

Speed Data: "... new twists compliments of technology "

Speed Data Summit Stanley E. Young, PhD, PE University of Maryland June 16, 2010

6/30/2010

 NCHRP 20-7 – Guide to Benchmarking Operations Performance Measures

"A Few Good Measures" by NTOC

- I95 Corridor Coalition Vehicle Probe Project
 - > Vehicle Probe Traffic Monitoring System
 - Commercial Data Provider
 - > Validated data accuracy
- Bluetooth Traffic Monitoring
 - Travel time based on re-identification of a portion of vehicles

"A Few Good Measures" identified by NTOC

 Customer Satisfaction

UMD CATT

- Extent of Congestion
- Delay Non-Recurring Recurring
- Incident Duration

- Speed
- Throughput Person Vehicle
- Travel Time Link Reliability Trip

"A Few Good Measures" identified by NTOC

 Customer Satisfaction

UMD CATT

- Extent of Congestion
- Delay Non-Recurring Recurring
- Incident Duration

- Speed
- Throughput
 Person
 Vehicle
- Travel Time Link Reliability Trip

195 Vehicle Probe Project

Initial Coverage in July 2008

UMD CATT

- 1500 Freeway miles
 - 1000 Arterial miles
- New Jersey to North Carolina

Expansions

- All NJ Freeways (500miles)
- All NC Interstates (1000 miles)
- All SC Freeways (1000 miles) • Florida (500 miles)

Key Program Features

Content

Speed & travel time updates every minute Expected speed, free flow speed, and confidence values

Access and Use

24/7/365 Web based data feed Full archive available Project portal for graphical display Map overlays

Uses

511, Traveler Information, Performance measures, Planning

Validated Accuracy

How do they do that?

- Primary data source are GPS equipped fleets
- Other sources include:
 - Public sensor data
 - Crowd sourced data

Center for Advanced Transportation Technology

Maryland SHA – Travel Time on Changeable Message Signs

- Planned for 2012
- Implemented January 0f 2010
 - > 18 Months ahead of schedule!
- No need for state funds to support extended sensor network.

6/30/2010

Multi-State Performance Measures

- NC Performance Measures Pilot 2010
 - Statewide assessment
 - > Based on Vehicle Probe data
 - > Processed and delivered by UMD RITIS
- Benefits

UMD CATT

- > Common data, formats, reporting
- > No additional in-house resources
- Replicated to all participating states

Unintended Benefits / Consequences

- Emergence of Industry Standards
 - > XML based data feed

UMD CATT

- Integration with Internet tools
- > Traffic Message Channel as preferred geographic reference system
- Common data formats across states, technologies, departments, and industry

"Silos are coming down"

Is the data any good?

- Validate the accuracy of the Inrix data feed
- Perform a three year validation for approximately 1,500 freeway miles
- Adjust contractor payments to reflect data quality

Data Quality

- Travel Time / Speed Data
 Max average absolute speed error 10 MPH
 Maximum speed error bias +/- 5 MPH Max
- Specifications applied in four flow regimes
 0 30 MPH
 30 45 MPH
 45-60 MPH
 > 60 MPH
- Space mean speed specified
- Applied flows > 500 vehicles/hour
- Maximum data lag of 8 minutes

Center for Advanced Transportation Technology

Bluetooth Traffic Monitoring

- * Bluetooth signals come from cell phones, PDAs, laptops, GPS, car radios...
- ** Provisional patent received

6/30/2010

Data from many cars ...

6/30/2010

6/30/2010

Data from many cars ...

15

Center for Advanced Transportation Technology

Typical Deployment

Center for Advanced Transportation Technology

TMC:125+05269 195 NORTHBOUND ending at HWY 903/EXIT 168 (6.76493 miles)

Arterial Assessment

 MD24 in Northern Baltimore

UMD CATT

- Before/After impact of signal timing
- AM, Mid-day, and PM analysis
- February 23-27, 2009
 - > New timing on 2/25/09

Results PM Comparison

MONITORING INTERCHANGES

UMD CATT

Where do you deploy sensors? How many?

I-695 & I-95

MONITORING INTERCHANGES I-695 & I-95

Center for Advanced Transportation Technology

ALL 12 TURNING MOVEMENTS CAPTURED!!!

DETECTIONS

	ТО			
FROM	195 NB	195 SB	1695 WB	1695 EB
195 NB	5889		3186	520
195 SB		8039	2895	733
1695 WB	833	543	3817	
1695 EB	836	1333		1622

Bluetooth Technology Applications

- > Freeway travel time (VM)
- >Arterial travel time and Performance Measures (M)
- >Traffic signal studies (M)
- >Pedestrian travel time (E)
 - Airports, Evacuation Modeling, Transit
- >O&D studies (R&D)

Toward a National Speed Data Program What should be measured and how?

Define speed …

UMD CATT

- > Different for freeways, arterials, ramps ...
- > Spot speed vs space mean speed
- What should be measured?
 - Mean, median, percentiles (85th, 95th, IQR)
 - > Reporting intervals (peak hour, 5 min, 15 min)
 - > Level of precision, (confidence intervals ?)
- Spatial reporting format (consider TMCs)

Toward a National Speed Data Program

Assessing New Technology and Methods

- Commercial Data Feeds
- > Bluetooth Traffic Monitoring
- Issues:
 - $_{\rm \circ}\,$ Accuracy, coverage and cost
 - $_{\rm o}\,$ Types of data delivered
 - $_{\circ}$ How to validate
 - Guidance and case studies

Thank You