
undertaken by Sobhani et al. (2013). Sobhani et al. developed a Safety Analysis Chain (SACH) 
which combined five components of the safety continuum: the traffic system (flow, speed, etc.); 
the development of a conflict; the severity of this conflict; the likelihood of a crash; and the final 
crash. They used VISSIM (2007) as the overall simulation framework and the quantification of 
the first three steps in the SACH. They then took advantage of the considerable research into 
numerical and statistical models of crashes and imbedded a number of probabilistic models for 
each of the last three components of the crash: the driver reaction model, kinetic energy transfer 
model, and crash severity model. The inclusion of the crash models broadened the number of 
factors contributing to a crash that could be studied. The road and environmental characteristics 
include factors like road, weather, traffic, and trip characteristics. Human factors include 
demographics, behavior, occupant position in the vehicle, and anthropometric characteristics. 
The vehicle characteristics comprise vehicle type, safety features, size, mass, and age. Finally, 
crash information relates to factors like crash type, speed, angle of crash, and impact 
characteristics. Wu and Jovanis (2012) also explore a set of variables broader than kinematic 
variables in their study of crashes and near crashes. For road departure events they find lateral 
acceleration greater than 0.7 g is a common element while straight trajectories prior to the event 
and dry road condition reduce the link between near crashes and crashes.  

Another dimension of safety on links is run-off-road crashes. These crashes are usually 
single vehicle and occur in high-speed locations with high levels of severity consequent on the 
crash. Mak and Sickling (2003) developed a simulation program to investigate these crashes 
called the Roadside Safety Analysis Program. The model is based on the encroachment 
probability approach. The simulation model uses roadway and traffic information to estimate the 
expected encroachment frequency along particular highway elements. It uses data on tire tracks 
in medians and road sides collected by Cooper (1980) to develop encroachment probability. The 
road and traffic conditions are then used to convert this to frequencies. The crash prediction 
model assesses the encroachments that will result in crashes. The model looks at the 
encroachment angle, vehicle size, and vehicle orientation (angle, pitch, yaw, and rollover). 
Roadside features in the path of the vehicle are then determined and if a car will impact with 
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these the characteristics of the crash are determined. The severity prediction takes the data on the 
crash and determines a probability of injury based on historical police-reported crash data. 

The explicit modeling of a crash in road safety simulation models is still in the 
development stage. The continuum of crash events provides a strong base for these models but 
the quantification of driver behavior or lack of behavior (no reaction) is an area of further 
research. Existing road safety simulation models can replicate car-following, lane-changing, gap-
acceptance and other general traffic maneuvers. One of the main challenges is the data used in 
the development of most of the models to date does not explicitly include the crash, nor the 
behavior of the driver prior and during the crash. Possibly the next quantum step in these road 
safety simulation models could result from the collection of in-vehicle data, termed the 
naturalistic data set (Dingus et al., 2005; Campbell, 2012). The naturalistic data set is in essence 
the collection of conflict data from inside a vehicle rather than from a fixed position outside the 
vehicle. To collect this data advanced instrumentation (e.g., video cameras, vehicle sensors, 
GPS) are installed in vehicles (Dingus et al., 2005; Campbell, 2012) and used to continuously 
collect data on driver behavior. This gives useful information of driver behavior during the crash. 
A rapidly advancing technology which may also be able to complement field data on road safety 
is the utilization of driver simulators. Like road safety simulation models improved computer 
technology and communication systems has recently increased their ability to replicate driver 
situations. Driver simulators offer the opportunity for creating a virtual environment may be able 
to provide data for the calibration and validation of road safety simulation models. In turn, road 
safety simulation models can be interfaced with driver simulators to create a realistic traffic and 
safety environment within the driver simulator for the study subjects.  
 
 
CONCLUSIONS 
 
This paper reviews developments in the area of road safety simulation models. It focuses on 
stochastic numerical models of traffic behavior and how reliable these are in estimating the level 
of safety on the traffic network. 

