A Dual-Purpose Bridge Health Monitoring and Weigh-In-Motion System

NATMEC June 2010

Anne-Marie McDonnell, P.E., Connecticut DOT Richard Christenson, Ph.D., University of CT Susan Bakulski, University of CT

OVERVIEW

- CT History of Bridge Health Monitoring & Weigh-In-Motion Research
 - -Preliminary Test Report NATMEC 2006
 - -Short -Term Bridge Monitoring System
- Novel BWIM Method (Dr. Christenson)
- Feasibility Test
 - -Field Data Collection, November 2008
 - **—Data Analysis & Results 2009**
- Research Project : CT SPR-2265
 - -Scope of Work
 - -Status June 2010

Short-Term Bridge Monitoring System

- Wireless Structural Testing System (STS-WiFi)
 - 8 strain gages; 2 nodes; 1 base station

Christenson's BWIM Method Theory

 Given: Area under strain is proportional to GVW (Ojio, ICWIM3)

 2nd time derivative of strain indicates when axles pass over center of bridge

FEASIBILITY TEST

Test Site

Typical Highway Bridge in Connecticut
I-91 Northbound at Exit 19: Meriden, CT

TEST BRIDGE – I-91 (NB)

- Built in 1964: 3 Lanes
- Single-Span, Simply-Supported
- Steel Girders with Composite Deck
- 85 feet in length, skew angle: 12 degrees
- Traffic ADT: 57,000 veh/day & 9% Trucks

Street View

Half-Mile Prior to Weigh Station

Weigh Station

- Operated by CT Department of Public Safety
- Three static-platform scales
 Scales were calibrated exactly one week prior to testing (± 20 lb)

FIELD DATA COLLECTION November 20, 2008

Installed Wireless Bridge Monitoring System

8 strain gages, mounted at mid-span on the 6 inside girders

Strain Sensors

- 8 strain gages, mounted at mid-span on the 6 inside girders
 - Six 3" above the bottom flange
 - Two 3" below the top flange
 (on the two girders under lanes 1 and 2)

Measurements At Bridge

- Strain gages (transducers) used to capture measurements of bridge response to traffic loading at the bridge
- Data captured at 100 Hz sample rate (0.01 sec) for 5 minute intervals
- Traffic stream captured on video at bridge when weigh station "OPEN" sign lighted

Data Acquisition - Bridge

 Truck passing events were identified manually flagged in data records and synchronized with video

 Measured trucks were directed into weigh station (next exit)

Syncronization

Data Acquisition – Weigh Station

- <u>Static Weight Records</u> recorded manually and on video in scale house (GVW and axle weights)
- <u>Vehicle Lengths</u> acquired from still-frame photos taken across from scales
- Video verification of vehicle sequence acquired across from scale

Control Vehicle : 5-Axle Truck

Gross Vehicle Weight	67,420 lbs
Axle Weight (1)	10,020 lbs
Axle Group Weight (2 & 3)	27,040 lbs
Axle Group Weight (4 & 5)	30,360 lbs
Length (first to last axle)	44.6 feet
Axle Spacing (1-2)	11.8 feet
Axle Spacing (2-3)	4.4 feet
Axle Spacing (3-4)	24.4 feet
Axle Spacing (4-5)	4.1 feet

Data Analysis

5-Axle Truck of Known-Weight

Total of 22 passes over the bridge Example Output:

4 passes over lane 1 at 55 mph

Christenson's BWIM Theory

- Area under strain is proportional to GVW (Ojio, ICWIM3)
- 2nd time derivative of strain indicates when axles pass over center of bridge
- Speed is critical calculation

Actual Truck Traffic (125 sec sample)

Bridge Weigh-In-Motion (BWIM)

RESULTS

BWIM: Test Truck in Lane 1

PERCENT DIFFERENCE (Based on 10 Passes)	Mean	Std Dev	<e>_{0.95}</e>
GVW [%]	0.00*	2.45	[-6.31; 6.31]
Axle Weight (<i>P</i> ₁) [%]	31.88	44.91	[-83.59; 147.36]
Axle Group Weight (<i>P</i> ₂ + <i>P</i> ₃) [%]	13.23	15.90	[-27.64; 54.11]
Axle Group Weight ($P_4 + P_5$) [%]	-17.79	16.58	[-60.43; 24.85]
Wheelbase (sum of <i>d_i</i>) [ft]	2.49	2.69	[-1.35; 2.88]
Axle Spacing (d ₁) [ft]	0.16	1.15	[-0.85; 0.95]
Axle Spacing (d ₂) [ft]	1.35	0.79	[-0.22; 1.04]
Axle Spacing (d ₃) [ft]	0.52	1.25	[-0.82; 1.14]
Axle Spacing (d_4) [ft]	0.46	2.53	[-1.85; 2.13]

