Department of Civil & Environmental Engineering

Bluetooth Traffic Monitoring Technical Attributes and Applications

NATMEC June 23, 2010

What is Bluetooth?

- IEEE Wireless Data Communication Standard
 - License Free Spectrum ~2.4GHz
 - Cable Replacement Technology
 - Ubiquitous worldwide proliferation
- Where is it found?
 - Cell phones / PDAs / PNDs / MP3 players
 - Laptops / Games / Cameras
- Essential characteristics
 - Three power ranges 100m / 10m / 1m
 - Anonymous ID / Privacy Protection / Voluntary
 - Approximately 1 in 20 sampling rate is the US

Department of Civil & Environmental Engineering

- * Bluetooth signals come from cell phones, PDAs, laptops, GPS, car radios...
- ** Provisional patent received

Department of Civil & Environmental Engineering

Department of Civil & Environmental Engineering

Data from many

Department of Civil & Environmental Engineering

Typical Temporary Deployment of a Bluetooth Sensor

Department of Civil & Environmental Engineering

Conventional Detectors GPS Fleet Tracking

Cell Phone Geolocation Toll Tag Tracking

Bluetooth Traffic Monitoring Advantages

- Privacy guarantees
- Direct Travel Time measurement
- All roadways at any time of day
- Flexibility of deployment
- Validated against ATRs, Toll Tags, and Floating Car
- Ubiquitous worldwide proliferation

Privacy and Legal Issues

- Bluetooth IDs inherently anonymous
 - No user account information
 - Compliant to IEEE standards
 - No packet sniffing
- Federal Rules and State Legislation
 - FCC anti-eaves dropping rules
 - State legislation against use of personal data

Application Potential

- Bluetooth applications:
 - Freeway travel time (VM)
 - Arterial travel time and Performance Measures (M)
 - Traffic signal studies (M)
 - Pedestrian travel time (E)
 - Airports, Evacuation Modeling, Transit
 - O&D studies (R&D)

Ongoing Applications

- Vehicle Probe Project
- Bluetooth Sampling Rate
- Dynamic Message Sign Evaluation Pilot
- Short Term Travel Time Forecast
- Special Event Pedestrian Traffic Monitoring

Vehicle Probe Project

- Validation of Travel Time data provided by INRIX to I-95 member states since July 2008
- Participating states:
 - Delaware
 - Maryland
 - New Jersey (entire limited access road network)
 - North Carolina (entire interstate system)
 - Virginia
 - Pennsylvania

Safety Issues in Deployment

Department of Civil & Environmental Engineering

- Six states
- 16 evaluation reports
- 21 deployments, 206 days sensors on the road
- 505 centerline mile (454 mile freeway, 51 mile arterial)
- 33,461 hour worth of ground truth data resulting from 3.8 million Bluetooth observations

State	Deploy	тмс	Start	End Time	No, of	Total	Total BT	Total BT
	ment	Туре	Time		тмс	Length	Records	Hours
DE	1	F	9/4/08 11:35	9/9/08 18:25	3	6.2	4182	348
		Α	9/4/08 13:05	9/9/08 15:50	2	2.8	2914	242
	2	F	2/3/09 13:05	2/9/09 21:15	10	13.5	16929	1410
	3	F	8/11/09 13:25	8/22/09 21:05	7	10.3	21364	1780
		Α	8/11/09 13:10	8/23/09 2:00	2	2.5	5875	489
	4	F	4/26/10 11:00	5/4/10 10:55	9	13.4	14004	1167
MD	1	F	7/30/08 19:35	8/7/08 19:55	26	33.6	4015	334
		Α	7/30/08 20:40	8/7/08 19:20	23	25.1	4877	406
	2	F	3/5/09 11:20	3/17/09 21:30	9	20.1	15058	1254
	3	F	2/2/10 10:25	2/10/10 16:15	10	13.9	9483	790
		Α	2/2/10 11:20	2/9/10 19:50	2	3.0	814	67
NC	1	F	10/24/08 9:25	11/5/08 14:35	13	40.5	20888	1740
		Α	10/28/08 15:05	11/6/08 17:35	5	10.9	2179	181
	2	F	7/10/09 9:20	7/21/09 10:15	10	43.8	29863	2488
	3	F	3/23/10 10:20	4/3/10 20:50	10	19.5	18494	1541
NJ	1	F	9/15/08 13:20	10/3/08 13:45	12	28.0	15487	1290
	2	F	4/8/09 15:05	4/20/09 23:50	10	15.8	18424	1535
	3	F	6/3/09 10:15	6/15/09 11:35	10	63.3	29678	2473
	4	F	9/8/09 11:25	9/17/09 12:15	10	17.3	25816	2151
	5	F	10/1/09 11:55	10/13/09 19:20	10	13.7	30724	2560
	6	F	5/25/10 12:05	6/3/10 12:40	6	10.1	12332	1027
ΡΑ	1	F	1/6/10 11:25	1/17/10 16:35	8	9.2	22971	1914
		Α	1/6/10 12:20	1/17/10 1:30	2	5.9	5170	430
VA	1	F	7/22/08 19:15	7/24/08 19:15	24	37.7	4321	360
	2	F	11/18/08 10:20	11/25/08 18:15	10	16.5	18138	1511
	3	F	5/7/09 9:45	5/18/09 21:20	9	13.8	17819	1484
	4	F	11/5/09 9:40	11/16/09 21:10	8	13.6	24513	2042
		Α	11/5/09 11:20	11/15/09 22:35	2	1.0	5371	447

