Concurrent Monitoring, Analysis, and Visualization of Freeway and Arterial Performance for Recurring and Non-recurring Congestion

For Presentation at the NATMEC 2010 Session on: Congestion Monitoring and Analysis: Tools and Techniques, Part 2 Tuesday, June 22, 2010 – Seattle, WA

Prepared by

Dr. Robert M. Winick, Motion Maps, LLC -- RMWinick@motionmaps.com Nikola Ivanov, CATT Lab, U MD -- ivanovn@umd.edu

Overview

- I-95 Corridor Vehicle Probe Project (VPP) data being used to monitor and analyze congestion
- Most work has dealt with non-recurring congestion; newer work on recurring congestion
- Focus on visualization tools and techniques
- Give 3 examples using the Regional Integrated Transportation Information System (RITIS)
- Integrating data on arterials along with freeway performance is presenting new challenges
- Presentation blends these two congestion monitoring and analysis considerations

I-95 Corridor Coalition VPP Data

- RITIS is being used as a database management system for the VPP data
- Focus on current time use of the data; use of the archived data is now starting to happen
- Emphasis has been on the selected freeways; but there is limited coverage
- Coverage on arterials is even more limited

motion maps

 INRIX has more coverage, but not part of the purchase

RITIS Integrates many Data Sources

- Data from flow detectors of many public agencies
- Data from other private sources (i.e. NAVTEQ, SpeedInfo)⁵⁵
- Focus on incident related Data
- Weather related Data
- Transit related data beginning to be worked on too

ersity of Maryland CATT Lab © 2008, 2009

Contact Us | Report a Bu

RITIS has its own Representations

- "Speed Map" displays with some ability to tailor break-points
- Incident icons
- Overlays of weather events
- Incident "time-lines"
- Distance vs. speed "contour" displays from the archived data
- Other visualization
 tools
 motion maps

RITIS has its own Representations

- "Speed Map" displays with the ability to tailor break-points
- Incident icons
- Overlays of weather events
- Incident "time-lines"
- Distance vs. speed "contour" displays from the archived data
- Other visualization
 tools
 motion maps

RITIS has its own Representations

- "Speed Map" displays with the ability to tailor break-points
- Incident icons
- Overlays of weather events
- Incident "time-lines"
- Distance vs. speed "contour" displays from the archived data
- There also are other visualization tools motion maps

Speed Map Visualizations – Users can Select 1 of 4 Speed-Range-Scales

- "Speed": current speed of the segment in MPH
- "Comparative Speed": current speed of the segment compared to the average speed recorded for that hour of the day and day of week (better shows non-recurring congestion)
- "Congestion": current speed of the segment compared to the calculated speed of traffic on that road when there is no congestion (reference speed) (better for recurring congestion)
- "Average Congestion": The average speed compared to the calculated speed of traffic on that road when there is no congestion (reference speed) *motion* maps

Impression of "congestion" varies with Speed-scale

"<u>Congestion</u>" current speed of segment vs. calculated speed of traffic on that road when there is no congestion (ref. speed)

motion maps

"<u>Comparative Speed</u>" current speed of the segment vs. the average speed recorded for that hour of the day and day of week

"<u>Average Congestion</u>" average speed vs. calculated speed of traffic on that road when there is no congestion (ref. speed)

Arterials: Further refinement is needed

- Red-Yellow-Green speed map displays, based on freeways; often from lane-occupancy data from traffic flow detectors at fixed-locations
- **Probe-based speed** generally use TMC coded links used by in-vehicle navigation systems
- **TMC links** seem better suited for representing flow on freeways than on arterials with interrupted flow
- Arterial Level of Service understanding ways that performance of arterials is usually described can lead to a better representation using the available data
- Average Speed on Arterials concerned that need to use a different speed-scale than used for freeways
- Not just a VPP-based Concern: speed ranges used for fixedlocation speed detectors on arterials have the same issue

Comparing Freeway with Arterial Level of Service

- Freeway LOS uses free flow speeds
- Four curves; six LOS categories
- Uninterrupted flow conditions
- Speed, volume, flow relationships

From Exhibit 23-3 Speed-Flow Curves for Basic Freeway											
Segme	Segments (Source: Highway Capacity Manual (2000))										
	Urban	Urban Freeways "Speed-Flow Curves" by Free Flow Speed									
Typical Free Flow Speed	80 mph 70 mph 65 mph 60 mph										
Level of Service		Average Travel Speed (mph)									
Α	>	68	>	60	>	55	>	50			
В	56	68	50	60	45	55	40	50			
С	44	56	40	50	35	45	30	40			
D	32	44	30	40	30	35	24	30			
E	20	32	20	30	20	30	18	24			
F	=<	20	=<	20	=<	20	=<	18			

- Arterial LOS uses free flow speeds
- Four classes; six LOS categories
- Interrupted flow conditions
- <u>Art. LOS about half freeway speeds</u>

Based on Exhibit 15-2 Urban Street Level of Service by Class

(Source: Highway Capacity Manual (2000))										
Class	I		-			III	IV			
Free Flow Speed Range	55 to 45 mph		45 to 35 mph		35 to 30 mph		35 to 25 mph			
Typical Free Flow Speed	50	mph	40	mph	3	5 mph	30 mph			
Level of Service		Average Travel Speed (mph)								
Α	>	42	^	35	>	30	>	25		
В	34	42	28	35	24	30	19	25		
С	27	34	22	28	18	24	13	3 19		
D	21	27	17	22	14	18	9	13		
E	16	21	13	17	10	14	7	9		
F	=<	16	=<	13	=<	10	=	< 7		

