Measuring Urban Form and Walkability in Rural Communities

Lucy Gibson Smart Mobility, Inc.

Research Activities

- "Obesity and the Built Environment"
 - Study of over 2,000 students in 48 schools in VT and NH
 - Evaluated walkability for schools and residence locations
- "NETI Rural Transportation Issues Survey"
 - Over 3,500 survey respondents in VT, NH and ME
 - Evaluated the built environment for walkability, accessibility, for residences and communities

Rural Public Transit Ridership Factors

- Accessibility to trip origin and final destination
- Relative cost and convenience compared to other potential options
 - travel time, waiting time
 - Fare cost
- Safety and comfort of transit alternative
 - walking to bus stop,
 - waiting for the bus

The Four D's of the Land Use/ Transportation Connection

- Density (population per square mile)
- Diversity (jobs/housing balance)
- Design (street connectivity)
- Destinations (accessibility)

Density

Ratio of Jobs to Households by Census Tract, 2000

Source: Census Transportation Planning Package 2000, U.S. Census 2000

Local Scale

Design

Housing within One-Quarter Mile of Commercial Centers for Contrasting Development Patterns in Seattle

Destinations

Four D's in Rural Areas

- Data is more sparse,
- geographic units are very large, and
- settlement patterns can be very heterogeneous

Block Group

A Tale of Two Towns			
Town Wide Data	Swanton	Georgia	
Population	6,415	4,480	
Population Density	128	111	

Refined 3D's GIS Site Specific Analysis		
Applied to Area I kilometer radius from school		
Population	1,463	77
Households	894	23
Intersections	32	7

Owens et al. International Journal of Health Geographics 2010, **9**:8 http://www.ij-healthgeographics.com/content/9/1/8

METHODOLOGY

Open Access

Smart density: a more accurate method of measuring rural residential density for health-related research

Peter M Owens¹, Linda Titus-Ernstoff^{2,3,4}, Lucinda Gibson¹, Michael L Beach^{2,4,5}, Sandy Beauregard¹ and Madeline A Dalton*^{2,3,4}

Intersection Density

Design: Intersection Density

 Even in rural Vermont, some of our communities can meet these guidelines:

LEED® for Neighborhood Development

Iotal Possible Points**	110
Smart Location & Linkage	27
Neighborhood Pattern & Design	44
Green Infrastructure & Ruildings	29

^{**} Certified 40+ points, Silver 50+ points, Gold 60+ points, Platinum 80+ points

(Z)	Innovation & Design Process	6
	Regional Priority Credit	4

^{*} Out of a possible 100 points + 10 bonus points

Figure 1. Clarence Perry's Neighborhood Unit, 1929. Source: Regional Plan Association

Figure 2. A "sustainable" update of Perry's neighborhood unit. Source: Douglas Farr, Sustainable Urbanism

Figure 1. Project site design with 140 eligible intersections per square mile on streets that are not gated

Respondents by intersection density

LEED-ND Category	Description	Count
	Fewer than 90 per square	
Below eligible	mile	2,828
Meets Minimum	Between 90 and 144 per	
eligibility	square mile	421
	Between 144 and 300 per	
Meets LEED ND Target	square mile	366
Extra points for	More than 300 per square	
connectivity	mile	15

Respondents by transit supportiveness

Land Use Characteristics	Transit Implications	Neighborhood HH Density (hh/sqmi)*	Count
Rural/ Exurban, 3+ acre lot rural	Paratransit marginal	Less than 200	1,763
Semi-rural, 0.6 to 3 acre lot semi-rural	Paratransit only	200 to 1,200	1,256
Suburban or Village density (2 to 6 units per acre)	Lower Frequency Fixed Route Bus	1,200 to 2,400	360
Walkable/Urban density (6 to 12 units)	High Frequency Fixed Route Bus	2,400 to 4,800	133
Over 12 units per acre	Premium Bus or Rail	Over 4,800	36

[•]These ranges are adjusted to reflect the difference between gross density and net density, which reflects land not consumed by roads, •utilities, etc. in urban areas.

Diversity

 Only town-wide statistics available for rural areas, but can be combined with more local measures to get a 3'ds surrogate.

Table 1. Points for diverse uses within 1/4-mile walk distance, by time of occupancy

Diverse uses	Percentage occupancy of total square footage	Points
4–6	20%	1
7–10	30%	2
11–18	40%	3
≥ 19	50%	4

Jobs/Housing Balance in Vermont

Destinations

Walk Model Based on 3 D's (Density, Diversity, Design)

Conclusions

- Land Use and the Built Environment affects transportation in rural and urban areas alike.
- Most methods to model, measure and predict were developed for urban settings.
- Different scales and heterogeneity of rural areas requires some adaptation of these methods, but the basic principles still apply.

How can we use these methods?

- Research, modeling and analysis of different land use patterns and travel behavior.
- Transit planning: identifying most accessible locations.
- Land Use Policy: identify locations with greatest walkability.

Thank You!

Questions?