TPF-5(171) Evaluation of Non-intrusive Traffic Detection Technologies – Phase III

NATMEC Conference - June 24, 2010

Project Management Team

Jerry Kotzenmacher, Mn/DOT
Steven Jessberger, FHWA
Erik Minge, SRF Consulting Group
Scott Petersen, SRF Consulting Group

Participating Agencies

- Connecticut, Anne-Marie
 McDonnell
- Florida, Steve Bentz/Richard Reel
- Georgia, Scott Knight
- Hawaii, Goro Sulijoadikusumo
- Idaho, Jack Helton
- Illinois, Rob Robinson
- Iowa, Troy Jerman

- Minnesota, Jerry Kotzenmacher
- Mississippi, Mike Stokes
- Montana, Tedd Little
- New York, Kurt Matias
- Ohio, Lindsey Pflum/Anthony Manch
- Texas, Robert Wheeler
- Wisconsin, Susie Ford

Technical Advisory Committee

- Emphasis on heavy congestion in urban areas.
- Strong interest in examining volume, speed and class (axle and length-based). Some interest in travel times, turning movements, and bike/pedestrian.
- Examine various weather conditions and different mounting configurations.
- Evaluate specific sensors of interest.
- Do not: evaluate prototype sensors, emerging travel time technologies (i.e. Bluetooth), solar.

Non-Intrusive Detectors

 Wavetronix Smartsensor HD (Radar)
 GTT Canoga Microloops (Magnetometer)
 Peek AxleLight (Laser)
 TIRTL (Laser)
 Miovision (Video)

Baseline

- Piezo-Loop-Piezo (PLP)
 - Installed six 11-foot piezos
 - Provide volume, speed and axle-based classification
- Manual observation to verify axle-based classification
- Manual frame-by-frame video observation

NIT Phase 3 – Video Length Ground Truthing

Classification

Table 7. FHWA 13 Class Axle-Based Classification Scheme			
Class Bin	No. of Axles	Vehicle Description	
1	2	Motorcycles	
2	2	Passenger Vehicles	
3	2	Other 2-axle, four tire single unit vehicles	
4	2 or more	Buses	
5	2	2-Axle, 6-Tire, Single Unit Trucks	
6	3	3-Axle Single Unit Trucks	
7	4 or more	4-Axle Single Unit Trucks	
8	3,4	4 or fewer Axle Single-Trailer Trucks	
9	5	5-Axle Single-Trailer Trucks	
10	6 or more	6 or more Axle Single-Trailer Trucks	
11	4,5	5 or fewer Axle Multi-Trailer Trucks	
12	6	6-Axle Multi-Trailer Trucks	
13	7 or more	7 or more Axle Twin Trailer Semi Trucks	

Table 8. Vehicle Length-Based Classifications

Vehicle Class	Vehicle Length	Vehicle Class
Motorcycle	0 to 7ft	1
Passenger Vehicles (PV)	7 to 22 ft	2, 3
Single Unit Truck (SU)	22 to 37 ft	4-7
Combination Trucks (MU)	Over 37 ft	8-13

Detector Placement Options

Pole Guardrail

Stand-Alone/Flexible

Research Findings

Wavetronix SmartSensor HD
GTT Canoga Microloops
PEEK AxleLight
TIRTL
Miovision

Wavetronix SmartSensor HD

- Installed 30' offset, 28' high
- Volume error 1.6 percent
- Speed error less than 1 mph
- Vehicle length absolute average error 1.6 feet for passenger vehicles and 2.8 feet for large trucks

 Slow moving trucks caused 20 percent undercounting in occluded lanes

Volume

	LOS A-D (>50 mph)	LOS E-F (20-50 mph)	LOS F (<10 mph)
Non-occluded lane	-1.3%	-1.8%	-10%
Occluded Lane	-3%	-11%	-21%

Speed	Error	
60 mph	-0.3	
50 mph	0.5	
40 mph	0.8	
30 mph	-0.8	
20 mph	-1.1	
10 mph	0.2	

Cumulative Volume - Lane 1 Per-Vehicle Speed - Lane 1 7000 6000 5000 Cumulative Volume Per-Vehicle Speed 50 4000 40 ADR (Unverified) 3000 Wavetronix HD 30 2000 20 10 1000 11:00 11:30 15:30 10.30 12:00 12:30 13:00 15:00 10:30 11:00 11:30 12:00 12:30 13:00 13.30 14.00 14-30 15:00 15:30 Time of Day Time of Day

SRF CONSULTING GROUP, INC.