Comparing Fwy-Art as a Percent of Free Flow Speed

- Freeway LOS uses free flow speeds
- Four curves; six LOS categories
- Uninterrupted flow conditions
- Speed, volume, flow relationships

From Exhibit 23-3 Speed-Flow Curves for Basic Freeway												
Segments (Source: Highway Capacity Manual (2000))												
	ι	Urban Freeways "Speed-Flow Curves" by Free Flow Speed										
Typical Free Flow Speed		80 mph 70 mph 65 mph 60 mp								mph		
Level of Service		Average Travel Speed (mph)										
Α		>	68		>	60		>	55		>	50
В		56	68		50	60		45	55		40	50
С		44	56		40	50		35	45		30	40
D		32	44		30	40		30	35		24	30
E		20	32		20	30		20	30		18	24
F		=<	20		=<	20		=<	20		=<	18

Level of Service	Average Rolling Delay Relative to Free Flow Speed (as a Percent)								
Α	> 85%	> 86%	> 85%	> •83%					
В	70% 85%	71% 86%	69% 85%	67% 83%					
С	55% 70%	57% 71%	54% 69%	50% 67%					
D	40% <mark>55%</mark>	43% 57%	46% 54%	<mark>40% 50%</mark>					
E	25% 40%	29% 43%	31% 46%	30% 40%					
F	=< 25%	=< 29%	=< 31%	=< 30%					

motion maps

- Arterial LOS uses free flow speeds
- Four classes; six LOS categories
- Interrupted flow conditions
- Similar percent of Free Flow Speed

Based on Exhibit 15-2 Urban Street Level of Service by Class

(Source: Highway Capacity Manual (2000))													
Class	I				I						IV		
Free Flow Speed Range	5	55 to 45 mph			45 to 35 mph			35 to 30 mph			35 to 25 mp		
Typical Free Flow Speed		50 mph			40 mph			35 mph		30 mph		mph	
Level of Service		Average Travel Speed (mph)											
Α		>	42		>	35		>	30		>	25	
В		34	42		28	35		24	30		19	25	
С		27	34		22	28		18	24		13	19	
D		21	27		17	22		14	18		9	13	
E		16	21		13	17		10	14		7	9	
F		=<	16		=<	13		=<	10		=<	7	

Level of Service	Average Rolling Delay Relative to the Typical Free Flow Speed (as a percent)								
Α	> 84%	> •88%	> 86%	> .83%					
В	68% 84%	70% 88%	69% 86%	63% 83%					
С	54% 68%	55% 70%	51% 69%	43% 63%					
D	42% 54%	43% 55%	40% 51%	30% <mark>43%</mark>					
E	32% 42%	33% 43%	29% 40%	23% 30%					
F	=< 32%	=< 33%	=< 29%	=< 23%					
	4.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.8	4.8					

Example #1: I-495 (Freeway) Westbound diverts to MD 355 (Class III Arterial) northbound

- Incident on I-270 NB backs up traffic onto I-495 and traffic diverts to the arterial MD 355 NB
- I-270 is not part of the data set but I-495 and MD 355 to the north of Randolph Road are
- Graphics that follow show the back-up on I-495 and then the congestion on MD 355 due to the diverted traffic
- Example to better understand how arterial speed ranges differ from freeway speed ranges

Incident in PM Peak on I-270 NB affects traffic on I-495 Outerloop (not usual PM Peak)

Example for the same time period for the week before shows mainly recurring congestion

Example #2: I-95 (Freeway) Southbound compared to US 29 (Class I and III Arterial) Southbound

- Clearing of an incident near beginning of AM peak on I-95 SB was delayed to after the peak
- Traffic on parallel arterial SB US
 29 during the incident as well as the clearance was affected
- Archived speed data can be used to help distinguish between recurring and nonrecurring congestion

motion maps

 Also help better understand how arterial speed scales relate to but differ from freeway speeds

Incident in AM Peak carries over to Mid-day and affects traffic on parallel Class I Arterial of US 29

Arterial recorded & reference speed-scales show recurring congestion; % Avg. Speed needed to show Incidents Impacts

Example for the same time the week before shows mainly recurring congestion; nonrecurring congestion of a minor incident

Example #3: I-95 (Freeway) Southbound compared to US 29 (Class I and III Arterial) Southbound

- Another example with the second freeway-arterial on 6-8-10
- Multi-car crash at about 6:33 AM lasted for 75 min and jammed I-95 southbound past MD 32
- By happenstance I was able to observe a GPS trajectory on US 29 starting at about 9:00 AM
- The trip on US 29 took 40 min 45 sec for the 13.9 miles, an average speed of 20.5 mph
- This can also be used to better understand arterial displays

Example #3: Direct impact of the incident on traffic on I-95 (Freeway) southbound

Use Example to Fine-Tune Arterial Representation • Contours on left uses speed scale from Example #2

23

25

GPS Sample Contrasted to Archived Data for Date

Summary and Conclusions

- 1. Scales of speed ranges used for speed maps and graphs of freeway congestion seem appropriate
- 2. Spatial-Temporal resolutions used for freeways helps to show recurring and incident related congestion
- **3.** Arterial data is starting to become more widely available
- 4. Research shows that it would be desirable to account for speed ranges for arterials that have slower speeds for congested conditions
- 5. Interrupted flow on arterials results in both rolling queues and standing queues at traffic signals
- 6. While link average speeds can be appropriate, also need a more congruent spatial-temporal resolution a more even spacing of node-to-node to better match arterial speeds
- 7. More research on this is needed