Road safety simulation models aim to provide a platform for assessing and predicting the 
safety performance of drivers, vehicles and the transport system. This requires an accurate 
representation of the behavior and character of each of these systems components. The stochastic 
nature of these models requires accurate measures of the variations in behavior of drivers and 
vehicles. These models were first seen in the 1970s when computer technology developed to the 
stage where traffic microsimulation models became a realistic option. Initially, development of 
the models was sporadic since data of crashes was limited and collection techniques were 
cumbersome and time consuming, hence the models never reached commercial use. The most 
recent phase of development started in the early 2000s with many of the models calling heavily 
on developments in traffic simulation models, refining the behavior of drivers, and developing 
Surrogate Safety Measures. Many studies have utilized existing traffic simulation approaches 
and software (VISSIM, 2007; PARAMICS, 2002; AIMSUM, 2007). They calibrate or changing 
parameters to better represent the dynamics of traffic behavior. It has shown that these refined 
traffic simulation models have potential in measuring the level of conflict on parts of the network 
using Surrogate Safety Measures. The Surrogate Safety Measures of conflict correlated well with 
crash statistics. In terms of the measures of performance, traditional Surrogate Safety Measures 
provide insights into the safety. These models represent the state of the art in practical 



Looking Forward, Looking Back on Computer Simulation Models of Safety 135 
 
 

 

application of road safety simulation models to assess the safety of existing and new transport 
system improvements. 

Clearly it is early days; however, there are signs that simulation will become a useful tool 
in analyzing the safety of the traffic system and will add to the conventional wisdom on remedial 
measures of safety. There are however, a number of areas where further work is required: the 
crash as the measure of performance; a study of behavior (or nonbehavior) during crashes; a 
more detailed representation of the driver, vehicle, and conflict situation; and a generalization of 
the models to look at more crash and complex traffic and modal environments.  

New computer, information, and data collection technology are likely to facilitate the 
next stage in the development of road safety simulation models. This will occur in a number of 
areas. New in-vehicle naturalistic data sets are showing increased application in developing the 
models. The increase in this type of data will enable a closer link between crashes and driver, 
vehicle and traffic characteristics. Further, developments in technology are allowing driver 
simulators to improve and develop the models.  
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APPENDIX 
 

Thoughts on Simulation Models 
 

ALEXANDER SKABARDONIS 
University of California Berkeley 

 
 

kabardonis presented his “Thoughts on Simulation” models at the 93rd Annual Meeting of the 
Transportation Research Board as part of the Simulation: Looking Back and Looking Ahead 

workshop sponsored by the Committee on Traffic Flow Theory and Characteristics (AHB45) and the 
Joint Subcommittee on Simulation [AHB45(1)]. This was in celebration and commemoration of the 
committee’s 50th Anniversary. Skabardonis framed his remarks around a similar presentation 
entitled “Simulation Models: State of the Art” that he had presented at a simulation workshop at the 
81st Annual Meeting in 2002. Skabardonis first pointed out that we have come a long way: there is 
no longer a need to ask the same questions as we did in 2002, but there are new sets of questions and 
challenges that lie ahead. While we still need to focus on the need for high-quality data and the need 
to apply simulation tools appropriately and systematically, we now have more than 80 simulation 
models available to us along with excellent graphical capabilities and a wide range of strengths, 
weaknesses, and challenges. We still face a wide range of issues, including ways of interpreting 
model output, calibration, and alternatives analysis. Skabardonis concluded with a list of do’s and 
don’ts and looks forward to the next 50 years in the simulation field. 
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The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars 
engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to 
their use for the general welfare. On the authority of the charter granted to it by the Congress in 1863, the 
Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. 
Ralph J. Cicerone is president of the National Academy of Sciences.  
 
The National Academy of Engineering was established in 1964, under the charter of the National Academy of 
Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the 
selection of its members, sharing with the National Academy of Sciences the responsibility for advising the 
federal government. The National Academy of Engineering also sponsors engineering programs aimed at 
meeting national needs, encourages education and research, and recognizes the superior achievements of 
engineers. C. D. (Dan) Mote, Jr., is president of the National Academy of Engineering. 
 
The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services 
of eminent members of appropriate professions in the examination of policy matters pertaining to the health of 
the public. The Institute acts under the responsibility given to the National Academy of Sciences by its 
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