Baseline (video) vs. Sensor Vehicle Length

GTT Canoga Microloops

- Installed in two conduits beneath roadway
- Volume accuracy typically within 2.5 percent
- Aggregate speed less than 1 mph error
- Reported vehicle length with an absolute average error of 3.7 feet for passenger vehicles and 4.0 feet for large trucks
- Permanent installation required

GTT Canoga Microloops

Volume

		GTT	Percent	Absolute Percent
	Baseline	Microloops	Error	Error
Lane 1	663	680	2.6%	2.6%
Lane 2	530	510	-3.7%	3.7%
Lane 3	470	475	1.1%	1.1%
Total	1663	1665	0.1%	2.5%

Speed

				The second s
		GTT		Absolute
	Baseline	Microloops	Error	Error
Lane 1	57.8 mph	57.5 mph	-0.3 mph	0.3 mph
Lane 2	60.9 mph	60.9 mph	-0.0 mph	0.0 mph
Lane 3	64.0 mph	63.2 mph	-0.8 mph	0.8 mph
Average	60.9 mph	60.5 mph	-0.4 mph	0.4 mph

GTT Canoga Microloops

Baseline (Video) vs. Sensor Vehicle Length

SRF CONSULTING GROUP, INC.

7.9-foot motorcycle measured at 0 feet long by Canoga Microloops.

35.3-foot SUV pulling trailer measured at 17 feet long by Canoga Microloops.

42-foot bus measured at 34 feet long by Canoga Microloops.

25.1 foot truck measured at 14 feet long by Canoga Microloops

Figure 14. Selected Vehicles That Canoga Microloops Measured Length Less Than Actual Length

Axle-Based Detectors

 Issue with grouping vehicles (less than 45' gap) due to lack of presence detector

Example: Semi 2S2
Axle Spacing 1: 6-26'
Axle Spacing 2: 8-45'
Axle Spacing 3: 2.5-20'

Recommend change third axle spacing from 2.5 to 6 feet

Vehicles would be put in a default class

- Install on guard rail or similar infrastructure
- Bidirectional setup possible, but requires significant iterative setup process
- Many steps required to deploy and calibrate the sensor
- Axle-based detection with sensors on one side of the roadway
- Permanent deployment possible with speciallydesigned cabinet

- Axle-spacing accuracy within 5 percent
- Speed values were consistently 2 mph lower than baseline.
- The raw sensor data typically undercounted by 5.4 percent
- Data prone to classification errors due to grouped tailgating vehicles
- Vendor recommends 20 mph minimum speed

Portable Application

Portable Application Traffic Control

TIRTL

- One set of sensors covered four lanes of bidirectional traffic on a divided roadway
- Portable deployment requires significant traffic control on both sides of the roadway
- Permanent deployment possible by placing the sensors in a specially-designed cabinet
- Volume accuracy was 3.8 percent
- Speed and axle-spacing data was typically within 2 percent

TIRTL

Volume

TIRTL

Classification

Axle-Based Sensor Comparison Axle-Spacing Accuracy

AxleLight

TIRTL

SRF CONSULTING GROUP, INC.

Miovision

- Intersection turning movement counts
- Volume accuracy matched ability to manually verify
- Classification by car, medium truck, heavy truck, bus and RV
- No speed data or per-vehicle records
- Video files are submitted to the vendor for remote processing on a per-hour basis
- Quick setup

Miovision

I-394 volume test Error less than 2 percent

Miovision

Intersection turning movement counts
 Error less than 0.5% for each movement
 2 hour test, 4-6 pm

Project Findings

- Weather had minimal effect on Wavetronix and Microloops
- Axle-based sensors not recommended during heavy rain
- Axle-based sensors not effective in congested conditions (<20 mph)
- Occlusion an issue for most sensors
 - Error increases with congestion
- Sensor setup and calibration time is important

Project Website: portal.srfconsulting.com/NITPhase3

Project Contacts: jerry.kotzenmacher@dot.state.mn.us eminge@srfconsulting.com