The Global Supply Chain and Greenhouse Gases: a North American Perspective

Annie Protopapas, Ph.D.
Multimodal Freight Transportation
Texas Transportation Institute
Summary

- Background
- Foundation Paper
- Greening North American Transportation Corridors
Background

- TTI conducted two projects for the tri-national Commission for Environmental Cooperation (CEC)

 - **Foundation Paper**
 - Part of larger CEC report under Article 13 “Towards Sustainable Freight Transportation in North America”
 - freight transportation system in North America as it relates to greenhouse gas (GHG) emissions
 - state-of-the-practice in measurement/estimation of GHGs
 - available GHG mitigation strategies
 - opportunities for GHG mitigation on a NA front

- **Greening North American Transportation Corridors**
 - developed methodology to measure corridor level emissions
 - issues and opportunities to improve air quality
 - case study determined the air quality impact of truck and rail freight movement along the Mexico City to Montreal corridor
Foundation Paper

Overview

- Transportation is one of the major contributors to the release of GHGs in the atmosphere, producing more than 1/3 of the total GHGs released in North America.

- Canada is #1 US trading partner and Mexico is #3 US trading partner.

- Truck is the dominant mode for goods movement between the three countries.

US Land Trade with Canada and Mexico (billion US$)

- Rail
- Truck
Cross-Border Trade

- Approximately 50% of the total truck and rail traffic by value in North America was handled by 3 land ports of entry.
- At the US-Canadian border, more than 75% of the surface trade was handled by 5 land ports of entry.
- At the US-Mexican border, 75% of the total trade was handled by 4 ports of entry.
Correlation between Freight Transportation and GHGs

- The primary fuel of freight truck and rail is diesel—a petroleum product i.e. a fossil fuel
- GHGs are byproducts of combustion of fossil fuels e.g. oil and coal
- Direct positive relationship between fossil fuel use and GHG production—the more the fuel burned the more the GHGs produced
- GHGs emitted by freight rail and truck consist of 96% carbon dioxide (CO$_2$) by volume. The remaining GHGs are methane (CH$_4$), nitrous oxide (N$_2$O), and fluorinated gases (HFCs, PFCs, SF$_6$)
Freight Transportation GHGs in NA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Duty Gasoline Vehicles</td>
<td>620.9</td>
<td>41.1</td>
<td>-</td>
</tr>
<tr>
<td>Light Duty Diesel Vehicles</td>
<td>4.1</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Light Duty Gasoline Trucks</td>
<td>493.9</td>
<td>45.0</td>
<td>-</td>
</tr>
<tr>
<td>Light Duty Diesel Trucks</td>
<td>26.9</td>
<td>2.3</td>
<td>-</td>
</tr>
<tr>
<td>Heavy Duty Gasoline Vehicles</td>
<td>35.6</td>
<td>6.6</td>
<td>-</td>
</tr>
<tr>
<td>Heavy Duty Diesel Vehicles</td>
<td>371.3</td>
<td>40.1</td>
<td>-</td>
</tr>
<tr>
<td>Motorcycles</td>
<td>2.0</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>On-road Subtotal</td>
<td>1,554.7</td>
<td>135.9</td>
<td>101.9</td>
</tr>
<tr>
<td>Railways</td>
<td>46.0</td>
<td>7.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Domestic Marine</td>
<td>8.1</td>
<td>6.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Domestic Aviation</td>
<td>185.2</td>
<td>7.8</td>
<td>6.3</td>
</tr>
<tr>
<td>Total Transportation</td>
<td>1,794.0</td>
<td>156.8</td>
<td>112.0</td>
</tr>
</tbody>
</table>

*MtCO2e = Metric Tons of Carbon Dioxide Equivalent

- Denotes no data availability

On-road includes light duty gasoline and diesel trucks and vehicles, motorcycles, and heavy duty gasoline and diesel vehicles

Data for all three countries in the same year were not available

****Table only includes vehicle classes for which data in all three countries were available****
Freight Transportation GHGs in the USA

- US transportation GHG emissions are 12x Canada’s and 16x Mexico’s.
- Trends in the U.S. and Canada are similar:
 - GHGs from passenger cars and trucks have been decreasing
 - GHGs from freight trucks have been increasing in recent years
Foundation Paper

GHG Emission Reduction Challenges & Strategies

Reducing GHGs from freight modes may be more challenging than reducing GHGs from passenger modes or stationary sources

- Little or no discretionary freight movement
- Implications for the economy and global competitiveness
- Slower freight vehicle fleet turnover so slower rate of introduction of new technologies
- Due to economic competition, freight carriers already have significant incentive to minimize fuel costs and GHGs
- Freight VMT expected to grow faster than passenger VMT

Source: AASHTO
Greening NA Transportation Corridors

Case Study:
Mexico City to Montreal Corridor

Study Corridor Distance by Country and Mode (miles)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Canada</th>
<th>U.S.</th>
<th>Mexico</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck</td>
<td>531</td>
<td>1,624</td>
<td>693</td>
<td>2,847</td>
</tr>
<tr>
<td>Rail</td>
<td>575</td>
<td>1,903</td>
<td>717</td>
<td>3,194</td>
</tr>
</tbody>
</table>

Legend
- Truck Corridor
- Railroad
- Urban Area
- Border Crossing
- Highway Network
- State / Province