* Test Truck Data Used to Determine Calibration Factor

BWIM: Test Truck in Lane 2

Percent Difference (based on 5 passes)	Mean	StdDev	<e>_{0.95}</e>
GVW [%]	0.01*	5.91	[-15.19; 15.20]
Axle Weight (<i>P</i> ₁) [%]	9.79	69.83	[–169.75; 189.32]
Axle Group Weight (<i>P</i> ₂ + <i>P</i> ₃) [%]	-10.62	61.25	[–168.11; 146.86]
Axle Group Weight ($P_4 + P_5$) [%]	9.27	52.54	[-125.81; 144.35]
Wheelbase (sum of <i>d_i</i>) [ft]	5.91	2.92	[-1.64; 13.45]
Axle Spacing (<i>d</i> ₁) [ft]	0.23	0.92	[-2.17; 2.62]
Axle Spacing (d ₂) [ft]	1.84	1.02	[-0.82; 4.46]
Axle Spacing (d ₃) [ft]	-3.71	8.37	[-25.26; 17.81]
Axle Spacing (d_4) [ft]	0.95	1.84	[-3.77; 5.64]

Results From Traffic Stream

Range of Truck Traffic Weights

122 trucks from the traffic stream

BWIM Percent Difference from Static GVW - Trucks from the Traffic Stream

Lane	# Trucks	Mean	Std Dev	< E > _{0.95}
1	109	-1.94	12.78	[-27.28; 23.39]
2	8	6.23	19.72	[-39.23; 51.70]

BWIM Percent Difference from Static GVW 5-Axle Trucks from the Traffic Stream

Lane	# Trucks	Mean	Std Dev	< E > _{0.95}
1	64	-1.13	8.22	[-17.52; 15,26]
2	5	14.18	20.31	[-38.03; 66.39]

Feasibility Results

- Applied novel approach to calculate speed and axle spacing and weights.
- Demonstrated Non-Intrusive Bridge Weigh-In-Motion using only Strain Measurements applied to a singlespan steel girder bridge can produce gross vehicle weights, axle weights and speed.
- Seek improvements for acquisition of axle weights and speed data.
- Seek improvements for lane and multiple vehicle event configurations.
- Report Available Online

Acknowledgement

Great cooperation from and between ConnDOT, UCONN, CT State Police & FHWA.

CT - State Research Project: SPR- 2265

"Development of a Dual-Purpose Bridge Health Monitoring (BHM) and Bridge Weigh-In-Motion (BWIM) System For A Steel Girder Bridge"

Research Project Key Elements

BHM integrated and focused on BWIM data collection abilities >System development Field Deployment **Continuous Data Collection** > Periodic Validation Assess system robustness and stability over time

Sensors for Meriden Bridge

- Strain
 - -Vibrating Wire Strain Gage
 - -Quartz Strain Transducer
- Accelerometer(s)
 - –Integrated Circuit Piezoelectric (ICP)
 - -Variable Capacitance
- Temperature

 Surface Mount RTD

Innovative Sensor Technology: Quartz Strain Transducers

- Will allow for high sensitivity strain measurements
- Frequency range down to 0.1 Hz
- Powered in the field from Compact Data Acquisition (cDAQ) using Range Capacitor and Impedance Converter

Innovative Sensor Technology: Capacitive Accelerometers

- Will allow for constant acceleration measurements
- Frequency Range: 0-250 Hz
- Powered in the field from Compact Data Acquisition Unit using DC power supply module and analog input module

Proposed Sensor Layout

Installation – Summer 2010

PI's Contact Information

Anne-Marie McDonnell Connecticut Department of Transportation annemarie.mcdonnell@ct.gov (860) 258-0308

> Dr. Richard Christenson University of Connecticut rchriste@engr.uconn.edu (860) 486-2270