DOES ONE SIZE FIT ALL?

CONSIDERATIONS IN ESTABLISHING A SPEED DATA COLLECTION PROGRAM AND DATABASE

Paul Stein Data Presentation Specialist Chaparral Systems Corporation Santa Fe, NM Paul@Chapsys.com

Before starting data collection Know Why are you collecting the data

Some common reasons:

- The Feds required it for 55 compliance and we just kept on collecting it
- WIM and Class counts create it so why not keep it
- To study specific issues
 - Establish speed limits
 - Measure speed limit compliance
 - Establish enforcement programs
 - Determine effects on speed of predefined variables
 - Congestion
 - Lane closures
 - Enforcement Operations

Your Research needs defines your collection parameters

- How long/often do you need to collect data
 - Continuous
 - Short duration
- For what time increments
 - Daily
 - Hourly
 - Quarter hour
- For what spatial element
 - Total roadway
 - By direction
 - By Lane

Metadata needs to determine validity/quality of speed data

- Type of sensors used
- Layout of sensors
- Speed limit
- Enforcement level
 - None or minimal
 - Know speed trap
 - Advertised enforcement target area

Metadata continued

Incident level

- Free flowing
- Construction impact
- Weather impact
- Special event impact
- Other incident

Binning Data

- Does one bin scheme meet all needs?
 - <u>Probably Not</u>
 - Single scheme simplifies the effort
 - BUT
 - It may not meet the needs for details at either the low end or high end of the speed spectrum
 - It is arbitrary
 - And in life one size seldom fits all

Considerations in defining a Bin Scheme

- What are the generally expected minimum and maximum speeds
- What is the standard range for a bin
- A formula for establishing bins might be based on speed limit and the maximum number of bins desired to be collected and a standard range for a bin.
 - As an example using a speed limit, 15 bins and 5 mph increments

	Speed Limit 45		Speed Limit 55		Speed Limit 65		Speed Limit 70		Speed Limit 75		
BIN	loval	hival									
1	0	10	0	20	0	30	0	35	0	40	
2	11	15	21	25	31	35	36	40	41	45	
3	16	20	26	30	36	40	41	45	46	50	
4	21	25	31	35	41	45	46	50	51	55	
5	26	30	36	40	46	50	51	55	56	60	
6	31	35	41	45	51	55	56	60	61	65	
7	36	40	46	50	56	60	61	65	66	70	
8	41	45	51	55	61	65	66	70	71	75	
9	46	50	56	60	66	70	71	75	76	80	
10	51	55	61	65	71	75	76	80	81	85	
11	56	60	66	70	76	80	81	85	86	90	
12	61	65	71	75	81	85	86	90	91	95	
13	66	70	76	80	86	90	91	95	96	100	
14	71	75	81	85	91	95	96	100	101	105	
15	76	~	86	8	96	8	101	8	106	∞	
	A										

How Does Tradas© handle multiple speed schemes?

- Each binning scheme is given an ID number
 - Each bin within a scheme is defined by it's lower value, upper value and midpoint
- Add a bin add a scheme definition
- Link/Bind each data file to a bin scheme
- All standard speed statistics can be generated using the volume in a bin and a combination of the lower, upper and midpoint bin values

Advantage of Multiple Bin Schemes

- Researchers can query data based on their specific needs
- Neither low speeds or high speeds are arbitrarily truncated.
- With the example speed bins vehicles exceeding the speed limit by 20mph are in bins 13 - 15

Validity / Quality

- Valid data is data that is assumed to represent actual observed speeds
- All valid data should be included
- Quality measures tend to be subjective
 - Does the data match an anticipated pattern
 - Yes then it is quality for your needs
 - No use the metadata to determine why not
 - If conditions that caused the abnormality can be defined then it is quality data for that condition

Recommendation

- Accept multiple binning schemes
 - Maximizes granularity of the data
 - Allows researcher to query data best suited to meet their needs
- Accept all data that is presumed valid
 - If the related Class or Length data is valid then speed is valid
 - If speed is not valid then related class / length can not be valid
- Flag data that is anomalous