[Image of map showing transportation corridors]
Greening NA Transportation Corridors

Data Requirements for Corridor Level Air Quality Analysis of Freight Movement

<table>
<thead>
<tr>
<th>Truck</th>
<th>Rail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freight Activity</td>
<td>Freight Activity</td>
</tr>
<tr>
<td>- Annual truck VMT on each link (from annual truck volume)</td>
<td>- Annual ton-mile commodity flow between each major origin-destination pair</td>
</tr>
<tr>
<td>- Annual truck volumes at ports of entry</td>
<td></td>
</tr>
<tr>
<td>- Fleet characteristics e.g. age distribution, VMT share</td>
<td></td>
</tr>
<tr>
<td>- Speed profile for trucks crossing US ports of entry</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emission Rates</th>
<th>Emission Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Aggregated exhaust emission rates based on vehicle registration data and MOBILE6.2</td>
<td>- Exhaust emission rates based on national average rates</td>
</tr>
<tr>
<td>- PEMS measurements</td>
<td></td>
</tr>
</tbody>
</table>
Analysis Process for Emissions along the Corridor

Truck

1. Highway Link and Truck Data
 - Select and Export Study Corridor Data
 - Calculate Emissions (Truck Flow Emission Rates)
 - Annual Truck Emission Dataset
 - Join and Classify Emissions Data
 - Final Maps for Annual Truck Emissions

2. Emission Rates by Type

3. FAF Network GIS Base Map

Rail

1. Rail Freight Movement Data
 - Sort and Export Data for Major Cities
 - Calculate Emissions (Commodity Flow Emission Rates)
 - Annual Rail Emission Dataset
 - Join and Classify GIS Data
 - Final Maps for Annual Rail Emissions

2. Emission Rates by Type

3. National Rail Network

4. Rail Network GIS Base Map
Greening NA Transportation Corridors
Greening NA Transportation Corridors
Greening NA Transportation Corridors

Total Annual Freight Emissions on the Mexico City to Montreal Corridor

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>CO_2 (kt)</th>
<th>CO (metric ton)</th>
<th>NOx (metric ton)</th>
<th>THC (metric ton)</th>
<th>PM (metric ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck</td>
<td>2010</td>
<td>13,508</td>
<td>10,746</td>
<td>76,733</td>
<td>2,231</td>
<td>713</td>
</tr>
<tr>
<td></td>
<td>2035</td>
<td>32,218</td>
<td>4,209</td>
<td>17,015</td>
<td>3,730</td>
<td>217</td>
</tr>
<tr>
<td>Rail</td>
<td>2010</td>
<td>177</td>
<td>480</td>
<td>2,866</td>
<td>161</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2035</td>
<td>278</td>
<td>756</td>
<td>2,821</td>
<td>177</td>
<td>113</td>
</tr>
</tbody>
</table>
Greening NA Transportation Corridors

Data Requirements and Data Sources

Corridor data are highly uncertain, or even non-existent

Freight Data Sources

- FHWA/BTS databases most reliable sources
- Canadian and Mexican data difficult to obtain e.g. Transport Canada data & Canadian data sharing rules
- Data collection efforts & level of granularity vary in each country
Greening NA Transportation Corridors

Data Requirements and Data Sources (cont.)

Trucking Activity
- FAF truck volume data do not include vehicle weight or load factor
- EPA *Smartway* fleet performance data not publicly available
- Uncertainty in emissions estimates: emissions rates of empty trucks might be underestimated

Network and Routing Data
- GIS network data for highway and rail are publicly available
- Truck volume data: publicly available hence higher reliability
- Rail routing & movement data: proprietary hence greater uncertainty
Greening NA Transportation Corridors

Data Requirements and Data Sources (cont.)

Truck Emissions Rates

- MOBILE6.2 truck emissions rates are aggregate distance-based rates for different average speeds
- Suitable for medium- and large-scale analyses; not sensitive to changes in driving conditions at constant average speeds
- CO₂ and PM rates in M6.2 are not sensitive to speed; not very suitable for link level analyses
- EPA’s newest model MOVES is capable of fine-scale analyses
- Requires disaggregate activity data not currently available; no standard collection procedures developed yet
Greening NA Transportation Corridors

Data Requirements and Data Sources (cont.)

Freight Rail Movement and Emissions

- High levels of uncertainty in freight rail movement data
- Available emissions estimation methods are aggregate procedures based on national average values that consider the total weight of hauled cargo to obtain fuel consumption and emissions
Overall Conclusions & Opportunities

Short Term
- More rigorous public investment
 - Catalyst to lower tech cost; large & small operators
- Freight-specific GHG regulation
 - Fuel efficiency standards for heavy duty trucks
- Cooperation with private sector
 - Tri-partisan relationship with tech R&D and operators
- Technology & Expertise Transfer in NA
 - Development & standardization in data & methods
 - Development of NA level GHG performance measures

Medium-Long Term
- Feasible alternative energy sources for freight modes
- Carbon emissions pricing (cap and trade, carbon pricing...)

Texas Transportation Institute
For further information please contact:

CEC Foundation Paper
Annie Protopapas a-protopapas@tamu.edu
Juan Villa j-villa@tamu.edu

Greening NA Transportation Corridors
Josias Zietsman zietsman@tamu.edu