

How Can Transportation Decisions Be Made When Standards Are Not Meaningful?

- What does it mean when peak hour volume to capacity (v/c) ratios far exceed 1.0?
- What is the difference between a peak hour v/c ratio of 1.3 and 1.6? How much worse is congestion on the facility?
- A measure of congestion "duration" is needed to evaluate networks in this condition

Decision Makers Insight Into the Reality of Congestion

If financial constraints, land use forecasts, and policies on facility sizing = severe peak hour failure, how many hours of the day are congested?

Current Regional Travel Demand Models Are Not Built To Predict Congestion "Spreading"

- Trips are developed for daily trip purposes
- Peak period trip tables are built with fixed time-of-day factors
 - Portland Metro Model Time Periods
 - AM Peak (7AM-9AM)
 - Midday Peak (noon-1PM)
 - PM Peak (4PM-6PM)
- Network congestion affects trip distribution, mode choice, and assignment, but excess demand is not forced into shoulder periods

Hours of Congestion 6/22/10

Hours of Congestion (HOC) Approach: Data Mining to Build a Travel Demand Model Post-Processing Tool

Data Mining Sources

- ▶ PORTAL Data (Database of Freeway Loop Detectors) 4 yrs of data
- ▶ ATR Data (Database of Permanent Count Recorders) 4 yrs of data
- ▶ Roadway Tube Counts (Sample Daily Hourly Profiles) 100+ data points
- ▶ Bus GPS Records (Database of Corridor Travel Speed) 6 weeks of data

Data Mining Must Include Data Cleaning

- Data Screening Process
 - Identify Locations of Interest
 - Filter to General Purpose Lanes
 - Remove weekends and holidays
 - Review data quality diagnostics and filter out "suspect" data

455 Valid Detectors

Step #1: Can Daily Traffic Volume Be Predicted With Peak Period Data Points?

Predicted With <u>Daily</u> and <u>Peak Period</u> Data Points?

Result: A Tool That Can Estimate and Graphically Display Hourly Profiles

Step #3: Accounting For Peak "Spreading"

Table 4: PM Peak Spreading Factors

2 – 3 PM	3 – 4 PM	4 – 5 PM	5 – 6 PM	6 – 7 PM	7 – 8 PM
16.0%	17.4%	25.0%	20.1%	16.0%	5.0%

Final Estimation Tool: Duration of Congestions Adds a New Dimension to Congestion Discussions

The Hours of Congestion Tool Helps Identify and Assess Locations for Operations Improvements

Hours of Congestion Provides a Comparison to Known Nationwide Severely Congested Corridors

Location	Corridor	Year	Hours of Congestion per Weekday
Portland, OR	I-5 south of Columbia River	2009	4 to 5
Portland, OR	I-5 between I- 405 and I-84	2035	12 to 14
New York, NY	1-95	2009	15
Chicago, IL	I-90/I-94	2009	14
Los Angeles, CA	US-101	2009	14

Source 2009 Data: INRIX National Traffic Scorecard 2009 Annual Report

Utilizing Data Mining to Enhance Travel Forecasts Improves Regional Transportation Discussions

- Hours of Congestion provides a duration measure for congested urban networks
- Hours of Congestion adds a new dimension to understanding key regional bottlenecks
- Hours of Congestion helps identify and assess locations for operations improvements
- Hours of Congestion provides a comparison to known nationwide severely congested corridors