Department of Civil & Environmental Engineering

Department of Civil & Environmental Engineering

Features

- Internet accessible
- Outlier filtering
- Path data analysis
- Evaluation report generator
- Graph generator
- Data Import and export (XML, CSV)
- Bluetooth penetration rate analysis
- Bluetooth OD analysis and report
- Statistics report
- TMC mapping
- Data mining
- Programming language C++, Database Microsoft SQL Server

Department of Civil & Environmental Engineering

Bluetooth and INRIX Speed Comparison

Bluetooth

Inrix

TMC:103-04103

Department of Civil & Environmental Engineering

Bluetooth and INRIX Speed Comparison with Bluetooth Observation Counts

Department of Civil & Environmental Engineering

Ongoing Applications

- Vehicle Probe Project
- Bluetooth Sampling Rate
- Dynamic Message Sign Evaluation Pilot
- Short Term Travel Time Forecast
- Special Event Pedestrian Traffic Monitoring

Bluetooth Sampling Rate

- Bluetooth sensors sample a fraction of vehicles in the traffic stream, so it is important to understand what percentage of total traffic volume is being sampled
- Secondary source of traffic surveillance is required to measure the sampling rate
- Wavetronix sensors in Delaware and CHART data in Maryland was used to study the sampling rate

Typical Hourly Bluetooth Sampling Rate

Ongoing Applications

- Vehicle Probe Project
- Bluetooth Sampling Rate
- Dynamic Message Sign Evaluation Pilot
- Short Term Travel Time Forecast
- Special Event Pedestrian Traffic Monitoring

DMS Evaluation Pilot

Department of Civil & Environmental Engineering

Ongoing Applications

- Vehicle Probe Project
- Bluetooth Sampling Rate
- Dynamic Message Sign Evaluation Pilot
- Short Term Travel Time Forecast
- Special Event Pedestrian Traffic Monitoring

Short-Term Travel Time Forecast

- Real time travel time estimates from Bluetooth are used for short-term forecasts
- Moving average methods are widely used for this purpose
- Three moving average methods are considered
 - Simple Moving Average w/ equal weights
 - Adaptive Exponential Smoothing
 - Kriging w/ optimal weights

Short-Term Travel Time Forecast (5 minute predictions)

Department of Civil & Environmental Engineering

Ongoing Applications

- Vehicle Probe Project
- Bluetooth Sampling Rate
- Dynamic Message Sign Evaluation Pilot
- Short Term Travel Time Forecast
- Special Event Pedestrian Traffic Monitoring

Special Events Pilot

Maryland Day Traffic Patterns (April 24, 2010)

- Descriptive trip analysis
- Pedestrian route choice
- Event planning
- Evacuation plans

Special Events Pilot

Department of Civil & Environmental Engineering

Special Events Pilot

Department of Civil & Environmental Engineering

- Kaveh Farokhi Sadabadi, Masoud Hamedi, Ali Haghani, <u>"Real-Time Travel Time Estimation: Filtering Raw Data in an Automatic Vehicle Identification Setting"</u>, Paper presented at the ITS America Annual Meeting, Washington, DC, June 2009.
- Kaveh Farokhi Sadabadi, Masoud Hamedi, Ali Haghani, <u>"Real-Time Short-Term Freeway Travel Time Prediction Under an AVI Setting"</u>, Paper presented at the 2nd International Symposium on Freeway & Tollway Operations, Honolulu, Hawaii, June 2009.

Papers and Presentations

- Kaveh Farokhi Sadabadi, Masoud Hamedi, Ali Haghani, <u>"Evaluating Moving Average Techniques in Short-Term</u> <u>Travel Time Prediction Using an AVI Dataset"</u>, Presented at the 89th Transportation Research Board annual meeting, Washington, DC, January 2010.
- Ali Haghani, Masoud Hamedi, Kaveh Farokhi Sadabadi "Freeway Travel Time Ground Truth Data Collection Using <u>Bluetooth Sensors"</u>, Presented at the 89th Transportation Research Board annual meeting, Washington, DC, January 2010.
- Masoud Hamedi, Ali Haghani, Kaveh Farokhi Sadabadi <u>"Using</u> <u>Bluetooth Technology for Validating Vehicle Probe Data"</u>, Proceedings of 16th ITS World Congress, Stockholm, Sweden, September 2009.

Contact information

- Ali Haghani, Professor and Chairman, Department of Civil & Environmental Engineering, University of Maryland, College Park (haghani@umd.edu, phone: 301-405-1963)
- Stanley Young, Research Engineer, Center for Advanced Transportation Technology, Department of Civil & Environmental Engineering, University of Maryland, College Park (seyoung@umd.edu, phone: 301-792-8180)